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EXACT SOLUTIONS OF A GENERALIZED
TIME-FRACTIONAL KDV EQUATION UNDER
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Abstract It is well known that searching exact solutions of nonlinear frac-
tional partial differential equations (PDEs) is a very difficult work. In this
paper, based on a modified separation method of variables and the dynamic
system method, a combinational method is proposed in order to develop new
methods for solving nonlinear time-fractional PDEs. Compared with the tra-
ditional separation method of variables, the modified separation method of
variables has some advantages in reducing nonlinear time-fractional PDEs.
As an example for the application of this combinational method, a generalized
nonlinear time-fractional KdV equation is studied under the Riemann-Liouville
and Caputo fractional differential operators, respectively. In different paramet-
ric regions, different kinds of phase portraits of the dynamic systems derived
from the generalized time-fractional KdV equation are presented. Existence
and dynamic properties of solutions of the generalized time-fractional KdV
equation are investigated. In some special parametric conditions, many exact
solutions are obtained, some of them are parametric form. Such solutions of
parametric form are usually unable to be obtained by other methods, which
also shows an advantage of dynamic system method.

Keywords Separation method of semi-fixed variables, dynamic system
method, nonlinear time-fractional PDEs, generalized time-fractional KdV
equation.

MSC(2010) 26A33, 34A05, 34K18, 35D05.

1. Introduction

It is well known that the basic concept of fractional derivative was born in the
Leibniz era. At first, the study of fractional calculus was only limited to pure math-
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ematical theory because it lacked the application background for a long time. For
a long period of history, there had no idea what mathematical models could be
modeled by fractional differential calculus. This situation did not change until the
middle of the last century. Since 1960s, more and more researchers have found that
the fractional-order differential models can be more accurately described complex
problems in various fields such as mathematical mechanics, control theory, signal
processing, aerodynamics, chemistry, biology and so forth. However, compared with
the number of integer-order differential equations, the number of existing fractional
differential models is very small. In order to make up for this deficiency, many re-
searchers directly changed some classical integer-order PDEs into fractional PDEs to
study, so as to develop new solution methods for more complex nonlinear fractional
PDEs. From a mathematical point of view, this is meaningful and very necessary
to do so in the current shortage of mathematical models.

In terms of solving fractional differential equations, the current works mainly fo-
cuses on the investigations of exact solutions, approximate solutions and numerical
solutions. On the methods for searching exact solutions and approximate ana-
lytic solutions of fractional PDEs, many effective methods were proposed in recent
decades. These methods include Adomian decomposition method [1, 9], homotopy
analysis method [2, 3, 22], invariant analysis method [4, 40], fractional variational
iteration method [17, 30, 31, 47], invariant subspace method [13, 41, 43], method of
fractional complex transformation [10, 26, 27] and the method of separating vari-
ables [7, 18, 29], etc. Of cause, some methods for investigate numerical solutions of
fractional differential equations also deserve attention [5, 12,48].

Although exact solutions of some fractional differential equations can be ob-
tained by above methods, these methods are not general and have their own limi-
tations in their application. And we found that the method of fractional complex
transformation appeared in Refs. [10, 26, 27] is based on the fractional chain rule
given by Jumarie in Refs. [19–21]. Unfortunately, Jumarie’s fractional chain rule has
been verified that it is not valid in Refs. [14,35,44]. This shows that existing meth-
ods are not sufficient to meet people’s demand on solving complex fractional PDEs.
This means peoples need to develop more new methods to solve those very complex
nonlinear fractional PDEs. For this purpose, based on the separation method of
semi-fixed variables and combined with other methods, we introduced several new
combinational methods [36, 37, 46] for solving nonlinear time-fractional PDEs, re-
cently. Expressly, we noted that the dynamic system method [15, 23–25] based on
the method of bifurcation theory [8] is very effective in searching travelling wave
solutions of nonlinear integer-order PDEs and nonlinear fractional PDEs defined
by the conformable fractional derivative [28]. However, the pure dynamical system
method can not directly be used to solve nonlinear time-fractional PDEs defined by
Riemann-Liouville fractional derivative or Caputo fractional derivative due to the
fractional chain rule does not hold under these two definitions of fractional deriva-
tive, so the application of the dynamical system method needs to combine with
separation method of variables. It is precisely for this reason, by using a combina-
tional method based on the modified separation method of variables and dynamical
system method, we successfully investigated exact solutions and dynamic properties
of the time-fractional biology model of (2 + 1) dimensions in [38]. Obviously, the
several methods in [36–38, 46] mentioned above unlike the traditional separation
method of variables. Specifically speaking, the function T (t) of the part of time t
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in the traditional separation method of variables

u(x, t) = v(x)T (t)

is fixed into some specific special functions such as Mittag-Leffler functions or power
function. So, we call this modified separation method of variables as separation
method of semi-fixed variables. Although these combinational methods are success-
fully used to solve some nonlinear time-fractional PDEs in the above references,
but most of these nonlinear time-fractional PDEs belong to second order PDEs, so
we will naturally ask whether these methods can be solved those nonlinear time-
fractional PDEs with higher-order terms? In the next, we answer this question by
solving a nonlinear time-fractional PDEs with higher-order terms (such as uxxx).

In this paper, by using the separation method semi-fixed variables together
with the dynamic system method, we will investigate exact solutions, existence and
dynamic properties of solutions to the following generalized time-fractional KdV
equation

∂αu

∂tα
+ ux + ρ

∂αuxx

∂tα
+ βuxxx + κuux +

1

3
κρ(uuxxx + 2uxuxx) = 0, (1.1)

where the sign ∂α

∂tα defines fractional differential operator of Riemann-Liouville type
or Caputo type and 0 < α < 1, u = u(x, t), t > 0, x ∈ R, the parameters ρ, β, κ
are nonzero constants. In particular, when α → 1, the equation (1.1) becomes a
generalized KdV equation

ut + ux + ρuxxt + βuxxx + κuux +
1

3
κρ(uuxxx + 2uxuxx) = 0, (1.2)

which was first derived by Fokas [11]. Compared with the classical KdV equation,
the generalized KdV equation (1.2) has very strong nonlinear structure. So, equa-
tion (1.2) exhibits a much richer phenomenology than the classical KdV equation.
In [39], some new soliton-like solutions and periodic wave solutions with loop of Eq.
(1.2) were studied.

Although the generalized time-fractional KdV equation (1.1) is not a practical
physical model, only converted from an integer-order soliton equation (1.2), it is
very meaningful for the purpose of developing a solution method for nonlinear frac-
tional PDEs. Moreover, when an integer-order soliton equation is converted into
a nonlinear time-fractional PDE, how the types and dynamic properties of the so-
lutions will change is also a very interesting question, which deserves our in-depth
exploration and research.

It is well known that when an integer-order nonlinear PDE is changed into a
fractional nonlinear PDE, it becomes very difficult to solve, because many classical
methods in the field of integer-order differential equations will completely lose their
efficacy in the field of fractional differential equations. In other words, the classical
methods in the integer-order field cannot be directly applied to the fractional field,
because there is no succinct chain rule and Leibniz rule as in the integer-order
calculus. Therefore, how to obtain the exact solutions of the generalized time-
fractional KdV equation (1.1) is a very interesting and expectant question. We will
introduce a new combinational method and use it to solve this difficult problem in
this paper.

The organization of this paper is as follows: In Sec. 2, we will summary tradi-
tional and modified separation methods of variables for fractional PDEs. In Sec.
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3, we will investigate exact solutions and dynamic properties of the generalized
time-fractional KdV equation under the definition of Caputo fractional derivative.
In Sec. 4, we will investigate its exact solutions and dynamic properties under the
definition of Riemann-Liouville fractional derivative.

2. Summary of traditional and modified separation
methods of variables for fractional PDEs

2.1. Traditional separation method of variables for fractional
PDEs

We all known that a linear fractional PDE is always able to separate it into two
independent differential equations via traditional separation method of variables.
For example, a linear fractional PDE formed as

∂αu

∂tα
= a0u+ a1

∂σ1u

∂xσ1
+ a2

∂σ2u

∂xσ2
+ · · ·+ an

∂σnu

∂xσn
(2.1)

is always able to separate it into two independent differential equations via the
following traditional separation method of variables

u(x, t) = v(x)T (t), (2.2)

where ∂α

∂tα and ∂σi

∂xσi
are Riemann-Liouville or Caputo differential operator and 0 <

α < 1, σ1, σ2, · · ·, σn are arbitrary positive constants. Indeed, substituting (2.2)
into (2.1), it yields

v
dαT

dtα
= T

(
a0v + a1

dσ1v

dxσ1
+ a2

dσ2v

dxσ2
+ · · ·+ an

dσnv

dxσn

)
, (2.3)

where dα

dtα and dσi

dxσi
are Riemann-Liouville or Caputo differential operator. Sepa-

rating variables, Eq. (2.3) can be rewritten as

dαT
dtα

T
=

a0v + a1
dσ1v
dxσ1

+ a2
dσ2v
dxσ2

+ · · ·+ an
dσnv
dxσn

v
= λ. (2.4)

Obviously, Eq. (2.4) can be separated into two independent differential equations
as follows: 

dαT

dtα
− λT = 0,

(a0 − λ)v + a1
dσ1v

dxσ1
+ a2

dσ2v

dxσ2
+ · · ·+ an

dσnv

dxσn
= 0.

(2.5)

If dα

dtα = RL
0 Dα

t is Riemann-Liouville differential operator, then the fractional

differential equation dαT
dtα − λT = 0 in (2.5) has general solution formed as

T = δ tα−1Eα,α (λtα) , (2.6)

where Eα,α (λtα) is a special case of the two-parameter Mittag-Leffler function, its
definition can be seen Appendix at the end of article, the parameter δ is an arbitrary
constant.
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If dα

dtα = C
0 D

α
t is Caputo differential operator, then the fractional differential

equation dαT
dtα − λT = 0 in (2.5) has general solution formed as

T = δ Eα (λtα) . (2.7)

Obviously, solving the first equation of (2.5) is much simpler. But, the second
equation of (2.5) is complex linear fractional ODE, it is hard to obtain its exact
solutions except some special cases. Especially, when σ1 = 1, σ2 = 2, · · ·, σn = n
and n ∈ N+, the second equation of (2.5) is a n-oder linear ODE and very easy to
solve it.

However, for the nonlinear fractional PDEs, the separation method of variables
has no efficiency for them at all. Even for a relatively simple nonlinear time-
fractional PDE, the traditional separation method of variables is not necessarily
able to separate it into two independent differential systems. For example, a non-
linear time-fractional PDE formed as

∂αu

∂tα
= ηu+ βu2 + κ

(
∂u

∂x

)2

+ ρu
∂2u

∂x2
(2.8)

cannot be separated into two independent differential systems by use of (2.2). Sub-
stituting (2.2) into (2.8), it yields

v
dαT

dtα
= ηvT + βT 2v2 + κT 2

(
dv

dx

)2

+ ρT 2v
d2v

dx2
. (2.9)

It is easy to find that the equation (2.9) cannot be separated into two independent
differential equations as in (2.3).

Specially, when η = 0, Eq. (2.8) can be reduced to

∂αu

∂tα
= βu2 + κ

(
∂u

∂x

)2

+ ρu
∂2u

∂x2
. (2.10)

Substituting (2.2) into (2.10), we obtain

v
dαT

dtα
= T 2

[
βv2 + κ

(
dv

dx

)2

+ ρv
d2v

dx2

]
. (2.11)

Separating variables, Eq. (2.11) can be rewritten as

dαT
dtα

T 2
=

βv2 + κ
(
dv
dx

)2
+ ρv d2v

dx2

v
= λ. (2.12)

Obviously, Eq. (2.12) can be separated into two independent differential systems
as follows: 

dαT

dtα
− λT 2 = 0,

−λv + βv2 + κ

(
dv

dx

)2

+ ρv
d2v

dx2
= 0.

(2.13)

If dα

dtα = RL
0 Dα

t is Riemann-Liouville differential operator, then the nonlinear frac-

tional differential equation dαT
dtα − λT 2 = 0 in (2.13) has general solution formed

as

T = δ
Γ(1− α)

Γ(1− 2α)
t−α, (2.14)
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where δ is arbitrary constant and α ̸= 1
2 . The second equation of (2.13) is a nonlinear

ODE, its solutions can be obtained by dynamic system method or other methods.

2.2. Modified separation method of variables for nonlinear
time-fractional PDEs

Inspired by the above discussions, by using the formulas of fractional derivatives of
Mittag-Leffler functions and power function given in Appendix at the end of article,
we modify the expression (2.2) of the traditional separation method of variables as
follows:

(i) If ∂α

∂tα = RL
0 Dα

t is Riemann-Liouville differential operator and 0 < α < 1,
then the function T (t) in (2.2) can be fixed to tα−1Eα,α (λtα) or tγ , that is

u(x, t) = v(x)
[
tα−1Eα,α (λtα)

]
(2.15)

or

u(x, t) = v(x) tγ , γ > −1. (2.16)

(ii) If ∂α

∂tα = C
0 D

α
t is Caputo differential operatorand 0 < α < 1, then the

function T (t) in (2.2) can be fixed to Eα (λtα) , that is

u(x, t) = v(x)Eα (λtα) . (2.17)

We call above modified separation methods as separation methods of semi-fixed
variables.

In order to test effect of the above separation methods of semi-fixed variables,
we will make some discussions on the applications of (2.15), (2.16) and (2.17) in the
next.

As example, when ∂α

∂tα = RL
0 Dα

t is Riemann-Liouville differential operator,
substituting (2.15) into the nonlinear time-fractional PDE (2.8), it yields

(λ− η)v[tα−1Eα,α(λt
α)] =

[
βv2 + κ

(
dv

dx

)2

+ ρv
d2v

dx2

]
[tα−1Eα,α(λt

α)]2. (2.18)

In Eq. (2.18), respectively letting the coefficients of the Mittag-Leffler functions

tα−1Eα,α (λtα) and
[
tα−1Eα,α (λtα)

]2
as zero, it yields

(λ− η)v = 0,

βv2 + κ

(
dv

dx

)2

+ ρv
d2v

dx2
= 0.

(2.19)

Taking λ = η, Eq. (2.19) can be reduced to

βv2 + κ

(
dv

dx

)2

+ ρv
d2v

dx2
= 0. (2.20)

Similarly, when ∂α

∂tα = C
0 D

α
t is Caputo differential operator, substituting (2.17)

into the nonlinear time-fractional PDE (2.8), it yields

(λ− η)vEα (λtα) =

[
βv2 + κ

(
dv

dx

)2

+ ρv
d2v

dx2

]
[Eα (λtα)]

2
. (2.21)



3582 X. Wu, W. Fan, X. Hong, W. Lu & W. Rui

Similarly, respectively making the coefficients of the Mittag-Leffler functions
Eα (λtα) and [Eα (λtα)]

2
as zero in above equation, Eq. (2.21) also can be reduced

to the ODE (2.20).
From above discussions, it is found that the nonlinear time-fractional PDE (2.8)

cannot be solved by (2.2), but it can be easily solved by (2.15) and (2.17). This
shows that the separation method of semi-fixed variables have some advantages in
reducing nonlinear time-fractional PDEs.

When ∂α

∂tα = RL
0 Dα

t is Riemann-Liouville differential operator, substitute (2.16)
to the nonlinear time-fractional PDE (2.13), it yields

Γ(1 + γ)

Γ(1 + γ − α)
vtγ−α =

[
βv2 + κ

(
dv

dx

)2

+ ρv
d2v

dx2

]
t2γ . (2.22)

In (2.22), letting numbers of power of the functions tγ−α and t2γ equal, it yields

γ − α = 2γ.

Thus, we obtain

γ = −α > −1, Ω0 ≡ Γ(1 + γ)

Γ(1 + γ − α)
=

Γ(1− α)

Γ(1− 2α)
, α ̸= 1

2
. (2.23)

Substituting the condition (2.23) into (2.22) and then dividing both sides of the
equation by t−2α, it yields

−Ω0v + βv2 + κ

(
dv

dx

)2

+ ρv
d2v

dx2
= 0. (2.24)

Further, using dynamic system method, exact solutions of the nonlinear ODE (2.24)
always can be obtained. Obviously, this method is also very convenient.

To test the efficiency of the modified separation method of variables introduced
above, we next discuss exact solutions and dynamic properties of Eq. (1.1).

3. Exact solutions and dynamic properties of Eq.
(1.1) under Caputo fractional differential opera-
tor

If ∂α

∂tα = C
0 D

α
t is Caputo differential operator, then Eq. (1.1) can be rewritten as

C
0 D

α
t u+ ux + ρ C

0 D
α
t uxx + βuxxx + κuux +

1

3
κρ(uuxxx + 2uxuxx) = 0, (3.1)

where 0 < α < 1, u = u(x, t), t > 0, x ∈ R, the parameters ρ, β, κ are nonzero
constants. We suppose that Eq. (3.1) has solution formed as follows:

u = δ + v(x)Eα (λtα) , (3.2)

where v = v(x) and δ, λ are nonzero constants which can be determined in a later
discussions.
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Substituting (3.2) into (3.1), the equation can be reduced to[
λv + (1 + κδ)vx + λρvxx +

(
β +

1

3
κρδ

)
vxxx

]
Eα (λtα)

+

[
κvvx +

1

3
κρvvxxx +

2

3
κρvxvxx

]
[Eα (λtα)]

2
= 0. (3.3)

In Eq. (3.3), letting the coefficients of the Mittag-Leffler functions Eα (λtα) and

[Eα (λtα)]
2
equal zero, it yields

λv + (1 + κδ)vx + λρvxx +

(
β +

1

3
κρδ

)
vxxx = 0,

vvx +
2

3
ρvxvxx +

1

3
ρvvxxx = 0.

(3.4)

The first equation of (3.4) is linear ODE, but the second equation of (3.4) is non-
linear ODE. From the theory of ordinary differential equations, we know that the
solution to the first equation in (3.4) is not necessarily the solution of the second
equation in (3.4), but the solution of the second equation may be the solution of
the first equation. Therefore, we plan to solve the second nonlinear ODE in (3.4)
firstly, and then test the obtained results into the first linear ODE in (3.4).

Integrating the second nonlinear ODE in (3.4), we obtain

1

2
v2 +

1

3
ρvvxx +

1

6
ρv2x = g1, (3.5)

where g1 is an integral constant and vx = dv
dx . Eq. (3.5) can be rewritten as

3v2 + 2ρvvxx + ρv2x = g, (3.6)

where g is an arbitrary constant and g = 6g1. Letting
dv
dx = y, Eq. (3.6) can be

reduced to 
dv

dx
= y,

dy

dx
=

g − 3v2 − ρy2

2ρv
.

(3.7)

Obviously, the dy
dx cannot be defined when v = 0, so the system (3.7) is not equivalent

to the equation (3.6) at v = 0. However, v = 0 is a trivial solution of equation (3.6).
In order to obtain a completely equivalent system to the equation (3.6) no mater
how the function v vary, we make a scalar transformation as follows:

dx = 2ρvdτ, (3.8)

where τ is a parameter. Under the transformation (3.8), the singular system (3.7)
is reduced to a regular system as follows:

dv

dτ
= 2ρvy,

dy

dτ
= g − 3v2 − ρy2.

(3.9)
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Obviously, both systems (3.7) and (3.9) have a same first integral as follows:

y2 =
h+ gv − v3

ρv
, (3.10)

where h is an integral constant. We rewrite Eq. (3.10) as

H(v, y) ≡ −gv + v3 + ρvy2 = h. (3.11)

When g > 0 and ρ > 0, the system (3.9) has four equilibrium points A1,2

(
±
√

g
3 , 0

)
and B1,2

(
0, ±

√
g
ρ

)
. When g > 0 and ρ < 0, the system (3.9) has two equilibrium

points A1,2

(
±
√

g
3 , 0

)
. When g < 0 and ρ < 0, the system (3.9) has two equilibrium

points B1,2

(
0, ±

√
g
ρ

)
. When g = 0 and ρ ̸= 0, the system (3.9) has only one

equilibrium point O(0, 0). When g < 0 and ρ > 0, the system (3.9) has not any
equilibrium point.

Respectively substituting these equilibrium points into (3.11), we get

h0 = H(0, 0) = 0,

h1,2 = H

(
±
√

g

3
, 0

)
= ∓2g

3

√
g

3
,

h3,4 = H

(
0,±

√
g

ρ

)
= 0.

(3.12)

Writing P (v, y) = 2ρvy, Q(v, y) = g − 3v2 − ρy2, we get the Jacobian matrix
and Jacobian determinant of system (3.9) as follows:

M(v, y) ≡

 Pv Py

Qv Qy

 =

2ρy 2ρv

−6v −2ρy

 , (3.13)

J(v, y) ≡ detM(v, y) = 12ρv2 − 4ρ2y2, TraceM(v, y) = 0. (3.14)

Respectively substituting above equilibrium points into (3.14), we get

J0 ≡ J(0, 0) = 0 and TraceM(0, 0) = 0, (3.15)

J1,2 ≡ J

(
±
√

g

3
, 0

)
= 4ρg, J3,4 ≡ J

(
0, ±

√
g

ρ

)
= −4ρg. (3.16)

According to the classification method of equilibrium points in the bifurcation
theory [8, 15, 23–25] and using the equations (3.15) and (3.16), we can classify the
equilibrium points of the system (3.9). Obviously, the origin point O(0, 0) is a
higher-order equilibrium point due to its equilibrium-point index is grater than 0.
When g = 0 and ρ < 0, the origin point O(0, 0) is a saddle-cusp point, this complex
equilibrium point can be regarded as a combination of degenerative saddle point and
cusp point. When g = 0 and ρ > 0, the origin point O(0, 0) is a center-cusp point,
this complex equilibrium point can be regarded as a combination of degenerative
center point and cusp point.

When g > 0 and ρ > 0, the equilibrium points A1,2

(
±
√

g
3 , 0

)
are two center

points and the equilibrium points B1,2

(
0, ±

√
g
ρ

)
are two saddle points. When
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g > 0 and ρ < 0, the equilibrium points A1,2

(
±
√

g
3 , 0

)
are two saddle points.

When g < 0 and ρ < 0, the equilibrium points B1,2

(
0, ±

√
g
ρ

)
are two saddle

points.
According to the above information, under different parametric conditions, we

draw the phase portraits of system (3.9), which are shown in the Figure 1 of the
below. In the below graphs, the orbits defined by h = 0 are marked in black, the
orbits defined by h > 0 are marked by red, the orbits defined by h < 0 are marked
by blue, the singular line v = 0 is marked by green.

From the theory of the dynamic system, we know that the various orbits in
the phase portraits of the system (3.9) correspond to the various solutions of the
nonlinear ODE (3.6). Therefore, in different parametric conditions we can obtain
different kinds of exact solutions of the nonlinear ODE (3.6) by the orbits of the
phase portraits in the Figure 1. Further, we can obtain different kinds of exact
solutions of the equation (3.4). Next, we will investigate exact solutions of (3.4).

Case 1. When g = 0, ρ < 0 and h = h0 = 0, there are two straight-line orbits
passing through the origin O(0, 0) which are marked by black in Figure 1(a). Sub-
stituting these parametric conditions into (3.10), we obtain expression of the two
line orbits as follows:

y = ± v√
−ρ

. (3.17)

Plugging (3.17) into the first equation dv
dx = y of (3.7) and then integrating it, we

get

v = C1e
x√
−ρ , (3.18)

v = C2e
− x√

−ρ , (3.19)

where C1, C2 are arbitrary constants. Respectively, substituting (3.18) and (3.19)
into the first equation of (3.4), it yields[

1 + κδ√
−ρ

− κρδ + 3β

3ρ
√
−ρ

]
C1e

x√
−ρ = 0, (3.20)

−
[
1 + κδ√

−ρ
− κρδ + 3β

3ρ
√
−ρ

]
C2e

− x√
−ρ = 0. (3.21)

Solving Eqs. (3.20) and (3.21), we can always obtain

δ =
3(β − ρ)

2κρ
. (3.22)

Respectively plugging (3.18), (3.19) and the parametric condition (3.22) into
(3.2), we obtain two exact solutions of the generalized time-fractional KdV equation
defined by Caputo differential operator as follows:

u(x, t) =
3(β − ρ)

2κρ
+ C1e

x√
−ρEα (λtα) , (3.23)

u(x, t) =
3(β − ρ)

2κρ
+ C2e

− x√
−ρEα (λtα) . (3.24)

The above two solutions are general solutions under free conditions. Once, the
boundary conditions and initial value conditions are given, we can determine the



3586 X. Wu, W. Fan, X. Hong, W. Lu & W. Rui

(a) g = 0, ρ < 0 (b) g = 0, ρ > 0

(c) g > 0, ρ > 0 (d) g > 0, ρ < 0

(e) g < 0, ρ < 0 (f) g < 0, ρ > 0

Figure 1. Bifurcation graphs of phase portraits of system (3.9).
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special solution of equation (3.1). For example, in the boundary condition u(0, t) =
3(β−ρ)
2κρ + Eα (−2tα) and the initial value condition u(x, 0) = 3(β−ρ)

2κρ + e
x√
−ρ or

u(x, 0) = 3(β−ρ)
2κρ +e

− x√
−ρ , by using (3.23) and (3.24) we obtain two special solutions

of equation (3.1) as follows:

u(x, t) =
3(β − ρ)

2κρ
+ e

x√
−ρEα (−2tα) , (3.25)

u(x, t) =
3(β − ρ)

2κρ
+ e

− x√
−ρEα (−2tα) . (3.26)

Case 2. When g > 0, ρ > 0 and h = h3,4 = 0, there are two closed orbits shaped

as half-moon passing through the saddle points B1,2

(
0, ±

√
g
ρ

)
which are marked

by black in Figure 1(c). Substituting these parametric conditions into (3.10), we
obtain expression of the two line orbits as follows:

y = ±
√
g − v2
√
ρ

. (3.27)

Plugging (3.27) into the first equation dv
dx = y of (3.7) and then integrating it, we

get

v =
√
g sin

(
x
√
ρ
+ C3

)
, (3.28)

v = −√
g sin

(
x
√
ρ
+ C4

)
, (3.29)

where C3, C4 are arbitrary constants. Respectively, substituting (3.28) and (3.29)
into the first equation of (3.4), it yields[

1 + κδ√
−ρ

− κρδ + 3β

3ρ
√
−ρ

]
√
g cos

(
x
√
ρ
+ C3

)
= 0, (3.30)

−
[
1 + κδ√

−ρ
− κρδ + 3β

3ρ
√
−ρ

]
√
g cos

(
x
√
ρ
+ C4

)
= 0. (3.31)

Solving Eqs. (3.30) and (3.31), we also obtain

δ =
3(β − ρ)

2κρ

which is as same as the condition (3.22). This is not a coincidence because the two
differential equations in (3.4) have same solutions in the parametric condition (3.22).
Therefore, in the below discussions, the parametric condition (3.22) need not to be
repeatedly verified, we can apply it directly. Respectively plugging (3.28), (3.29)
and the parametric condition (3.22) into (3.2), we obtain two exact solutions of the
generalized time-fractional KdV equation defined by Caputo differential operator
as follows:

u(x, t) =
3(β − ρ)

2κρ
+

√
g sin

(
x
√
ρ
+ C3

)
Eα (λtα) , (3.32)
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u(x, t) =
3(β − ρ)

2κρ
−√

g sin

(
x
√
ρ
+ C4

)
Eα (λtα) . (3.33)

These two solutions are general solutions under free conditions. Once, the boundary
conditions and initial value conditions are determined as in Case 1, the special
solution of equation (3.1) can be always determined, here we omit the parts of
discussions. In the below process we will not discuss the problem on special solution
of equation (3.1) and only discuss general solutions under free conditions.

Case 3. When g > 0, ρ < 0 and h = 0, there are two hyperbola orbits which
are marked by black in Figure 1(d). Substituting these parametric conditions into
(3.10), we obtain expression of the two line orbits as follows:

y = ±
√
v2 − g√
−ρ

. (3.34)

Plugging (3.34) into the first equation dv
dx = y of (3.7) and then integrating it, we

get

v =
√
g cosh

(
x√
−ρ

+ C5

)
, (3.35)

v = −√
g cosh

(
x√
−ρ

+ C6

)
, (3.36)

where C5, C6 are arbitrary constants. As in the Case 1 and Case 2, we obtain two
general exact solutions of the generalized time-fractional KdV equation defined by
Caputo differential operator as follows:

u(x, t) =
3(β − ρ)

2κρ
+

√
g cosh

(
x√
−ρ

+ C5

)
Eα (λtα) , (3.37)

u(x, t) =
3(β − ρ)

2κρ
−√

g cosh

(
x√
−ρ

+ C6

)
Eα (λtα) . (3.38)

Case 4. When g > 0, ρ < 0 and h = h1,2 = ∓ 2g
3

√
g
3 , there are four orbits passing

though the two saddle points A1,2

(
0, ±

√
g
ρ

)
which are marked by blue and red in

Figure 1(d). Substituting above conditions into (3.10), we obtain two expressions
of the four orbits as follows:

y = ±
v −

√
g
3√

−ρ

√
v + 2

√
g
3

v
, (v > 0) (3.39)

and

y = ±
v +

√
g
3√

−ρ

√
v − 2

√
g
3

v
, (v < 0). (3.40)

Respectively plugging (3.39) and (3.40) into the first equation dv
dx = y of (3.7) to

integrate, we get ∫
1

v −
√

g
3

√
v

v + 2
√

g
3

dv = ±
∫

1√
−ρ

dx (3.41)
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and ∫
1

v +
√

g
3

√
v

v − 2
√

g
3

dv = ±
∫

1√
−ρ

dx. (3.42)

Completing above integrals in (3.41) and (3.42), we obtain four solutions of implicit
function form of Eq. (3.6) as follows:

ln

∣∣∣∣∣∣
√

v

v+2
√

g
3

+ 1√
v

v+2
√

g
3

− 1

∣∣∣∣∣∣+
√
3

3
ln

∣∣∣∣∣∣
√

3v

v+2
√

g
3

− 1√
3v

v+2
√

g
3

+ 1

∣∣∣∣∣∣ = ± x√
−ρ

+ C̃7,8, (3.43)

ln

∣∣∣∣∣∣
√

v

v−2
√

g
3

+ 1√
v

v−2
√

g
3

− 1

∣∣∣∣∣∣+
√
3

3
ln

∣∣∣∣∣∣
√

3v

v−2
√

g
3

− 1√
3v

v−2
√

g
3

+ 1

∣∣∣∣∣∣ = ± x√
−ρ

+ C̃9,10, (3.44)

where C̃7,8,9,10 are arbitrary constants.

Note. Letting
√

v

v+2
√

g
3

= ϕ, the first integral in (3.41) can be reduced to

∫
1

v −
√

g
3

√
v

v + 2
√

g
3

dv =

∫ (
1

ϕ+ 1
− 1

ϕ− 1
+

1√
3ϕ− 1

− 1√
3ϕ+ 1

)
dϕ.

By using the solutions (3.43), (3.44) and (3.2), (3.22), we obtain eight exact solution
of parametric form of Eq. (3.1) as follow:

u =
3(β − ρ)

2κρ
+ vEα (λtα) ,

(
0 < v <

√
g

3

)
,

x =
√
−ρ

ln
1 +

√
v

v+2
√

g
3

1−
√

v

v+2
√

g
3

+

√
3

3
ln

1−
√

3v

v+2
√

g
3

1 +
√

3v

v+2
√

g
3

+ C7,
(3.45)


u =

3(β − ρ)

2κρ
+ vEα (λtα) ,

(
0 < v <

√
g

3

)
,

x = −
√
−ρ

ln
1 +

√
v

v+2
√

g
3

1−
√

v

v+2
√

g
3

+

√
3

3
ln

1−
√

3v

v+2
√

g
3

1 +
√

3v

v+2
√

g
3

+ C8,
(3.46)

where v is a parameter and 0 < v <
√

g
3 , the C7,8 are arbitrary constants. The

(3.45) and (3.46) are two bounded solutions
u =

3(β − ρ)

2κρ
+ vEα (λtα) ,

(
v >

√
g

3

)
,

x =
√
−ρ

ln
1 +

√
v

v+2
√

g
3

1−
√

v

v+2
√

g
3

+

√
3

3
ln


√

3v

v+2
√

g
3

− 1√
3v

v+2
√

g
3

+ 1

+ C7,
(3.47)


u =

3(β − ρ)

2κρ
+ vEα (λtα) ,

(
v >

√
g

3

)
,

x = −
√
−ρ

ln
1 +

√
v

v+2
√

g
3

1−
√

v

v+2
√

g
3

+

√
3

3
ln


√

3v

v+2
√

g
3

− 1√
3v

v+2
√

g
3

+ 1

+ C8,
(3.48)
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where v is a parameter and v >
√

g
3 , the C7,8 are arbitrary constants. The (3.47)

and (3.48) are two unbounded solutions
u =

3(β − ρ)

2κρ
+ vEα (λtα) ,

(
−
√

g

3
< v < 0

)
,

x =
√
−ρ

ln
1 +

√
v

v−2
√

g
3

1−
√

v

v−2
√

g
3

+

√
3

3
ln

1−
√

3v

v−2
√

g
3

1 +
√

3v

v−2
√

g
3

+ C9,

(3.49)


u =

3(β − ρ)

2κρ
+ vEα (λtα) ,

(
−
√

g

3
< v < 0

)
,

x = −
√
−ρ

ln
1 +

√
v

v−2
√

g
3

1−
√

v

v−2
√

g
3

+

√
3

3
ln

1−
√

3v

v−2
√

g
3

1 +
√

3v

v−2
√

g
3

+ C10,

(3.50)

where v is a parameter and −
√

g
3 < v < 0, the C9,10 are arbitrary constants. The

(3.49) and (3.50) are two bounded solutions
u =

3(β − ρ)

2κρ
+ vEα (λtα) ,

(
v < −

√
g

3

)
,

x =
√
−ρ

ln
1 +

√
v

v−2
√

g
3

1−
√

v

v−2
√

g
3

+

√
3

3
ln


√

3v

v−2
√

g
3

− 1√
3v

v−2
√

g
3

+ 1

+ C9,

(3.51)


u =

3(β − ρ)

2κρ
+ vEα (λtα) ,

(
v < −

√
g

3

)
,

x = −
√
−ρ

ln
1 +

√
v

v−2
√

g
3

1−
√

v

v−2
√

g
3

+

√
3

3
ln


√

3v

v−2
√

g
3

− 1√
3v

v−2
√

g
3

+ 1

+ C10,

(3.52)

where v is a parameter and v < −
√

g
3 , the C9,10 are arbitrary constants. The (3.51)

and (3.52) are two unbounded solutions.

Case 5. When g < 0, ρ < 0 and h = 0, there are two parabolic orbits which
are marked by black in Figure 1(e). Substituting these parametric conditions into
(3.10), we obtain expression of the two line orbits as follows:

y = ±
√
v2 + (

√
−g)2√

−ρ
. (3.53)

Plugging (3.53) into the first equation dv
dx = y of (3.7) and then integrating it, we

get

v =
√
−g sinh

(
x√
−ρ

+ C11

)
, (3.54)

v = −
√
−g sinh

(
x√
−ρ

+ C12

)
, (3.55)
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where C11, C12 are arbitrary constants. As in the Cases 1 and Case 2, we obtain
two general exact solutions of the generalized time-fractional KdV equation defined
by Caputo differential operator as follows:

u(x, t) =
3(β − ρ)

2κρ
+
√
−g sinh

(
x√
−ρ

+ C11

)
Eα (λtα) , (3.56)

u(x, t) =
3(β − ρ)

2κρ
−
√
−g sinh

(
x√
−ρ

+ C12

)
Eα (λtα) . (3.57)

In the other parametric conditions for h ̸= 0, we have no way to obtain the exact
solution of Eq. (3.1) by integral because the expressions of those orbits are too com-
plex. But in practice applications, we can find the numerical solutions of Eq. (3.1)
in those complex parametric conditions, and the types of the numerical solutions
can be determined by the orbit types in the phase portraits.

In order to intuitively show the dynamic property of above solutions, as exam-
ples, under the integral constants Ci = 0, (i = 3, 5, 8, 11), the 3D-graphs of the
solutions (3.32), (3.37), (3.46) and (3.56) are illustrated, which are shown in Figure
2(a), (b), (c) and (d) respectively.

4. Exact solutions of Eq. (1.1) under Riemann-
Liouville fractional differential operator

If ∂α

∂tα = RL
0 Dα

t is Riemann-Liouville differential operator, then Eq. (1.1) can be
rewritten as

RL
0 Dα

t u+ ux + ρ RL
0 Dα

t uxx + βuxxx + κuux +
1

3
κρ(uuxxx + 2uxuxx) = 0, (4.1)

where 0 < α < 1, u = u(x, t), t > 0, x ∈ R, the parameters ρ, β, κ are nonzero
constants. We suppose that Eq. (3.1) has solution formed as follows:

u = v(x)[tα−1Eα,α (λtα)], (4.2)

where v = v(x) is function to be determined and λ is nonzero constant. Substituting
(4.2) into (4.1), the equation can be reduced to

[λv + vx + λρvxx + βvxxx] t
α−1Eα,α (λtα)

+

[
κvvx +

1

3
κρvvxxx +

2

3
κρvxvxx

] [
tα−1Eα,α (λtα)

]2
= 0. (4.3)

Letting the coefficients of Mittag-Leffler functions tα−1Eα,α (λtα),
[
tα−1Eα,α (λtα)

]2
equal to zero, it yields λv + vx + λρvxx + βvxxx = 0,

vvx +
2

3
ρvxvxx +

1

3
ρvvxxx = 0.

(4.4)

Compared with the systems (4.4) and (3.4), it is easily find that the second equation
in (4.4) is as same as the second equation in (3.4), just that their first equations are
different.
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(a) Solution (3.32): g = 3, ρ = 2, κ = 4 (b) Solution (3.37): g = 3, ρ = −2, κ = 4

(c) Solution (3.46): g = 3, ρ = −2, κ = −4 (d) Solution (3.56): g=−3, ρ=−2, κ=−4

Figure 2. The 3D-graphs of the profiles of four solutions: β = 5, λ = −2, α = 0.5.

Integrating the second nonlinear ODE in (4.4), we obtain

1

2
v2 +

1

3
ρvvxx +

1

6
ρv2x = g1, (4.5)

where g1 is an integral constant. Eq. (4.5) can be rewritten as

3v2 + 2ρvvxx + ρv2x = g, (4.6)

where g is an arbitrary constant. Obviously, Eq. (4.6) is identical to Eq. (3.6),
so their solutions are also same. Thus, we can directly obtain exact solutions of
Eq. (4.1) by using the solutions of Eq. (3.6). The concrete approach is that we
substitute solutions of Eq. (3.6) into the first equation of (4.4) one by one so that we
can find corresponding parametric condition as in Sec. 3. And then, substituting
the obtained parametric condition and the corresponding solutions into (4.2), so
that we can directly obtain the solutions of Eq. (4.1) without having to solve the
Eq. (4.4) again.
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(i) When g = 0, ρ < 0 and h = 0, Eq. (4.6) has the following two exact solutions
as same to those of Eq. (3.6)

v = C1e
x√
−ρ , (4.7)

v = C2e
− x√

−ρ . (4.8)

Respectively, substituting (4.7) and (4.8) into the first equation λv + vx + λρvxx +
βvxxx = 0 in (4.4), it yields(

1√
−ρ

− β

ρ
√
−ρ

)
C1e

x√
−ρ = 0, (4.9)

−
(

1√
−ρ

− β

ρ
√
−ρ

)
C2e

− x√
−ρ = 0. (4.10)

Solving Eqs. (4.9) and (4.10), we can always obtain

β = ρ. (4.11)

Thus, when β = ρ < 0, Eq. (4.1) has two exact solutions as follows:

u(x, t) = C1e
x√
−ρ [tα−1Eα,α (λtα)], (4.12)

u(x, t) = C2e
− x√

−ρ [tα−1Eα,α (λtα)]. (4.13)

(ii) When g > 0, ρ > 0 and h = 0, Eq. (4.6) has the following two periodic
solutions as same to those of Eq. (3.6)

v =
√
g sin

(
x
√
ρ
+ C3

)
, (4.14)

v = −√
g sin

(
x
√
ρ
+ C4

)
. (4.15)

Respectively, substituting (4.14) and (4.15) into the first equation λv+vx+λρvxx+
βvxxx = 0 in (4.4), it yields(

1
√
ρ
− β

ρ
√
ρ

)
√
g cos

(
x
√
ρ
+ C3

)
= 0, (4.16)

−
(

1
√
ρ
− β

ρ
√
ρ

)
√
g cos

(
x
√
ρ
+ C4

)
= 0. (4.17)

Solving Eqs. (4.16) and (4.17), we obtain the parametric condition of β = ρ again.
Also, this is not a coincidence, because the two differential equations in (4.4) have
same solutions in the parametric condition (4.11). Therefore, in the below discus-
sions, the parametric condition (4.11) need not to be repeatedly verified, we can
apply it directly. Thus, when β = ρ < 0, Eq. (4.1) has two exact solutions as
follows:

u(x, t) =
√
g sin

(
x
√
ρ
+ C3

)
[tα−1Eα,α (λtα)], (4.18)

u(x, t) = −√
g sin

(
x
√
ρ
+ C4

)
[tα−1Eα,α (λtα)]. (4.19)
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(iii) When g > 0, ρ < 0 and h = 0, Eq. (4.6) has the following two exact
solutions as same to those of Eq. (3.6)

v =
√
g cosh

(
x√
−ρ

+ C5

)
, (4.20)

v = −√
g cosh

(
x√
−ρ

+ C6

)
. (4.21)

Thus, when g > 0, β = ρ < 0 and h = 0, Eq. (4.1) has two exact solutions as
follows:

u(x, t) =
√
g cosh

(
x√
−ρ

+ C5

)
[tα−1Eα,α (λtα)], (4.22)

u(x, t) = −√
g cosh

(
x√
−ρ

+ C6

)
[tα−1Eα,α (λtα)]. (4.23)

(iv) When g > 0, ρ < 0 and h = ∓ 2g
3

√
g
2 , Eq. (4.6) has the following four exact

solutions of parametric form as same to those of Eq. (3.6)

ln

∣∣∣∣∣∣
√

v

v+2
√

g
3

+ 1√
v

v+2
√

g
3

− 1

∣∣∣∣∣∣+
√
3

3
ln

∣∣∣∣∣∣
√

3v

v+2
√

g
3

− 1√
3v

v+2
√

g
3

+ 1

∣∣∣∣∣∣ = ± x√
−ρ

+ C̃7,8, (4.24)

ln

∣∣∣∣∣∣
√

v

v−2
√

g
3

+ 1√
v

v−2
√

g
3

− 1

∣∣∣∣∣∣+
√
3

3
ln

∣∣∣∣∣∣
√

3v

v−2
√

g
3

− 1√
3v

v−2
√

g
3

+ 1

∣∣∣∣∣∣ = ± x√
−ρ

+ C̃9,10, (4.25)

where C̃7,8,9,10 are arbitrary constants. Thus, when g > 0, ρ < 0 and h = ∓ 2g
3

√
g
2 ,

Eq. (4.1) has four eight solutions of parametric form as follows:
u = vtα−1Eα,α (λtα) ,

(
0 < v <

√
g

3

)
,

x =
√
−ρ

ln
1 +

√
v

v+2
√

g
3

1−
√

v

v+2
√

g
3

+

√
3

3
ln

1−
√

3v

v+2
√

g
3

1 +
√

3v

v+2
√

g
3

+ C7,

(4.26)


u = vtα−1Eα,α (λtα) ,

(
0 < v <

√
g

3

)
,

x = −
√
−ρ

ln
1 +

√
v

v+2
√

g
3

1−
√

v

v+2
√

g
3

+

√
3

3
ln

1−
√

3v

v+2
√

g
3

1 +
√

3v

v+2
√

g
3

+ C8,

(4.27)

where v is a parameter and 0 < v <
√

g
3 , the C7,8 are arbitrary constants. The

(4.26) and (4.27) are two bounded solutions
u = vtα−1Eα,α (λtα) ,

(
v >

√
g

3

)
,

x =
√
−ρ

ln
1 +

√
v

v+2
√

g
3

1−
√

v

v+2
√

g
3

+

√
3

3
ln


√

3v

v+2
√

g
3

− 1√
3v

v+2
√

g
3

+ 1

+ C7,

(4.28)
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u = vtα−1Eα,α (λtα) ,

(
v >

√
g

3

)
,

x = −
√
−ρ

ln
1 +

√
v

v+2
√

g
3

1−
√

v

v+2
√

g
3

+

√
3

3
ln


√

3v

v+2
√

g
3

− 1√
3v

v+2
√

g
3

+ 1

+ C8,

(4.29)

where v is a parameter and v >
√

g
3 , the C7,8 are arbitrary constants. The (4.28)

and (4.29) are two unbounded solutions
u = vtα−1Eα,α (λtα) ,

(
−
√

g

3
< v < 0

)
,

x =
√
−ρ

ln
1 +

√
v

v−2
√

g
3

1−
√

v

v−2
√

g
3

+

√
3

3
ln

1−
√

3v

v−2
√

g
3

1 +
√

3v

v−2
√

g
3

+ C9,

(4.30)


u = vtα−1Eα,α (λtα) ,

(
−
√

g

3
< v < 0

)
,

x = −
√
−ρ

ln
1 +

√
v

v−2
√

g
3

1−
√

v

v−2
√

g
3

+

√
3

3
ln

1−
√

3v

v−2
√

g
3

1 +
√

3v

v−2
√

g
3

+ C10,

(4.31)

where v is a parameter and −
√

g
3 < v < 0, the C9,10 are arbitrary constants. The

(4.30) and (4.31) are two bounded solutions
u = vtα−1Eα,α (λtα) ,

(
v < −

√
g

3

)
,

x =
√
−ρ

ln
1 +

√
v

v−2
√

g
3

1−
√

v

v−2
√

g
3

+

√
3

3
ln


√

3v
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√
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− 1√
3v

v−2
√
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3

+ 1

+ C9,

(4.32)


u = vtα−1Eα,α (λtα) ,

(
v < −

√
g

3

)
,

x = −
√
−ρ

ln
1 +

√
v

v−2
√

g
3

1−
√

v

v−2
√

g
3

+

√
3
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ln


√

3v
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− 1√
3v
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√
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3

+ 1

+ C10,

(4.33)

where v is a parameter and v < −
√

g
3 , the C9,10 are arbitrary constants. The (4.32)

and (4.33) are two unbounded solutions.
(v) When g < 0, ρ < 0 and h = 0, Eq. (4.6) has the following two exact

solutions as same to those of Eq. (3.6)

v =
√
−g sinh

(
x√
−ρ

+ C11

)
, (4.34)

v = −
√
−g sinh

(
x√
−ρ

+ C12

)
. (4.35)

Thus, when g < 0, ρ < 0 and h = 0, Eq. (4.1) has two exact solutions as follows:

u(x, t) =
√
−g sinh

(
x√
−ρ

+ C11

)
[tα−1Eα,α (λtα)], (4.36)
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u(x, t) = −
√
−g sinh

(
x√
−ρ

+ C12

)
[tα−1Eα,α (λtα)]. (4.37)

(a) Solution (4.18): g = 3, ρ = 2 (b) Solution (4.22): g = 3, ρ = −2

(c) Solution (4.27): g = 3, ρ = −2 (d) Solution (4.36): g = −3, ρ = −2

Figure 3. The 3D-graphs of the profiles of four solutions: λ = −2, α = 0.5.

In order to intuitively show the dynamic property of above solutions, as exam-
ples, under the integral constants Ci = 0, (i = 3, 5, 8, 11), the 3D-graphs of the
solutions (4.18), (4.22), (4.27) and (4.36) are illustrated, which are shown in Figure
3(a), (b), (c) and (d) respectively.

Comparing every graph in Figure 2 and Figure 3, it is easy to find that the
reduced speeds of amplitudes of these two kinds of solutions are different although
their dynamic properties are quite similar. Obviously, according to the time t in-
crease, the solution of the time-fractional KdV equation (1.1) under the definition of
Riemann-Liouville derivative is decayed faster than the solution under the definition
of Caputo derivative. This is also because the two-parameter Mittag-Leffler function
tα−1Eα,α (λtα) in solutions converges faster than the one-parameter Mittag-Leffler
function Eα (λtα) when λ < 0.
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5. Conclusion

In this work, based on a modified separation method of variables and the dynamic
system method, a combinational method is proposed. Investigation has shown that
the modified separation method of variables has some advantages in reducing nonlin-
ear time-fractional PDEs. As an example for the application of this combinational
method, a generalized nonlinear time-fractional KdV equation is studied under the
Riemann-Liouville and Caputo fractional differential operators, respectively.

Under the definition of Caputo fractional differential operator, taking the in-
tegral constant h = 0, we obtained eight explicit solution such as (3.23), (3.24),
(3.32), (3.33), (3.37), (3.38), (3.56) and (3.57) of the generalized nonlinear time-
fractional KdV equation. As examples, we obtain two special solutions such as
(3.25) and (3.26) in two kinds of boundary conditions and initial value conditions.
When g > 0, taking the integral constant h = ∓ 2g

3

√
g
3 , we obtained eight exact

solutions of parametric form such as (3.45), (3.46), (3.47), (3.48), (3.49), (3.50),
(3.51) and (3.52) of the generalized nonlinear time-fractional KdV equation. It is
not difficult to find that these solutions of parametric form are usually unable to be
obtained by other methods such as invariant subspace method, which is an advan-
tage of the dynamical system method. Of course, the invariant subspace method
also has its own advantages. In fact, whether it is the modified separation method
of variables or invariant subspace method, their ideas both originate from the con-
cept of separating variables. The difference lies in that the modified separation
method of variables assumes the time variables of solutions assumed structure as a
certain fixed function, such as a Mittag-Leffler function or a power function, while
the invariant subspace method assumes the space variables of solutions assumed
structure as certain elementary functions, which are obtained through invariant
subspaces. It’s worth mentioning that some derivative methods of the invariant
subspace method have also been produced, such as the combinations of the invari-
ant subspace method with Lie symmetry analysis and other techniques. Through
these approaches, some authors have investigated exact solutions of some nonlinear
time-fractional PDEs including coupled time fractional PDEs and time-fractional
differential-difference equations [33,34,42,45]. Similarly, there are new ideas for the
development of the separation method of semi-fixed variables. Recently, combin-
ing with the extended separation method of semi-fixed variables and the mapping
method of Riccati equation, a new approach for searching exact solutions on time-
fractional PDEs is introduced in [16].

Under the definition of Riemann-Liouville fractional differential operator, when
β = ρ and the integral constant h = 0, we obtained eight explicit solution such
as (4.12), (4.13), (4.18), (4.19), (4.22), (4.23), (4.36) and (4.37) of the generalized
nonlinear time-fractional KdV equation. When β = ρ, g > 0 and the integral
constant h = ∓ 2g

3

√
g
3 , we obtained eight exact solutions of parametric form such

as (4.26), (4.27), (4.28), (4.29), (4.30), (4.31), (4.32) and (4.33) of the generalized
nonlinear time-fractional KdV equation. Obviously, solutions of the generalized
nonlinear time-fractional KdV equation (1.1) is not limited by the condition β = ρ
under the definition of Caputo fractional differential operator. This also fully shows
that the difficulty on solving a nonlinear time-fractional PDE of Riemann-Liouville
type is much greater than that for a nonlinear time-fractional PDE of Caputo type.

In the results mentioned above, we did not obtain any soliton solutions of frac-
tional generalized KdV equation (1.1) from first to last. However, when α = 1,
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there are many soliton solutions for the integer-order generalized KdV equation
(1.2). Does this mean that there are no soliton solutions when an integer-order soli-
ton equation is changed into a nonlinear time-fractional PDE? This is a fascinating
question, but in the present way, we cannot answer it with certainty, we have to
leave it to those readers who are interested.

A. Appendix

A.1. The definitions of Riemann-Liouville fractional deriva-
tive and Caputo fractional derivative

Definition A.1. ( [32]) If f(t) is a continuous function at the interval [a, t), then
its arbitrary α-order (fractional) derivative of Riemann-Liouville type is defined by

RL
0 Dα

t f(t) =
1

Γ(n− α)

dn

dtn

∫ t

0

(t− τ)n−α−1f(τ)dτ, n− 1 ≤ α < n, t > 0.

Definition A.2. ( [6]) If f(t) is a n-order smooth function at the interval [a, t),
then its arbitrary α-order (fractional) derivative of Caputo type is defined by

C
0 D

α
t f(t) =

1

Γ(n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ)dτ, n− 1 < α ≤ n, t > 0.

Obviously, the above two definitions are only different in their operation order, the
Riemann-Liouville fractional differential operator is the integral operator at first and
the differential operator in the later, but the Caputo fractional differential operator
is just the opposite.

A.2. The formulas of fractional derivatives of Mittag-Leffler
functions and power function under the Riemann-
Liouville and Caputo differential operators

RL
0 Dα

t

[
tα−1Eα,α (λtα)

]
= λtα−1Eα,α (λtα) , (A.1)

RL
0 Dα

t tγ =
Γ(1 + γ)

Γ(1 + γ − α)
tγ−α, γ > −1, (A.2)

C
0 D

α
t Eα (λtα) = λEα (λtα) , (A.3)

C
0 D

α
t tγ =

Γ(1 + γ)

Γ(1 + γ − α)
tγ−α, γ > 0, (A.4)

where 0 < α < 1, t > 0, the Eα,β (λt
α) is called two-parameter Mittag-Leffler

function, the Eα (λtα) is called one-parameter Mittag-Leffler function, which are
defined by

Eα,β (λt
α) =

∞∑
k=0

λktkα

Γ(αk + β)
, Eα (λtα) =

∞∑
k=0

λktkα

Γ(αk + 1)
.

Especially, when β = α, the Eα,β (λt
α) becomes Eα,α (λtα) .
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[6] M. Caputo, Elasticitàe Dissipazione, Zanichelli, Bologna, 1969.

[7] J. Chen, F. Liu and V. Anh, Analytical solution for the time-fractional tele-
graph equation by the method of separating variables, Journal of Mathematical
Analysis and Applications, 2008, 338, 1364–1377.

[8] S. N. Chow and J. K. Hale, Method of Bifurcation Theory, New York: Springer-
Verlag, 1981.

[9] V. Daftardar-Gejji and H. Jafari, Adomian decomposition: A tool for solving
a system of fractional differential equations, Journal of Mathematical Analysis
and Applications, 2005, 301(2), 508–518.

[10] M. E. Z. Elsayed, A. A. Yasser and M. A. S. Reham, The fractional com-
plex transformation for nonlinear fractional partial differential equations in the
mathematical physics, Journal of Association of Arab Universities for Basic and
Applied Sciences, 2016, 19, 59-69.

[11] A. S. Fokas, On a class of physically important integrable equations, Physica
D, 1995, 87, 145–450.

[12] A. Garcia, M. Negreanu, F. Urena and A. M. Vargas, On the numerical solu-
tion to space fractional differential equations using meshless finite differences,
Journal of Computational and Apllied Mathmatics, 2025, 457, 116322.

[13] P. A. Harris and R. Garra, Analytic solution of nonlinear fractional Burgers-
type equation by invariant subspace method, Nonlinear Studies, 2013, 20(4),
471–481.

[14] J. H. He, Geometrical explanation of the fractional complex trnsform and
derivative chain rule for fractional calculus, Physica Letters A, 2012, 376,
257–259.

[15] W. He, W. Rui and X. Hong, An extensional conformable fractional derivative
and its effects on solutions and dynamical properties of fractional partial differ-
ential equations, Journal of Applied Analysis and Computation, 2024, 14(3),
1–30.



3600 X. Wu, W. Fan, X. Hong, W. Lu & W. Rui

[16] Y. He and W. Rui, Extended Separation Method of Semi-Fixed Variables To-
gether With Analytical Method for Solving Time Fractional Equation, Mathe-
matical Methods in the Applied Sciences, 2025. DOI: 10.1002/mma.10856.

[17] B. Jalili, P. Jalili, A. Shateri and D. D. Ganji, Rigid plate submerged in a
Newtonian fluid and fractional differential equation problems via Caputo frac-
tional derivative, Partial Differential Equations in Applied Mathematics, 2022,
6, 100452.

[18] H. Jiang, F. Liu and I. Turner, Burrage K. Analytical solutions for the
multi-term time-fractional diffusion-wave/diffusion equations in a finite do-
main, Computers and Mathematics with Applications, 2012, 64, 3377–3388.

[19] G. Jumarie, Fractional partial differential equations and modified Riemann-
Liouville derivative new methods for solution, Journal of Applied Mathematics
and Computing, 2007, 24(1–2), 31–48.

[20] G. Jumarie, Modified Riemann-Liouville derivative and fractional Talor series
of non-differentiable functions further results, Computers and Mathematics
with Applications, 2006, 51(9–10), 1367–1376.

[21] G. Jumarie, Cauchy’s integral formula via the modified Riemann-Liouville
derivative for analytic functions of fractional order, Applied Mathematics Let-
ters, 2010, 23(12), 1444–1450.

[22] S. R. Khirsariya and S. B. Rao, On the semi-analytic technique to deal with
nonlinear fractional differential equations, Journal of Applied Mathematics
and Computational Mechanics, 2023, 22(1), 17–30.

[23] J. Li, H. Li and S. Li, Bifurcations of travelling wave solutions for the gener-
alized Kadomtsev-Petviashili equation, Chaos, Solitons and Fractals, 2004, 20,
725–734.

[24] J. Li and Z. Liu, Smooth and non-smooth traveling waves in a nonlinearly
dispersive equation, Appllied Mathematical Modelling, 2000, 25(1), 41–56.

[25] J. Li and L. Zhang, Bifurcations of travelling wave solutions in generalized
Pochhammer-Chree equation, Chaos, Solitons and Fractals, 2002, 14(4), 581–
593.

[26] Z. B. Li and J. H. He, Fractional complex transform for fractional differential
equations, Mathematical Computational Applications, 2010, 15(5), 970–973.

[27] Z. B. Li, W. H. Zhu and J. H. He, Exact solutions of time-fractional heat
conduction equation by the fractional complex transform, Thermal Science,
2012, 16(2), 335–338.

[28] J. Liang, L. Tang, Y. Xia, et al., Bifurcations and exact solutions for a class
of MKdV equations with the conformable fractional derivative via dynamical
system method, International Journal of Bifurcation and Chaos, 2020, 30(1),
2050004.

[29] Y. Luchko, Some uniqueness and existence results for the initial-boundary-value
problems for the generalized time-fractional diffusion equation, Computers and
Mathematics with Applications, 2010, 59, 1766–1772.

[30] S. Momani and O. Zaid, Comparison between the homotopy perturbation
method and the variational iteration method for linear fractional partial differ-
ential equations, Computers and Mathematics with Applications, 2007, 54(7–
8), 910–919.



Exact solutions of a generalized time-fractional KdV equation 3601

[31] Z. M. Odibat and M. Shaher, The variational iteration method: An efficient
scheme for handling fractional partial differential equations in fluid mechanics,
Computers and Mathematics with Applications, 2009, 58, 2199–2208.

[32] I. Podlubny, Fractional Differential Equations, Academic Press, New York,
1999.

[33] P. Prakash, R. Thomas and T. Bakkyaraj, Invariant subspaces, and exact
solutions: (1+1) and (2+1) dimensional generalized time-fractional thin-film
equations, Computational and Applied Mathematics, 2023, 42(2), 97.

[34] M. Rahioui, E. Kinani and A. Ouhadan, Lie symmetries, invariant subspace
method, and conservation laws for a time fractional generalized Broer-Kaup
system, Computational and Applied Mathematics, 2024, 43(1), 36.

[35] W. Rui, Applications of homogenous balanced principle on investigating exact
solutions to a series of time fractional nonlinear PDEs, Communications in
Nonlinear Science and Numerical Simulation, 2017, 47, 253–266.

[36] W. Rui, Applications of integral bifurcation method together with homogeneous
balanced principle on investigating exact solutions of time fractional nonlinear
PDEs, Nonlinear Dynamics, 2018, 91(1), 697–712.

[37] W. Rui, Idea of invariant subspace combined with elementary integral method
for investigating exact solutions of time-fractional NPDEs, Applied Mathe-
matics and Computation, 2018, 339, 158–171.

[38] W. Rui, Dynamical system method for investigating existence and dynamical
property of solution of nonlinear time-fractional PDEs, Nonlinear Dynamics,
2020, 99, 2421–2440.

[39] W. Rui, C. Chen, X. Yang, et al., Some new soliton-like solutions and periodic
wave solutions with loop or without loop to a generalized KdV equation, Applied
Mathematics and Computation, 2010, 217, 1666–1677.

[40] R. Sahadevan and T. Bakkyaraj, Invariant analysis of time fractional gen-
eralized Burgers and Korteweg-de Vries equations, Journal of Mathematical
Analysis and Applications, 2012, 393(2), 341–347.

[41] R. Sahadevan and T. Bakkyaraj, Invariant subspace method and exact solutions
of certain nonlinear time fractional partial differential equations, Fractional
Calculus and Applied Analysis, 2015, 18(1), 146–162.

[42] R. Sahadevan and P. Prakash, On Lie symmetriy analysis and invariant
subspace method of coupled time-fractional partial differential equations, Chaos,
Solitons and Fractals, 2017, 104, 107–120.

[43] R. Sahadevan and P. Prakash, Exact solution of certain time fractional nonlin-
ear partial differential equations, Nonlinear Dynamics, 2016, 85(1), 659–673.

[44] V. E. Tarasov, On chain rule for fractional derivatives, Communications in
Nonlinear Science and Numerical Simulation, 2016, 30(1), 1–4.

[45] R. Thomas and T. Bakkyaraj, Exact solution of time-fractional differential-
difference equations: invariant subspace, partially invariant subspace, general-
ized separation of variables, Computational and Applied Mathematics, 2024,
43(1), 51.



3602 X. Wu, W. Fan, X. Hong, W. Lu & W. Rui

[46] C. Wu and W. Rui, Method of separation variables combined with homogenous
balanced principle for searching exact solutions of nonlinear time-fractional bio-
logical population model, Communications in Nonlinear Science and Numerical
Simulation, 2018, 63, 88–100.

[47] G. Wu and E. W. M. Lee, Fractional variational iteration method and its
application, Physics Letters A, 2010, 374(25), 2506–2509.

[48] H. Zitane and F. M. Torres, A class of fractional differential equations via
power non-local and non-singular kernels: Existence, uniqueness and numerical
approximations, Physica D, 2024, 457, 133951.

Received November 2024; Accepted May 2025; Available online June 2025.


	Introduction
	Summary of traditional and modified separation methods of variables for fractional PDEs
	Traditional separation method of variables for fractional PDEs
	Modified separation method of variables for nonlinear time-fractional PDEs

	Exact solutions and dynamic properties of Eq. (1.1) under Caputo fractional differential operator
	Exact solutions of Eq. (1.1) under Riemann-Liouville fractional differential operator
	Conclusion
	Appendix
	The definitions of Riemann-Liouville fractional derivative and Caputo fractional derivative
	The formulas of fractional derivatives of Mittag-Leffler functions and power function under the Riemann-Liouville and Caputo differential operators


