
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 15, Number 6, December 2025, 3603–3628 DOI:10.11948/20240557

A STUDY ON FRACTIONAL LANE–EMDEN
EQUATION OF ASTROPHYSICS AS

THERMAL EXPLOSIONS USING CHEBYSHEV
WAVELET METHOD
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Abstract Thermal explosions in astrophysical systems are crucial for under-
standing stellar evolution and dynamics. The fractional Lane–Emden equation
is a key mathematical tool for modeling these explosions, providing insight into
the thermodynamic processes within stellar interiors. Knowledge of such equa-
tions is significant because they quantify the temperature field and transport
of energy within self-gravitating systems. A notable challenge in solving these
equations arises from the singularity at x = 0, which requires careful numer-
ical handling. Standard analytical methods may not give exact solutions to
fractional-order models, necessitating effective numerical solutions. In this
paper, we use the second-kind Chebyshev wavelet approximation to solve the
fractional Lane–Emden equation effectively. This method utilizes orthogonal-
ity and the wavelet operational matrices to convert the original problem into
algebraic equations, significantly reducing the computational burden. Numer-
ical experiments confirm that the presented technique is not only efficient
and precise but also has the least computational cost compared to traditional
numerical methods. Therefore, it makes it highly suitable for solving other
complex fractional models in astrophysics.
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tions, second kind Chebyshev wavelets.

MSC(2010) 34A08, 34A45, 65T60.

1. Introduction

Differential equations are widely recognized as highly effective mathematical prob-
lems in the physical science and engineering sectors. The Lane–Emden differential
equation belongs to a part of the dimensionless Poisson equation, which is com-
monly employed to determine the gravitational potential of stars. Jonathan Homer
Lane first attempted to investigate the Lane–Emden differential equation, and then
Robert Emden continued to expand his work. Their solutions provided a detail in
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the thermal behavior of a spherical gas cloud, which depends on the mutual gravi-
tational attraction between the molecules within the cloud and follows the classical
thermodynamic principles [59]. It is an important differential equation with use in
many arenas of mathematics; flexible expressions are used to model a wide vari-
ety of dynamics and phenomena. The Lane–Emden equation versatility allows one
to accurately solve the important number of astrophysical and cosmological prob-
lems. An equation is widely applied in self-gravitating polytropic sphere models
and isothermal gas distributions; many authors concentrated their efforts on the
equation itself [2, 3, 6, 26, 38, 39, 47, 49, 50, 54, 55, 62–64, 68, 71, 76, 79–81, 83, 85]. The
Lane–Emden equation is both of linear and non-linear kinds, and in this form it just
defines the problem regarding the equilibrium density distribution within such sys-
tems. The Lane–Emden problem poses numerical challenges due to the singularity
at the origin.

Fractional calculus theory allows the differentiation and integration of functions
to arbitrary fractional values, whereby the area of study extends beyond integer
orders. Fractional differential equations garnered significant attention in the re-
search community due to their ability to accurately represent phenomena in a wide
range of scientific and engineering disciplines [4, 6, 11, 16, 19, 30, 36, 40, 43, 46, 53, 72,
79, 80]. Many researchers studied various methods to attain appropriate solutions
to fractional-order differential equations [16, 28, 29, 31, 72, 76]. The author devel-
oped a fractional differential equation model of population growth in [32]. In [8]
studied Ralston’s cubic convergence in population models, but their subsequent
work [7] provided numerical methods generalized towards population models of nu-
clear decay. P. K. Shaw et.al [66] studied a curative and preventive treatment
fractional plant disease model. Futher they [67] investigated two quadratic schemes
on world population growth models of fractional differentiation. The fractional
Lane–Emden differential equations incorporate fractional derivatives into the clas-
sical Lane–Emden equation. They are used usually in the study of polytropic gas
spheres. Owing to their far-reaching applications in modelling the thermal behav-
ior of a spherical gas cloud under the mutual attraction influence of its molecules,
they are governed by classical thermodynamic laws. These provide some insight
into how pressure and density are connected in gravitationally self-bound, sym-
metrically spherical clouds of gas within hydrostatic equilibrium. The inclusion of
fractional derivatives makes the equation modeling behavior of such gas clouds sig-
nificantly more flexible, rendering deeper insight into the structure and evolution
of astrophysical systems. However, finding an analytical solution to the fractional
Lane–Emden type differential equation proves quite challenging.

In recent decades, researchers have proposed various strategies to approximate
solutions for equations of these types. These methods include the algorithm of the
operational matrix based on Chebyshev wavelets [17], the way of Adomian decom-
position [12,58,77–79], the modified Legendre–Spectral approach [1], Jacobi–Gauss
collocation technique [10], Hermite functions collocation method [55], reproducing
kernel methodology [5], the method of ultra-spherical wavelets [85], the modified
differential transform scheme [38], the technique of Legendre multi-wavelets [63],
the Legendre pseudo spectral method [56], Legendre wavelet and quasilineariza-
tion technique [24] the strategy of homotopy pertubation [35, 45, 81], Orthonormal
Bernoulli’s polynomials [62], Numerical simulation [20] and the Variational Iteration
Method (VIM) [21,44,82].

Numerous researchers have conducted an extensive investigation on Chebyshev
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wavelets and other numerical techniques for solving differential equations. In [9]
developed a Chebyshev wavelet operational matrix method for solving differen-
tial equations by wavelet basis functions efficiently. Chebyshev finite difference
method for integro-differential equations have been studied in [15]. M. A. Iqbal
et.al [25] modified the Chebyshev wavelet to deal with fractional delay differential
equations. The authors [34,74] employed wavelet-based techniques to solve Ricatti
and non-linear Volterra integro-differential equations. In [41, 51] they considered
Lane–Emden–type problems for self-gravitating gas spheres, analytically. The Haar
wavelet collocation approaches for singular differential and Lane–Emden–type equa-
tions developed in [69, 70]. In [86, 87] the authors solved convection-diffusion and
fractional integro-differential equations using second-kind Chebyshev wavelets. The
one-dimensional adaptive grid generation technique to improve numerical solutions
by enhancing grid point distribution have been studied in [27].

This paper discusses the applications of second-kind Chebyshev wavelets to find
numerical solutions for fractional-order Lane–Emden–type equations. Researchers
make use of orthogonal wavelets, known as Chebyshev wavelets in numerical tech-
niques and approximation theory because of their exceptional approximation prop-
erties. Wavelet based methods have played a significant role in solving fractional or-
der differential equations over the recent past (see [17,23,26,33,36,48,63,84,85]). An
application of wavelet approximation in solving the fractional order Lane–Emden
type equations is established in [26]. In [65], they used the Chebyshev wavelet
operational matrix to figure out a solution for the Lane–Emden differential equa-
tions. Furthermore, in [49, 50], the authors proposed the Chebyshev wavelet finite
difference method for solving these equations. In [37] authors solve the fractional
Lane–Emden differential equations using the one-layer Chebyshev wavelet Neural
network method. The fractional Lane−Emden differential equations are solved us-
ing the one−layer Chebyshev wavelet Neural network method in [37]. The proposed
method involves the transformation of the fractional order Lane−Emden type differ-
ential equation into a system of algebraic equations using second kind Chebyshev
wavelets. This transformed system can then be solved using standard numerical
techniques.

This paper examines the fractional order Lane–Emden type differential equation
of the form [37,52,57,60,61]. The differential equation is given by:

Dδδ
t x(t) +

K

tδ
Dδ

tx(t) + g(t, x) = f(t), t > 0, 0 < δ ≤ 1 (1.1)

with initial conditions: x(0) = x0, and x′(0) = x1, where x0, x1 andK are constants,
g(t, x) is a continuous real-valued function and f(t) ∈ C[0, 1). For K = 2 and δ = 1
the equation reduces to the classical Lane–Emden type equations. The present
study examines a specific operational matrix for the Riemann−Liouville fractional
order integral operator, thereby providing the right approach to precisely determine
its components. Our solution will provide an accurate and enhanced efficiency of
computing pertaining to such wavelet-based approaches.

In [42] the method of solution starts with transforming fractional differential
equations to linear equations by applying the quasi-linearization technique. The
process simplifies the nonlinear terms such that a linear equation can approximate
the problem. Subsequent to the transformation, the authors apply the Chebyshev
wavelet collocation method to discretize the problem and calculate numerical solu-
tions.
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On the other hand, our suggested technique takes a different route by converting
the given fractional differential equation into an algebraic system directly, which
could either be linear or nonlinear in nature based on the nature of the original
problem. Rather than using quasi-linearization, we take a collocation approach at
given points to discretize the problem. After transforming the system into algebraic
form, researchers apply numerical solutions–e.g., Newton’s method for nonlinear and
direct solvers for linear to achieve precise and effective numerical solutions.There
is no need for quasi-linearization as our method has greater freedom in treating
nonlinearity. Therefore, it is a more effective process for solving difficult fractional
differential equations with high degrees of accuracy.

The structure of the paper involves the following sections: Section 2 discusses
fundamentals of fractional calculus and the Sumudu transform. Section 3 contains
an approximation of the functions employing the second kind Chebyshev wavelets.
Section 4 deals with the creation of an operational matrix for the Riemann−Liouville
fractional integral operator. The solutions to fractional Lane–Emden differential
equation are present in Section 5. Section 6 focuses on the convergence method.
Section 7 includes numerical examples and discussions. At last, Section 8 deals with
the outcomes of the study.

2. Preliminaries

The Caputo-Fabrizio and Atangana-Baleanu derivatives with non-singular kernels
and exponential decay are usable for complex systems but less manageable in con-
ventional astrophysical applications. The Hadamard derivative, while dominant in
logarithmic scale problems, is not standardly used for power-law behavior prob-
lems, which is the nature of Lane–Emden equations. The Lane–Emden equation
models astrophysical phenomena with singularities at x = 0 but the symmetric na-
ture of the Riesz derivative does not naturally accommodate such singular initial
conditions. Similarly, though the Fractal-Fractional derivative has a commendable
recent history, it is computationally demanding and does not have exhaustive theo-
retical testing in astrophysical scenarios. Therefore, the application of Caputo and
Riemann-Liouville derivatives presents a balance of mathematical tractability and
physical relevance and is the most desirable choice for the solution of the fractional
Lane–Emden equation in thermal explosion theory.

Here, we cover the essential definitions pertaining to fractional derivatives and
integrals.

Definition 2.1. The Riemann−Liouville (R−L) fractional integral operator of
fractional order δ > 0 with respect to t of a function f(t) is defined by [57]

Iδf(t) =
1

Γ(δ)

∫ t

0

(t− τ)δ−1f(τ) dτ, (2.1)

where i− 1 < δ < i, i ∈ N.

Definition 2.2. The Riemann−Liouville fractional derivative of fractional order δ
of a function f(t) with respect to t is of the form [57]

dδ

dtδ
f(t) =

1

Γ(i− δ)

di

dti

(∫ t

0

(t− τ)i−δ−1f(τ) dτ

)
, (2.2)
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where i−1 < δ < i, i ∈ N and the function f(t) has absolutely continuous derivatives
upto order i− 1.

Definition 2.3. The Caputo fractional derivative of fractional order δ with respect
to t of a function f(t) is defined as [57]

dδ

dtδ
f(t) =

1

Γ(i− δ)

(∫ t

0

(t− τ)i−δ−1 di

dτ i
f(τ) dτ

)
, (2.3)

where i−1 < δ < i, i ∈ N and the function f(t) has absolutely continuous derivatives
upto order i− 1.

Some properties of fractional Caputo derivative and fractional R-L integral are:

DδIδf(t) = f(t), (2.4)

IδDδf(t) = f(t)−
i−1∑
k=0

f (k)(0+)tk, δ > 0, i− 1 < δ < i, (2.5)

Iδtγ =
Γ(1 + γ)

Γ(1 + γ + δ)
tδ+γ , (2.6)

dδ

dtδ
tγ =


Γ(1 + γ)

Γ(1 + γ − δ)
tγ−δ, if n− 1 < δ < n, γ > n− 1, γ ∈ R,

0, if n− 1 < δ < n, γ ≤ n− 1, γ ∈ R.
(2.7)

Sumudu Transform. The Sumudu transform simplifies the process of solving
linear differential equations by converting them into algebraic equations in the
transformed (u) domain, similar to the Laplace transform. However, it retains the
physical significance of variables, making it easier to interpret solutions. Unlike the
Laplace transform, the transformed variables in the u -domain are treated as replicas
of the original function. This method retains the physical significance of variables,
unlike the Laplace transform that treats variables as dummies. The Sumudu trans-
form simplifies transfer function calculations. Unlike the Laplace transform, the
unit step function transforms to unity, making system response analysis more intu-
itive. Useful in analyzing block diagrams while maintaining unit consistency. The
Sumudu transform is useful for applied mathematics and control engineering. It
offers an alternative to the Laplace transform with better visualization and unit
consistency.

If f(t) is of exponential order then the Sumudu transform of the function f(t)
is given by [75]

S{f(t)} = T (u) =
1

u

∫ ∞

0

e−
t
u f(t) dt, t > 0 (2.8)

and if T (u) = S{f(t)} is the Sumudu transform of f(t), then the inverse Sumudu
transform of S{f(t)} is given by: [75]

S−1{T (u)} = f(t)

=
1

2πi

∫ a+i∞

a−i∞
etu

T
(
1
u

)
u

du

=
∑

Res

[
etuT (u)

u

]
where Re(u) < a.
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The Sumudu transform of the convolution of two functions f(t) and g(t) is given
by

S(f(t) ⋆ g(t)) = uS[f(t)]S[g(t)].

The relation between Sumudu and Laplace transforms is given by

F

(
1

u

)
= uT (u),

where F (.) is the Laplace transformation of f(t) and T (.) is Sumudu transformation
of f(t).

3. The second kind Chebyshev wavelet

Researchers formulate wavelets by means of dilating and translating a single func-
tion ϕ(t), frequently mentioned as the mother wavelet. This results in a family of
continuous wavelets that change with the translation and dilation parameters.

The family of continuous wavelets that follows functions as

ϕab(t) = |a|− 1
2ϕ

(
t− b

a

)
where a, b ∈ R, a ̸= 0. (3.1)

If we restrict the parameters a and b to only discreet values, as

a = a−k
0 , b = nb0a

−k
0 , a0 > 1, b0 > 0.

The set of discrete wavelets that we possess is presented below

ϕkn(t) = |a0|
k
2 ϕ(ak0x− nb0) where k, n ∈ Z. (3.2)

The wavelet basis for L2(R) is denoted as ϕ(t). When a0 = 2 and b0 = 1, the
function ϕkn(x) forms an orthonormal basis.

For the interval [0,1) the second kind Chebyshev wavelets can be characterized
as follows [37,48]

ϕpq(t) =


√

2

π
2

k
2 Uq

(
2kt− 2p+ 1

)
, t ∈

[
p− 1

2k−1
,

p

2k−1

)
,

0, otherwise

(3.3)

where p = 1, 2, . . . , 2k−1 where q = 0, 1, 2, . . . ,M−1, and k and M are fixed positive
integers, Uq(t) signify the second kind Chebyshev polynomials of degree q, which
are defined on the interval [−1, 1] as follows:

Uq(t) =

q∑
l=0

l∑
n=0

(−1)l+n2l(q + l + 1)!l!

n!(l − n)!(q − l)!(2l + 1)!
tn. (3.4)

According to the weight function wp(t), The second kind of Chebyshev wavelets
functions are orthogonal, where the weight function wp(t) is defined by:

wp(t) =


√
1− (2kt− 2p+ 1)2, if t ∈

[
p− 1

2k−1
,

p

2k−1

)
,

0, otherwise.

(3.5)
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Further more, the Hilbert space L2
ω[0, 1) is defined as

L2
ω[0, 1) =

{
f(t)

∣∣∣∣ ∫ 1

0

|f(t)|2ω(t) dt < ∞
}
.

Chebyshev wavelet method. The second kind Chebyshev wavelets can be used
to expand a function x(t) ∈ L2

ω[0, 1) as illustrated below:

x(t) =

∞∑
p=1

∞∑
q=0

xpqϕnm(t), (3.6)

where

xpq = ⟨x(t), ϕpq(t)⟩wp =

∫ 1

0

x(t)ϕpq(t)ωp(t) dt. (3.7)

We approximate by truncating the infinite series as shown below.

x(t) ≈
2k−1∑
p=1

M−1∑
q=0

xpqϕpq(t) = XTΦ(t). (3.8)

The column vectors X and ϕ(t) are 2k−1M × 1 are given by

X =

x10, x11, . . . , x1(M−1), x20, x21, . . . , x2(M−1), . . .

x2k−10, x2k−11, . . . , x2k−1(M−1)

T

, (3.9)

Φ(t) =

ϕ10, ϕ11, . . . , ϕ1(M−1), ϕ20, ϕ21, . . . , ϕ2(M−1), . . .

ϕ2k−10, ϕ2k−11, . . . , ϕ2k−1(M−1)

T

. (3.10)

4. The fractional integral of the second kind Cheby-
shev wavelet

Here, the researchers use the second kind Chebyshev polynomials to develop a
fractional integral operational matrix for second kind Chebyshev wavelets in the
Riemann-Liouville sense. As a vital factor, this operational matrix deals with the
time fractional differential equations.

In [39] they finding fractional integral operational matrix using Laplace trans-
form, but here we used Sumudu transform. Many authors utilize the Laplace trans-
form to obtain a fractional integral operational matrix. In contrast to the Laplace
transform, where function multiplication is equivalent to convolution, the Sumudu
transform provides more straightforward manipulation for multiplication operations
with less computational complexity. The Sumudu transform preserves the differ-
entiation and integration properties for easy calculation, which is beneficial in the
derivation of an integral operational matrix for wavelet-based approaches.

Theorem 4.1. Let ϕpq(t) be the second kind Chebyshev wavelet defined in the
interval [0, 1) with the compact support

[
p−1
2k

, p
2k

)
. Then the fractional integral of
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the second kind Chebyshev wavelet is given by:

Iδϕpq(t) =



0, t <
p− 1

2k−1
,

2
k+1
2√
π

[
q∑

l=0

l∑
n=0

n∑
m=0

2ll!(l + q + 1)!(−1)l+m+n2k(n−m)

(2l + 1)!m!(q − l)!(l − n)!Γ(δ −m+ n+ 1)

×
(
t− 2p− 2

2k

)δ−m+n
]
,

p− 1

2k−1
≤ t <

p

2k−1
,

2
k+1
2√
π

[
q∑

l=0

l∑
n=0

n∑
m=0

2ll!(−1)l+n(l + q + 1)!2k(n−m)

(2l + 1)!m!(q − l)!(l − n)!Γ(δ −m+ n+ 1)

×
(
(−1)m

(
t− 2p− 2

2k

)δ−m+n

−
(
t− 2p

2k

)δ−m+n
)]

, t ≥ p

2k−1
.

Proof. The second kind Chebyshev polynomials is

Uq(t) =

q∑
l=0

l∑
n=0

(−1)l+n2l(q + l + 1)!l!

n!(l − n)!(q − l)!(2l + 1)!
tn.

By using the definition of second kind Chebyshev wavelets and unit step function
Hd(t)

ϕpq(t) =

√
2

π
2k/2

(
H 2p−2

2k
(t)Uq(2

kt− 2p+ 1)−H 2p

2k
(t)Uq(2

kt− 2p+ 1)
)
,

where p = 1, 2, . . . , 2k−1, q = 0, 1, 2, . . . ,M − 1 and Hd(t) is defined as:

Hd(t) =

{
1, t ≥ d,

0, t < d.

By taking Sumudu transform on both sides the following is derived

S(ϕpq(t)) =

√
2

π
2k/2 S

{
H 2p−2

2k
(t)Uq

(
2kt− 2p+ 1

)
−H 2p

2k
(t)Uq

(
2kt− 2p+ 1

)}
=

√
2

π
2k/2 S

{
H 2p−2

2k
(t)Uq

(
2k
(
t− 2p− 2

2k

)
− 1

)
−H 2p

2k
(t)Uq

(
2k
(
t− 2p

2k

)
+ 1

)}
=

√
2

π
2k/2

[
e−

2p−2

2ku S
(
Uq

(
2kt− 1

))
− e−

2p

2kuS
(
Uq

(
2kt+ 1

))]
.

Using the general form of second kind Chebyshev Polynomial

=

√
2

π
2

k
2

[
e−

2p−2

2ku S

(
q∑

l=0

l∑
n=0

(−1)l+n2l(q + l + 1)!l!

n!(l − n)!(q − l)!(2l + 1)!
(2kt− 1)n

)

− e−
2p

2kuS

(
q∑

l=0

l∑
n=0

(−1)l+n2l(q + l + 1)!l!

n!(l − n)!(q − l)!(2l + 1)!
(2kt+ 1)n

)]
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where

Tq,l,n =
(−1)l+n 2l (q + l + 1)! l!

n! (l − n)! (q − l)! (2l + 1)!

=

√
2

π
2k/2

[
e−

2p−2

2ku S

(
q∑

l=0

l∑
n=0

Tq,l,n(2
kt− 1)n

)

−e−
2p

2kuS

(
q∑

i=0

l∑
n=0

Tq,l,n(2
kt+ 1)n

)]

=

√
2

π
2k/2

[
e−

2p−2

2ku S

(
q∑

l=0

l∑
n=0

r∑
m=0

Tq,l,n
n!

m!(n−m)!
(−1)m2k(n−m)tn−m

)

−e−
2p

2kuS

(
q∑

l=0

l∑
n=0

n∑
m=0

Tq,l,n
n!

m!(n−m)!
2k(n−m)tn−m

)]

=

√
2

π
2k/2

[
e−

2p−2

2ku

(
q∑

l=0

l∑
n=0

n∑
m=0

Tq,l,n
n!

m!
(−1)m2k(n−m)un−m

)

−e−
2p

2ku

(
q∑

l=0

l∑
n=0

n∑
m=0

Tq,l,n
n!

m!
2k(n−m)un−m

)]
.

With the help of Riemann–Liouville fractional integral order δ

Iδf(t) =
1

Γ(δ)
tδ−1 ⋆ f(t).

Here ⋆ represents convolution between two function, and we know that

S

[
tδ−1

Γ(δ)

]
= uδ−1,

S
[
Iδϕnm(t)

]
= uS

[
tδ−1

Γ(δ)

]
S [ϕnm(t)]

=

√
2

π
2k/2

[
e−

2p−2

2ku

(
q∑

l=0

l∑
n=0

n∑
m=0

Tq,l,n
n!

m!
(−1)m2k(n−m)un−m+δ

)

−e−
2p

2ku

(
q∑

l=0

l∑
n=0

n∑
m=0

Tq,l,n
n!

m!
2k(n−m)un−m+δ

)]
.

By taking the inverse Sumudu transform,

Iδ(ϕpq(t))

=

√
2

π
2

k
2

[
q∑

l=0

l∑
n=0

l∑
m=0

Tq,l,n
n!

m!
(−1)m2k(n−m)S−1

(
e−

2p−2

2ku un−m+δ
)

−
q∑

l=0

l∑
n=0

n∑
m=0

Tq,l,n
n!

m!
2k(n−m)S−1

(
e−

2p

2kuun−m+δ
)]
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=

√
2

π
2

k
2

[
q∑

l=0

l∑
n=0

n∑
m=0

Tq,l,n
n!

m!
(−1)m2k(n−m)H(

2p−2
2k

)(t)(t− 2p−2
2k

)n−m+δ

Γ(n−m+ δ + 1)

−
q∑

l=0

l∑
n=0

n∑
m=0

Tq,l,n
n!

m!
2k(n−m)H(

2p
2k
)(t)(t− 2p

2k
)n−m+δ

Γ(n−m+ δ + 1)

]

=



0, t <
p− 1

2k−1
,

2
k+1
2√
π

[
q∑

l=0

l∑
n=0

n∑
m=0

Tq,l,n
n!

m!
(−1)m2k(n−m)

× (t− 2p−2
2k

)n−m+δ

Γ(n−m+ δ + 1)

]
,

p− 1

2k−1
≤ t<

p

2k−1
,

2
k+1
2√
π

[
q∑

l=0

l∑
n=0

n∑
m=0

Tq,l,n
n!

m!
(−1)m2k(n−m) (t−

2p−2
2k

)n−m+δ

Γ(n−m+ δ + 1)

−
q∑

l=0

l∑
n=0

n∑
m=0

Tq,l,n
n!

m!
2k(n−m) (t− 2p

2k
)n−m+δ

Γ(n−m+ δ + 1)

]
, t ≥ p

2k−1
,

where

Tq,l,n =
(−1)l+n 2l (q + l + 1)! l!

n! (l − n)! (q − l)! (2l + 1)!
.

5. Solution of the fractional Lane–Emden differen-
tial equations

The second kind Chebyshev wavelets are utilized to discover an approximate solu-
tion to a class of fractional Lane–Emden differential equations (1.1).

To solve this problem, we assume:

Dδδ
t x(t) ≈

2k−1∑
p=1

M−1∑
q=0

xpqϕpq(t) = CTΦ(t). (5.1)

Equations (3.9) and (3.10) define C and Φ(t) as 2k−1M × 1 column vectors, respec-
tively.

Integrating Eq. (5.1) with the Riemann-Liouville fractional integral operator
yields

x(t) = x(0) + tx′(0) +
2k−1∑
p=1

M−1∑
q=0

xpqI
δδϕpq(t), (5.2)

Dδ
tx(t) =

2k−1∑
p=1

M−1∑
q=0

xpq

(
Iδϕpq(t)

)
+

x′(0) t1−δ

Γ(2− δ)
. (5.3)
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The Equation (1.1) implies

2k−1∑
p=1

M−1∑
q=0

xpqϕpq(t) +
K

tδ

2k−1∑
p=1

M−1∑
q=0

xpqI
δ(ϕpq(t))

+ x′(0)
t1−δ

Γ(2− δ)
+ g

t, x(0) + tx′(0) +
2k−1∑
p=1

M−1∑
q=0

xpqI
δδ(ϕpq(t))

 = f(t).

Taking the points

ti =
2i− 1

2kM
, i = 1, 2, . . . , 2k−1M.

After that, we obtain an algebraic linear or non-linear system of equations con-
taining 2k−1M equations. After transforming the system into its algebraic repre-
sentation, we apply fundamental numerical techniques. We used Newton’s method
for nonlinear systems and direct solvers for linear systems to achieve efficient and
accurate numerical solutions.

6. Convergence analysis

Convergence analysis is critical in ensuring the quality and reliability of numerical
solutions derived from a method. It determines whether the numerical solutions
converge towards the exact solution of the fractional Lane–Emden equation. They
assess this by refining computational parameters, such as grid size or time step, etc.
Convergence analysis allows us to quantify the errors in numerical approximations.
By examining how these errors evolve with changes in computational parameters,
we can gauge the accuracy of the numerical method and make informed parameter
selection decisions to achieve the desired levels of precision.

The convergence analysis in [42] is based on the Cauchy sequence and Bessel’s
inequality. The Cauchy sequence guarantees that the approximations are arbitrarily
close, and Bessel’s inequality gives a bound on the series expansion in Hilbert space.
In this paper, we use Chebyshev polynomials and the Chebyshev wavelet bound to
examine convergence. The Chebyshev wavelet boundedness property is used to
control the error in the approximation, while the norm in Hilbert space guarantees
stability and accuracy of the numerical approximation.

Theorem 6.1. The function Dδδ
t x(t) ∈ L2

ω[0, 1) is developed into an infinite sum
of the second kind Chebyshev wavelet with |Dδδ+2

t x(t)| ≤ L.

Dδδ
t x(t) =

2k−1∑
p=1

M−1∑
q=0

xpqϕpq(t). (6.1)

Then the coefficients xpq satisfy the following inequality,

|xpq| ≤
√
π L

4 p5/2(q + 1)2
. (6.2)



3614 D. Vijayaraghavan, S. Yugesh & S. Kumar

Proof. This theorem’s proof resembles Theorem 3 in [18].

Theorem 6.2. Let k,M → ∞. Then the series solution

Dδδ
t x(t) ≈

2k−1∑
p=1

M−1∑
q=0

xpqϕpq(t),

converges to

Dδδ
t x(t) ≈

∞∑
p=1

∞∑
q=0

xpqϕpq(x).

Proof. Let L2
ω[0, 1) be the Hilbert space and ϕnm(x) form a basis for L2

ω[0, 1).
Let us consider,

Dδδ
t x(t) ≈

2k−1∑
p=1

M−1∑
q=0

xpqϕpq(t),

xpq = ⟨Dδδ
t x(t), ϕpq(t)⟩wp

=

∫ 1

0

Dδδ
t x(t)ϕpq(t)wp(t) dt.

Now consider the sequence,

Sk,M = Dδδ
t x(t)−Dδδ

t x(t),

∥Sk,M∥ = ∥Dδδ
t x(t)−Dδδ

t x(t)∥

=

∥∥∥∥∥∥
∞∑
p=1

∞∑
q=0

xpqϕpq(t)−
2k−1∑
p=1

M−1∑
q=0

xpqϕpq(t)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞∑

p=2k−1

∞∑
q=M−1

xpqϕpq(t)

∥∥∥∥∥∥
≤

∞∑
p=2k−1

∞∑
q=M−1

∥xpqϕpq(t)∥

=

∞∑
p=2k−1

∞∑
q=M−1

|xpq|∥ϕpq(t)∥.

Since ∥ϕpq(t)∥ = 1,∥∥∥Dδδ
t x(t)−Dδδ

t x(t)
∥∥∥ ≤

∞∑
p=2k−1

∞∑
q=M−1

|xpq|.

From Theorem 6.1,

|xpq| <
√
πL

4p5/2(q + 1)2
.

Hence, we get ∥∥∥Dδδ
t x(t)−Dδδ

t x(t)
∥∥∥ ≤

∞∑
p=2k−1

∞∑
q=M−1

√
πL

4p5/2(q + 1)2
.
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Taking the limit as k → ∞ and as M → ∞,

lim
k,M→∞

∥∥∥Dδδ
t x(t)−Dδδ

t x(t)
∥∥∥ ≤ lim

k,M→∞

 ∞∑
p=2k−1

∞∑
q=M−1

√
πL

4p5/2(q + 1)2

 ,

∥∥∥∥Dδδ
t x(t)− lim

k,M→∞
Dδδ

t x(t)

∥∥∥∥ ≤ 0,∥∥∥∥Dδδ
t x(t)− lim

k,M→∞
Dδδ

t x(t)

∥∥∥∥ = 0,

Dδδ
t x(t)− lim

k,M→∞
Dδδ

t x(t) = 0,

lim
k,M→∞

Dδδ
t x(t) = Dδδ

t x(t).

Hence, Dδδ
t x(t) converges to Dδδ

t x(t).

7. Illustrative examples

Example 7.1. The fractional nonlinear Lane−Emden type differential equation
for order δ = 0.75,

Dδδ
t x(t) +

2

tδ
Dδ

tx(t)− e−x(t) = 0

with the initial conditions x(0) = 1, x′(0) = 0.
Researchers obtained solution to this problem using both the Chebyshev wavelet

finite difference (CWFD) method [23] and the Chebyshev neural network (CHNN)
method [37]. Table 1 shows the results achieved using CWFD [23], CHNN [37],
and the second kind Chebyshev wavelet method (SKCWD) in the specified domain
[0.1, 0.9]. The graph shows a comparison of numerical results produced using the
CWFD, CHNN, and SKCWD methods. It is worth noting that the results from
SKCWD are consistent with the numerical results of CWFD and CHNN.

Table 1a. Comparison of numerical methods and Chebyshev wavelets results (Example 7.1).

Inputs
Values

CWFD [23] CHNN [37]
Chebyshev wavelet method
k = 2,M = 4

0.1 0.00746419 0.00737216 0.007464347751192743832871893231619

0.2 0.02098214 0.02089361 0.020978100949719264522379638733257

0.3 0.03824551 0.03824741 0.038241318629259294351653642582255

0.4 0.05834999 0.05879991 0.058338777592145446360782417417029

0.5 0.08073004 0.08120049 0.080669335457035979535595821775624

0.6 0.10497857 0.11087687 0.10484525160664135062439704968769

0.7 0.13078223 0.12992310 0.13054031496253050748879076321275

0.8 0.15789189 0.16988731 0.15748066790040949855862318107268

0.9 0.18610806 0.182806 0.18544370729583394862485108783737

The graphical outputs demonstrate a comparative study of three numerical tech-
niques: The Chebyshev Wavelet Finite Difference Method (CWFD), the Chebyshev
Neural Network Method (CHNN), and the Chebyshev wavelet method. All three
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techniques have a comparable rising pattern in x(t) as t moves from 0.1 to 0.9,
ascertaining their consistency in solving the solution of the underlying differential
equation. Of these, the Chebyshev wavelet method is closest to the CWFD method
with high numerical accuracy. However, the CHNN method deviates minutely, es-
pecially for higher values of t, like t = 0.8 and t = 0.9. The Chebyshev wavelet
method provides more precise solutions, as seen in its more decimal-based data
points, while the CWFD and CHNN methods depict minute differences within a
reasonable error range. The smoothness of each curve signals numerical stability,
with the Chebyshev wavelet method showing robustness owing to its spectral ap-
proximation properties. This implies that the Chebyshev wavelet method is an
efficient and reliable method for solving fractional differential equations.

Table 1b. Comparison of numerical solutions and Chebyshev wavelet method for integer order (Example
7.1).

Inputs
values

Exact solution

Haar
wavelet
solution

Chebyshev
wavelet
solution
k = 2
M = 4

Mirza [41] Nouh [51] Hunter [22]

0.1 0.001666 0.0016658 0.001666 0.0016 0.0166 0.0016

0.2 0.006653 0.0066534 0.006653 0.0066 0.0333 0.0065

0.3 0.014933 0.0149329 0.014933 0.0149 0.0500 0.0145

0.4 0.026455 0.0264555 0.026456 0.0266 0.0666 0.0253

0.5 0.041154 0.0411540 0.041154 0.0416 0.0833 0.0385

0.6 0.058944 0.0589441 0.058944 0.0598 0.1000 0.0536

0.7 0.079726 0.0797260 0.079727 0.0813 0.1166 0.0700

0.8 0.103386 0.1033861 0.103386 0.1060 0.1333 0.0870

0.9 0.129799 0.1297985 0.129799 0.1338 0.1500 0.1038

Computation of L∞ norm

From the above table, it is evident that the Chebyshev wavelet method provides the
best accuracy with L∞ = 0.000001, indicating the smallest maximum error. The
Haar method also performs well with very low error, while the Nouh method exhibits
the highest error, making it the least accurate among the compared methods.

Table 1c. Computation of L∞ Norm for Different Methods (Example 7.1).

Method L∞ Norm

Haar wavelet 5× 10−6

Chebyshev Wavelet 1× 10−6 (Best Accuracy)

Mirza 4× 10−3

Nouh 4.2× 10−2

Hunter 2.5× 10−2

Example 7.2. Consider the linear fractional order differential Lane–Emden equa-
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Figure 1. Example 7.1.

tion,

Dδδ
t x(t) +

2

tδ
Dδ

tx(t) + x(t) = 0

with the initial conditions x(0) = 1, x′(0) = 0.

When δ = 1, the exact solution is sint
t (Refer [52]).

The analytical and second kind Chebyshev wavelets solutions for δ = 1 are pre-
dicted to be highly consistent, with a smooth curve indicating minimal absolute
errors between them. The second kind Chebyshev wavelets method accurately re-
flects the behaviour of the analytical solution while examining numerical solutions
for δ = 0.6, 0.7 and 0.8.

The graphical solution of Example 7.2 shows the x(t) behavior with varying
values of the parameter δ employing the Chebyshev wavelet method against the an-
alytical solution for δ = 1. The Chebyshev wavelet solution when δ = 1 agrees very
closely with the analytical solution, reaffirming the high accuracy of the method.
As δ goes from 1 to 0.6, the function x(t) also decreases for all t, showing a gradual
departure from the analytical solution. The δ = 0.8 curve is still closer to δ = 1,
but the δ = 0.7 and δ = 0.6 solutions go further down. This indicates that smaller
values of δ make x(t) decrease more quickly. The smoothness of all the curves en-
sures the numerical stability of the Chebyshev Wavelet Method as a sound method
for solving fractional differential equations. The behavior indicates that reducing δ
reduces the system’s response, which may model physical processes like diffusion or
damping effects. In general, the Chebyshev wavelet method properly approximates
the solutions corresponding to various values of δ and accurately models their effect
on the system’s behavior.

Example 7.3. By taking the non−homogeneous fractional order Lane−Emden
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Table 2. Analytical and Chebyshev wavelets results for k = 2,M = 8 (Example 7.2).

Inputs values
Analytical
solution
for δ = 1

Chebyshev
wavelet
solution
for δ = 1

Absolute
error for
δ = 1

Chebyshev
wavelet
solution for
δ = 0.6

Chebyshev
wavelet
solution for
δ = 0.7

Chebyshev
wavelet
solution for
δ = 0.8

0.0 1.0000 1.0000 0 1.0000 1.0000 1.0000

0.1 0.9983 0.9983 2.6823e-22 0.9825 0.9900 0.9944

0.2 0.9933 0.9933 1.6522e-21 0.9603 0.9739 0.9832

0.3 0.9851 0.9851 2.2416e-21 0.9363 0.9544 0.9681

0.4 0.9735 0.9735 1.4166e-19 0.9114 0.9326 0.9498

0.5 0.9589 0.9589 3.3094e-19 0.8861 0.9090 0.9289

0.6 0.9411 0.9411 3.3191e-17 0.8605 0.8842 0.9058

0.7 0.9203 0.9203 5.6146e-17 0.8350 0.8583 0.8809

0.8 0.8967 0.8967 7.2941e-17 0.8096 0.8318 0.8543

0.9 0.8704 0.8704 8.5358e-17 0.7846 0.8047 0.8265
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Figure 2. Example 7.2.

type differential equation,

Dδδ
t x(t) +

2

tδ
Dδ

tx(t) + x(t) = 6 + 12tδ + t2δ + t3δ

with the initial conditions x(0) = 0, x′(0) = 0.
When δ = 1, the analytical solution is x(t) = t3 + t2 (Refer [56]).
The graphical plots present the performance of the Chebyshev wavelet approach

to approximate solutions as δ varies. In the case where δ = 1, the solution using the
Chebyshev wavelet has a perfect overlap with the analytical solution, portraying
the precision of the approach. When δ varies between 1 and 0.6, solutions have
an escalating trend, the highest function value being produced at δ = 0.6 to show
a high growth rate. The solutions for δ = 0.7 and δ = 0.9 also differ from the
analytical solution but at a slower rate than δ = 0.6. Interestingly, the function
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values for higher δ values, especially δ = 0.9, are closer to the analytical solution.
These findings indicate the effect of δ on the growth of x(t), where smaller δ results
in a faster increase. In general, the finding verifies the accuracy of the Chebyshev
wavelet approach in approximating solutions and accurately detecting changes in
solution behavior for various fractional orders.

Table 3. Analytical and Chebyshev wavelets solution for k = 2, M = 8 and different Values of δ
(Example 7.3).

Inputs
values

Analytical
solution
for δ = 1

Chebyshev
wavelet
solution
for δ = 1

Absolute
error for
δ = 1

Chebyshev
wavelet
solution for
δ = 0.6

Chebyshev
wavelet
solution for
δ = 0.7

Chebyshev
wavelet
solution for
δ = 0.9

0 0 0 0 0 0 0

0.1 0.0110 0.0110 1.2771e-36 0.1442 0.0760 0.0210

0.2 0.0480 0.0480 1.6584e-35 0.3747 0.2261 0.0808

0.3 0.1170 0.1170 6.2343e-35 0.6650 0.4368 0.1828

0.4 0.2240 0.2240 2.7119e-34 1.0055 0.7038 0.3313

0.5 0.3750 0.3750 4.7696e-34 1.3903 1.0244 0.5305

0.6 0.5760 0.5760 2.6276e-33 1.8149 1.3966 0.7847

0.7 0.8330 0.8330 3.9618e-33 2.2758 1.8189 1.0977

0.8 1.1520 1.1520 4.7855e-33 2.7704 2.2898 1.4732

0.9 1.5390 1.5390 5.3714e-33 3.2962 2.8080 1.9149
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Figure 3. Example 7.3.

Example 7.4. Consider the equation,

Dδδ
t x(t) +

1

tδ
Dδ

tx(t) +
1

tδ−2
x(t) = f(t)

with the initial conditions x(0) = 0, x′(0) = 0.
Where

f(t) = t2−δ

(
6t

(
t2

6
+

Γ(4− δ) + Γ(4− β)

Γ(4− δ)Γ(4− β)

)
− 2

(
t2

2
+

Γ(3− δ) + Γ(3− β)

Γ(3− δ)Γ(3− β)

))
.
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The exact solution is
x(t) = t3 − t2, (Refer [5]).

Table 4. Analytical and Chebyshev wavelets solution for k = 2, M = 8 and different values of δ (Example
7.4).

Inputs
values

Analytical
solution
for δ = 1

Chebyshev
wavelet
solution
for δ = 1

Absolute
error for
δ = 1

Chebyshev
wavelet
solution for
δ = 0.6

Chebyshev
wavelet
solution for
δ = 0.7

Chebyshev
wavelet
solution for
δ = 0.8

0 0 0 0 0 0 0

0.1 -0.0090 -0.0090 7.4974e-36 -0.0090 -0.0091 -0.0091

0.2 -0.0320 0.0320 2.9776e-35 -0.0320 -0.0321 -0.0321

0.3 -0.0630 -0.0630 2.4855e-35 -0.0630 -0.0631 -0.0631

0.4 -0.0960 -0.0960 4.2542e-35 -0.0960 -0.0960 -0.0961

0.5 -0.1250 -0.1250 6.4845e-35 -0.1250 -0.1251 -0.1251

0.6 -0.1440 -0.1440 2.0832e-34 -0.1440 -0.1441 -0.1442

0.7 -0.1470 -0.1470 3.8843e-34 -0.1470 -0.1471 -0.1472

0.8 -0.1280 -0.1280 5.4597e-34 -0.1280 -0.1281 -0.1282

0.9 -0.0810 -0.0810 6.9804e-34 -0.0810 -0.0811 -0.0812

The graphical solutions illustrate the precision and reliability of the Chebyshev
wavelet approach to approximating the analytical solution across various values of
δ. Particularly, for δ = 1, the Chebyshev wavelet solution exactly matches the
analytical solution, establishing the validity of the approach. For various values of
δ (0.6, 0.7, and 0.8), the solutions do not vary much, reflecting that the function
x(t) is not significantly different in this interval. The trend of the function is neg-
ative all along, reaching its lowest point around t = 0.7 before increasing towards
t = 0.9. These findings indicate that the fractional order δ has a comparatively
minimal effect on the behavior of the function in the specified interval. Generally,
the Chebyshev wavelet approach successfully describes the behavior of the solu-
tion and gives accurate approximations, showing its usability in solving fractional
differential equations.

Example 7.5. Let us consider

Dδδ
t x(t) +

2

tδ
Dδ

tx(t) + 1 = 0,

with the initial conditions x(0) = 1, x′(0) = 0.

The exact solution is

x(t) = 1− Γ(δ + 1)t2δ

Γ(2δ + 1) [Γ(δ + 1) + 2]
, (Refer [52]).

The graphical outputs reveal the efficiency of the Chebyshev wavelet approach
to approximate the analytical solution for varying values of δ. The curve for both
analytical and Chebyshev wavelet solutions exhibits a smooth downward trend as t
increases. The Chebyshev wavelet solution exactly overlays the analytical solution
when δ = 1, proving high accuracy. In the same way, for δ = 0.8 and δ = 0.6, the
Chebyshev wavelet solutions are very close to the corresponding analytical solutions,
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Figure 4. Example 7.4.

illustrating the reliability of the method with varying orders of fractionality. Fur-
thermore, when δ decreases, the function x(t) shows a steeper decline, which means
lower orders of fractionality cause a quicker drop in the function values. Generally,
the Chebyshev wavelet method is an accurate approach for approximating various
orders of fractionality, validating its potential usage in solving fractional differential
equations.

Table 5. Analytical and Chebyshev wavelets solution for k = 2, M = 8 and different Values of δ
(Example 7.5).

Input

Analyti−
cal
solution
for
δ = 1

Chebys−
hev
wavelet
solution
for
δ = 1

Absolute
error for
δ = 1

Analyti−
cal
solution
for
δ = 0.6

Chebys−
hev
wavelet
solution
for
δ = 0.6

Absolute
error for
δ = 0.6

Analyti−
cal
solution
for
δ = 0.8

Chebys−
hev
wavelet
solution
for
δ = 0.8

Absolute
error for
δ = 0.8

0 1 1 0 1 1 0 1 1 0

0.1 0.9983 0.9983 3.33e-36 0.9823 0.9823 2.69e-18 0.9944 0.9944 3.63e-19

0.2 0.9933 0.9933 1.33e-35 0.9594 0.9594 6.18e-18 0.9831 0.9831 1.10e-18

0.3 0.9850 0.9850 3.00e-35 0.9339 0.9339 1.01e-17 0.9676 0.9676 2.11e-18

0.4 0.9733 0.9733 5.33e-35 0.9067 0.9067 1.42e-17 0.9487 0.9487 3.34e-18

0.5 0.9583 0.9583 1.51e-34 0.8780 0.8780 1.86e-17 0.9267 0.9267 4.77e-18

0.6 0.9400 0.9400 7.54e-35 0.8482 0.8482 2.31e-17 0.9019 0.9019 6.39e-18

0.7 0.9183 0.9183 2.66e-34 0.8173 0.8173 2.78e-17 0.8744 0.8744 8.18e-18

0.8 0.8933 0.8933 4.34e-34 0.7856 0.7856 3.26e-17 0.8445 0.8445 1.01e-17

0.9 0.8650 0.8650 5.83e-34 0.7530 0.7530 3.749e-17 0.8122 0.8122 1.22e-17

8. Conclusion

This work suggests a second kind Chebyshev wavelet method for solving the frac-
tional Lane–Emden equation, improving both accuracy and computational effi-
ciency. By comparing the numerical solution with analytical solution for integer
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orders, we prove that our method had outstanding accuracy and convergence. Fur-
ther, the method is computationally efficient, making it a viable choice for future
solutions to similar differential equations.

The obtained solution pertaining to fractional Lane–Emden differential equa-
tion with second kind Chebyshev wavelets provides a viable strategy to address
problems related to other fractional differential equations in various domains. This
method possesses a broad spectrum of potential applications, and is likely to have
a substantial impact on the advancement of numerical analysis in the forthcoming
years.

For further research, we can use this approach to investigate multi-dimensional
and coupled fractional Lane–Emden equations, which find significant use in as-
trophysical modeling and stellar dyanmics. Another possibility could be applying
this method to nonlinear fractional differential equations from plasma physics and
cosmology. Combining machine learning-based optimization methods with wavelet
approaches might also improve numerical approximations and solution efficiency.
These instructions will also broaden the usage of fractional differential equations in
engineering and astrophysical problems.
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