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OPTIMAL FOURTH-ORDER ITERATIVE
METHODS FOR SOLVING NONLINEAR
EQUATIONS: AN INNOVATIVE GENERAL
CLASS WITH STABLE MEMBERS AND
ENGINEERING APPLICATIONS

Niveen Abu Ghalioun! and Ali Zein®'

Abstract In this work, we construct a new class of two-step fourth-order
iterative methods for solving nonlinear equations. Each iteration requires two
function evaluations and one evaluation of the first derivative. Consequently,
this family is optimal according to the Kung-Traub conjecture. The first step
of the family coincides with the classical Newton’s method, while the second
step involves three parameters and a weight function, offering a wide range
of options and including several well-known methods as special cases. Addi-
tionally, we identify three new particular cases that perform well compared to
existing methods within the same family. The analysis of complex dynamics
and basins of attraction shows that these methods have a wider range of ini-
tial points that ensure convergence. Furthermore, numerical examples using
various test functions and real-life applications illustrate that, in general, the
new methods produce good results in terms of accuracy.

Keywords Iterative methods, optimal methods, basins of attraction, engi-
neering applications.
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1. Introduction

Developing efficient and high-order iterative methods for solving nonlinear equations
is a fundamental challenge in numerical analysis. This is because these equations
often cannot be solved analytically, and many problems in engineering and applied
sciences are modeled by nonlinear equations.

Iterative methods fall into two main categories: One-point and multi-point
schemes. One-point iterative methods can achieve high orders of convergence by
using higher derivatives of the function, often resulting in a significant computa-
tional cost. Multi-point methods, on the other hand, improve both convergence
order and computational efficiency by leveraging previously computed informa-
tion, see Petkovié¢ et al. [26]. In recent decades, a variety of multi-step itera-
tive methods have been introduced to achieve higher orders of convergence, see
e.g. [5,7,8,14,15,17,19,25].
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The efficiency indicator of an iterative method is measured by the efficiency
index, defined as F.I. = pé, where p is the order of convergence and d is the to-
tal number of functional evaluations per iteration. In 1974, Kung and Traub [18§]
proposed what is now known as the Kung-Traub conjecture: A multi-point itera-
tive method without memory for finding simple roots of a function can achieve a
maximum convergence order of 2¢~!. Methods achieving this bound are called op-
timal methods. Naturally, they are of particular interest. The well-known Newton’s
method is considered an optimal method, converging quadratically to simple roots.

In the literature, considerable attention has been devoted to developing optimal
fourth-order iterative methods [2,4-8,12,13,15-17, 19, 20, 23-25,27-29, 31]. Some
of these methods adopt an initial step similar to Jarratt’s step [15,23, 25, 28, 31],
while others employ Newton’s method as their initial step [2,7,8,16,17,19,20,24,27].
Among these optimal methods, some use two evaluations of the function and one
evaluation of the first derivative per iteration [2,5-8,17,19,20], while others use one
evaluation of the function and two evaluations of the first derivative [15,23,25,28,31].

In this paper, we introduce a new class of two-step optimal fourth-order iterative
methods for solving nonlinear equations. These methods utilize Newton’s method
in the first step and involve a weight function in the second step. Each iteration
requires two evaluations of the function and one evaluation of the first derivative.
The general formulation of the second step allows for a diverse range of options. We
show that the proposed family encompasses several well-known methods as special
cases. Additionally, three distinct methods have been derived from this proposed
family, which generally achieve higher accuracy than existing methods from the
same family, based on the test cases considered, which include various nonlinear
functions and engineering applications. Furthermore, through the analysis of basins
of attraction, we demonstrate that these new methods exhibit better stability, that
is, they possess wider sets of initial points leading to convergence.

The paper is structured as follows: Section 2 introduces the construction and
convergence analysis of a new family of optimal fourth-order methods. In Section
3, some well-known schemes are listed as particular cases of the proposed family,
and new specific methods within the proposed family are established. Section 4 is
devoted to study the stability of particular methods by using the basins of attraction
technique. Finally, in Section 5, numerical examples are presented to illustrate the
performance of these new methods. Additionally, real-life applications are discussed.

2. Design and convergence analysis of the new fam-
ily
The new family of fourth-order iterative methods consists of two steps. The first

step is the well-known Newton’s method, and the second step involves a weight
function, as follows:

Yn = Ty — f(@n)
fan) (2.1)
fan) Af(zn) + Bf(yn) '
Tn =Tn — 0 -G n )
. Pl T )
where 0, A and B are parameters, and G is a weight function in terms of

= flxn)
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The parameters 6, A and B are chosen arbitrarily. The weight function G is
then designed to ensure fourth-order convergence, as demonstrated in the following
theorem.

Theorem 2.1. Let o € I be a simple root of a sufficiently differentiable function
f:I CR — R for an open interval I. If zy is sufficiently close to «, and the
weight functions G(n) satisfies

1-6 B0+ A-B

GO) = = G0 = =

2(—B%0 +2A? — AB + B?)
A3 '
(2.3)
then the scheme (2.1) converges to a with order of convergence four and satisfies
the error equation

G"(0) =

enJrl
A*G"™(0) — 3043 + 12A?B — 6AB* — 6B3(0 — 1)) c3
_ | 0 O-D)es +ezcs| €, +0(e),
643
()
where €, = T, —a and ¢; = f'%(a); j=2,3,..., provided A #0 .
3 ()
Proof. Applying Taylor’s expansion to f(z,) and f'(z,) around «, we obtain
f(xn) = fl(@)[en + ca€® + c3e3 + cael] + O(e2), (2.4)
and
f(xn) = f(a)[1 + 2coe, + 3cze? + deged + 5ese] + O(ed). (2.5)
Then from (2.4) and (2.5), we get
f@n) 2 2 _ 3 43 _ 4 5
) en — o€ + (2¢5 — 2¢c3)e;, + (—4cs + Teacs — 3cq)e;, + O(er).  (2.6)

Subtracting « from both sides of the first equation in (2.1) and using (2.6), we
obtain

Yn — a0 = coe2 — (2¢5 — 2c3)ed 4 (4cy — Teacs + 3eq)et 4+ O(eD). (2.7)
Using the expansion of f(yy) about a and (2.7), we obtain
Fun) = F/(@)leac? + (—23 + 2e5)ed + (563 — Teacs + Bea)el] + O(e3).  (28)
From (2.4), (2.5), and (2.8), we have
Af(xn) + Bf(yn)

[ ()
=Ae, —co(A— B)ei + ((24 - 4B)c§ —2c3(A — B))efl
+ ((—4A 4+ 13B)c3 + Te3(A — 2B)cy — 3ca(A — B))el +0(eD). (2.9)

Using (2.4) and (2.8), the expansion of the weight function variable 1 in (2.2) is as
follows

_ f(Yn)
= f(zn)

= o, + (3¢5 4 2c3)e? + (8¢5 — 10cac3 + 3cq)ed + Ofel).
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Then, expanding the weight function G(7,,) around zero results in

772 773 774
G(in) = G(0) + G (0 + G"(0) 5+ + G (0) ¢ + GD(0) 5 + -+

(=6G"(0) + G"(0))c3
2

! 1 G/”(O) 3 / 1!
+ [(86* (0) — 3G"(0) + 6> 3 — (10G/(0) — 2G"(0)) cacs

+ 2¢3G’(0) ] €2

= G(0) + G'(0)cze, + [

+ 3c4G’(0)} el 4. (2.10)

Finally, according to (2.6), (2.9) and (2.10) the error equation of the scheme
(2.1) is

f(an) _ Af (@) + Bf(yn)
o)~ O T
- [1 9 AG(O)] en -+ [(A — B)G(0) — AG(0) + e] eoc?

entl1 =Ty —a—0

+ KA(—4G<0) +8G(0) — G”(O)) +8BG(0) — 2BG'(0) — 49) %
+ 2(A(G(0) — G'(0)) — BG(0) + 9) 03] &3

+ KA(%G(O) — 78G/(0) + 21G"(0) — G’“(O)) — 78BG(0)

3
&

+ B(42G/(0) - 3G"(0)) + 249) :

- <A(7G(0) — 14G7(0) + 20”(0)) — 14BG(0) + 4BG'(0) + 79> eaca
+ 3(A(G(0) — G'(0)) — BG(0) + 9) c4] et +0(ed). (2.11)

For fourth-order convergence, the coefficients of e, €2, and €3 in (2.11) must
vanish, giving:

10— AG(0) =0,
(A— B)G(0) — AG'(0) + 6 = 0,

(A(—4G(O) +8G'(0) — G”(O)) +8BG(0) — 2BG(0) — 49) 2

+ 2(A(G(0) — G'(0)) — BG(0) + 9) c3 = 0.

Upon solving this system of equations for G(0), G’(0) and G”(0), we obtain

1-90 BO+A—-B
G(0) =, G'(0) = === and
_ 2(—B%0+2A? — AB+ B?)

A3
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These conditions in (2.3), when substituted into (2.11), yield the following error
equation

€n+1

AYG"(0) — 3043 + 12A%2B —6AB?2 —6B3(0 — 1)) &3
- _ ( (0) * E ( )) ©2 + coc3 efl + 0(62)7

and the proof is complete. O

3. Particular cases within the proposed family

Numerous specific fourth-order methods can be derived from the family (2.1) by
adjusting the parameters 0, A, and B, as well as by selecting different weight func-
tions. This section presents several well-known methods as particular instances of
the proposed family (2.1), along with the introduction of three new schemes.

1. Suppose § = 0, A =1, and B = 0. According to (2.3) the weight function
should satisfy
G0) =1, G'(0) =1, G"(0) = 4.

By Selecting the weight function G(n) = 277 — T then we obtain the well-
n—
known Traub-Ostrowski’s method (TOM) [24,30], which is given by

=z _ f('rn)
U =T i)
T 1=Tp — f(l'n) f('rn) - f(yn)

+n?
, we get the following method
-n

(3.1)

If we consider the weight function G(n) = 1

Yn = Ty — f(zn)
n n f/(xn) b
_ L (@) + /2 (yn)
Tn+l1l = Tn — / .
This is the method proposed by Kou et al. (KLM) [17].
1
Another choice for the weight function G(n) = n? + T leads to the fol-
—-n

(3.2)

lowing method

f(@n)’

Yn = Tp —

U f(2n) 2
Tntl = Tn F(xn) [f(iﬂn) = f(yn) * <f(x”)> ] 7

which is the method of Maheshwari (MM) [19].
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2. For 0 =1,A =1, and B = 0, the conditions in (2.3) hold if

G(0) =0, G'(0) = 1, G"(0) = 4.

By taking the weight function G(n) = %, the resulting scheme is
1-2n+n
given by
Tn
Yn = Tn — f,( ) >
f(zn)

Fw) [ Fe) (34)

2
Tpt1 = Yn — .
o f'(@n) {f(xn) - f(ynJ
This is the method proposed by Chun (Chunl) [5].
3. Let # =1, A= 1, and B = 2. The conditions in (2.3) are satisfied if

G(0) =0, G'(0) = 1, G”(0) = 0.

Assuming G(n) = n, we get the scheme of Chun (Chun2) [6, 8], which is
expressed as

Yn = Tn F(xn) )
Til = Yn — flyn) f(zn) + 2f(yn)
[ (@) f(an)
4. If0=1, A=2, and B = —1, the conditions in (2.3) hold as follows

(3.5)

1 5
G(0) =0, G'(0) = X G"(0) = 3
Using the weight function G(n) = %, results in the following method
— N
_ f(zn)
I )

Fl0) 2F () — Fly) (3:6)

Tn4+1l = Yn — .
i f'(@n) 2f(20) = 5f(yn)
This is the method introduced by Chun and Ham (CHM) [7].
5. Suppose § =0, A =1, and B = 1, according to (2.3)

G(0) =1, G'(0) = 0, G"(0) = 4.

Assuming G(n) = 1 + 212, we obtain the scheme developed by Chand et al.
(PBM) [2], which is given by

Yn = Tn — ff/((fl‘n)),
2 (3.7)
T I [y (f)
Tn+1 = T Flan) 1+2(f(£6n)> ] .

Now, by selecting different values for 8, A, and B, we derive three new specific
methods within the proposed family (2.1) as detailed below:
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i. Assuming # =1, A =1, and B = 0, then the weight function G(n) satisfies the
conditions in (2.3) when

G(0) =0, G'(0) =1, G"(0) = 4.

Selecting the weight function G(n) = #77—772’ then we obtain the following
scheme (NA1)
Yn = Tn ,
f@n) (3.8)

Tn+1 = Yn — .
o F'(@n) F2(xn) = F2(yn) = 2f (20) f (yn)
ii. Let 8 =1, A= —1, and B = —2, the conditions in (2.3) are satisfied when

G(0) =0, G'(0) = —1, G"(0) = 0.

Choosing the weight function G(n) = 'l T the resulting scheme (NA2) is

612 —
expressed as

Yn = Ty — f(@n)
f@n) (3.9)
Trpl = Yo — —f(@n) =2f(yn)  f(@n)f(yn)
" " f'(an) 6./2(yn) — f?(zn)
iii. Suppose # =0, A =1, and B = 0, according to (2.3)
G(0) =1, G'(0) =1, G"(0) = 4.
Taking the following weight function G(n) = n(n T 1)77_ 1 + 1, then the
resulting scheme (NA3) is given as
Yn = Tn — ,
f'(zn)
Tpyl = Ty — o f(yn) + 1 f/(l‘n) .
Flea) o (H2 1) = 3f(ga) + flwa) | /(o0
(3.10)

4. Basins of attraction

Many authors have utilized the basins of attraction technique to analyze the stability
of iterative methods for nonlinear equations. This approach illustrates how different
initial estimates within a specified region of the complex plane affect the behavior
of the function, providing graphical comparisons between various methods.

To generate basins of attraction, we select a rectangular region D in the complex
plane that contains all the roots of the nonlinear polynomial p(z). Using iterative
methods, we start from each initial guess zp € D and assign a color to each point



3656 N. Abu Ghalioun & A. Zein

based on the root to which the sequence converges. The color intensity reflects
the number of iterations required for convergence: Brighter colors indicate fewer
iterations, while darker colors represent more iterations. Points that do not converge
are colored black.

We compare the outcomes of our newly proposed methods: NA1 (3.8), NA2
(3.9), and NA3 (3.10), with those of existing methods: TOM (3.1), KLM (3.2),

M (3.3), Chunl (3.4), Chun2 (3.5), CHM (3.6), and PBM (3.7). The basins
of attraction for these methods are analyzed by applying them to seven complex
functions listed in Table 1, over the region D = [—2,2] x [-2,2] with a grid of
800x 800 points. Convergence is determined by a tolerance of 1073, with a maximum
of 20 iterations allowed.

Tables 2 and 3 respectively report the number of black points, indicating di-
vergence, and their proportion to the total number of initial points for each test
case. Tables 4 and 5 present the average number of iterations per convergent point
and the processing time (in seconds) required to generate the basins of attraction,
respectively.

Figure 1 displays the basins of attraction for the polynomial p;(z). The meth-
ods TOM, CHM, NA1, NA2, NA3, Chunl, and KLM perform well, with a low
percentage of divergent points (approximately 0.125%), followed by MM, Chun2,
and finally PBM, which exhibits a divergent point percentage of 0.3562%. The new
methods NA1, NA2, and NA3, as well as the TOM method, produce clear bound-
aries between the two basins. In contrast, the remaining methods display regions
near the basin boundaries where interweaving between basins occurs.

Figure 2 illustrates the basins of attraction for the polynomial ps(z). The meth-
ods TOM, NA1, NA2, and NA3 perform very well, followed by Chunl, which shows
a small percentage of divergent points. The CHM method exhibits some chaotic be-
havior. In contrast, the methods KLM, MM, Chun2, and PBM display larger black
regions, highlighting their sensitivity to the initial guess in this test case. Addi-
tionally, TOM, NA1, NA2, and NA3 exhibit smaller areas of interweaving between
basins compared to the remaining methods.

Figure 3 represents the basins of attraction for the polynomial ps(z). The meth-
ods NA1, NA2, and NA3 perform well, showing the fewest black points. Chunl and
CHM follow, with a small number of black points. The methods KLM and TOM
exhibit some chaotic behavior, while the remaining methods display larger black
regions.

Figure 4 shows the basins of attraction for the polynomial py(z). The methods
NA2, NA1, NA3, and TOM perform well, with a low percentage of divergent points
(approximately 0.26%). They are followed by Chunl, which exhibits some chaotic
behavior. The remaining methods are highly sensitive to the initial guess, with
significant percentages of divergent points, ranging from 5.776% for CHM to 29.57%
for PBM.

Figure 5 displays the basins of attraction for the polynomial p5(z). The methods
TOM, NA1, NA2, and NA3 perform very well, with no black points observed in
the specified region. Chunl and CHM follow, exhibiting a very low percentage of
black points (approximately 0.024%). In contrast, the methods KLM, MM, Chun2,
and PBM show greater sensitivity to the initial guess. Moreover, NA1, NA2, NA3,
TOM, and CHM display smaller regions of interwoven basins compared to the other
methods.

Figure 6 illustrates the basins of attraction for the polynomial pg(z). The meth-
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ods NA1, NA2, NA3, and TOM perform very well. The Chunl method shows some
chaotic behavior. Meanwhile, the remaining methods are more sensitive to the ini-
tial guess, exhibiting higher percentages of divergent points, ranked from best to
worst as follows: CHM, KLM, MM, Chun2, and PBM.

Figure 7 shows the basins of attraction for the polynomial p7(z). The methods
NA2, NA1, NA3, and TOM exhibit some chaotic behavior, with increasing percent-
ages of black points in that order. The remaining methods show significantly larger
black regions, indicating a higher sensitivity to the initial guess. The proportion of
divergent points ranges from 5.313% for Chunl to approximately 32% for Chun2
and PBM.

In conclusion, based on Figures 1, 2, 3, 4, 5, 6, 7 and the quantitative compar-
isons in Tables 2, 3, and 4, we find that our new methods, NA1, NA2, and NA3,
exhibit superior dynamical behavior, encompassing broader sets of initial points
that lead to convergence. Based on the number of black points, the new meth-
ods, NA2, NA1, and NA3, demonstrate the best performance, with averages of 905,
1205, and 1376, respectively, followed by the TOM method with an average of 1979.
In contrast, the MM, Chun2, and PBM methods exhibit higher averages, indicating
greater sensitivity to the choice of initial guesses in several cases.

Regarding the mean number of iterations required for convergence, as shown
in Table 4, the methods, NA1, NA2, NA3 and TOM outperform the others, with
averages of 3.20, 3.24, 3.29, and 3.29 respectively. On the other hand, methods such
as PBM and Chun2 require significantly higher average numbers of iterations.

Concerning the processing time for generating the basins of attraction, as shown
in Table 5, the CHM method requires the shortest time, followed by NA1, NA2,
TOM, and then NA3.

Table 1. Complex polynomials and their roots accurate to 6 decimal digits.

Function Root

pi(z) =2* -1 1,-1

pa(z) =2 -1 1,—0.5 £ 0.8660257

p3(z) =23+ 2z+1i  —0.562280 — 0.662359i, 0.562280 — 0.662359i, 1.324718i

pa(z) = 24 4+ 16 —1.414214 + 1.4142144,1.414214 4+ 1.414214¢

ps(z) =24 — 2+ —0.532605 — 1.088288i, —0.759845 + 0.5925951,
0.181924 + 0.732098:,1.110525 — 0.2364057

pe(z) =2° -1 1,—0.809017 £ 0.587785%,0.309017 + 0.9510574

pr(2) =25 —4 +1.259921, —0.629961 + 1.0911244, 0.629961 + 1.091124%

5. Numerical results and engineering applications

This section investigates the effectiveness of the newly developed methods by testing
various functions, including several engineering applications. Results are compared
with those of well-known methods in the same family.



N. Abu Ghalioun & A. Zein

2 2
1 1
o o
-1 -1
> -2
-2 -1 0 1 2 -2 -1 0 1 2

(d) Chunl

-2 -1 [ 1

(e) Chun2 (fy CHM

-2 -1 0 1 2

(h) NAL (i) NA2

2 -1 0 1 2

(j) NA3

Figure 1. Basins of attraction for pi(z) = 2% — 1.
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(b) KLM

-2 -1 0 1 2 2 -1 0 1

(f) CHM

-2 -1 0 1 2

(g) PBM (h) NA1 (i) NA2

2 -1 0 1 2
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Figure 2. Basins of attraction for pa(z) = 2% — 1.
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(b) KLM (c) MM

) -1 0 1 2 -2 -1 0 1 2 - -1 0 1 2

(d) Chunl (e) Chun2 (f) CHM

(i) NA2

-2 -1 0 1 2

(j) NA3

Figure 3. Basins of attraction for p3(z) = 22424+ 1.
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(a) TOM (b) KLM

) -1 ] 1 2 ) -1 0 1

(d) Chunl (e) Chun2 (f) CHM

() PBM

2 -1 0 1 2

(j) NA3

Figure 4. Basins of attraction for ps(z) = z* + 16.
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(b) KLM (c) MM

) -1 0 1 2 -2 -1 0 1 0 1 2

(d) Chunl (e) Chun2 (f) CHM

(g) PBM (i) NA2

2 -1 0 1 2

(j) NA3

Figure 5. Basins of attraction for ps(z) = 2% — z + i.
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(b) KLM

5 -1 0 1 2

(e) Chun2 (fy CHM

(i) NA2

-2 -1 0 1 2

(j) NA3

Figure 6. Basins of attraction for pg(z) = 2% — 1.
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(b) KLM (c) MM

(j) NA3

Figure 7. Basins of attraction associated with p7(z) = 25 — 4.
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Table 2. Comparison of the number of black points in specific fourth-order iterative methods.

pi(z) p2(2) p3(z)  pa(z)  ps(2)  pe(2)  pr(z) | Average
TOM 798 0 2093 1756 0 1474 7730 1979
KLM 832 9500 1290 91632 14772 91734 148582 51192
MM 974 28248 5922 149216 19460 125524 178990 72619
Chunl 808 184 234 5332 154 11937 34006 7522
Chun2 1246 40270 10875 179228 31405 150336 209526 88984
CHM 800 1599 382 36968 157 39744 88340 23999
PBM 2280 48388 17879 189240 39046 154623 206852 94044
NA1 800 0 101 1652 0 737 5146 1205
NA2 800 4 78 1624 0 410 3416 905
NA3 800 8 91 1712 0 1078 5944 1376
Table 3. The ratio of black points to the total number of initial points.
pi(2) pa(2) p3(2) pa(2) p5(2) po(2) pr7(2) Average
TOM  1.246 x 1073 0 3.270 x 1073 2.744 x 1073 0 2.303 x 1073 1.208 x 1072 | 3.696 x 103
KLM  1.300 x 1073 1.484 x 1072 2.016 x 1072 1432 x 10" 2.308 x 1072 1.433 x 10~'  2.322 x 10~! | 8.193 x 1072
MM 1.522 x 1073 4.414x 1072 9.253 x 1073 2332 x 1071 3.041 x 1072 1.961 x 10~'  2.797 x 10~! | 1.117 x 10!
Chunl 1.262x 1073 2875 x 10~%  3.656 x 10~* 8.331 x 1072  2.406 x 107* 1.865 x 102 5.313 x 1072 | 1.249 x 1072
Chun2 1.947 x 1073 6.292 x 1072 1.699 x 1072 2.800 x 107!  4.907 x 1072  2.349 x 101  3.274 x 10~ | 1.274 x 10~
CHM 1250 x 1073 2498 x 107 5.969 x 10~*  5.776 x 1072 2453 x 107*  6.210 x 102  1.380 x 107! | 4.256 x 1072
PBM  3.562 x 107%  7.561 x 1072 2,794 x 1072 2.957 x 1071 6.101 x 1072 2.416 x 107!  3.232 x 10! | 1.348 x 10!
NA1l 1.250 x 1072 0 1.578 x 10~* 2,581 x 1073 0 1.152 x 1073 8.041 x 1073 | 1.460 x 10~
NA2 1.250 x 1073 6.250 x 1076 1.219 x 107*  2.538 x 1073 0 6.406 x 107*  5.338 x 1073 | 1.149 x 1073
NA3 1.250 x 1073 1.250 x 1077 1.422 x 107* 2,675 x 1073 0 1.684 x 1073 9.288 x 1073 | 1.501 x 1073

Table 4. Comparison of the mean number of iterations per convergent point in specific fourth-order

iterative methods.

pi(z) p2(2) p3(2) palz) ps(z) pe(2) pr(2) | Average
TOM 245 297 298 357 314 379 413 | 3.29
KLM  3.07 444 423 588 460 537 553 | 4.73
MM 330 460 441 560 491 522 536 | 477
Chunl 281 3.85 380 521 392 535 595 | 441
Chun2 3.60 595 480 581 537 537 542 | 5.19
CHM 226 312 276 484 3.02 389 415 | 3.43
PBM 348 468 475 550 508 510 519 | 4.82
NA1 229 285 273 376 293 3.65 420 [ 3.20
NA2 237 294 285 371 301 365 414 | 3.24
NA3 233 287 281 352 295 360 3.97 | 3.29

All computations are performed using Maple 2021 with a precision of 2000 sig-
nificant digits. The hardware platform is an ASUS laptop equipped with an Intel(R)
Core(TM) i7-7500U CPU @ 2.70GHz and 8 GB of RAM, running Microsoft Win-
dows 10 Pro operating system.

To check the order of convergence, the computational order of convergence
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Table 5. Processing time for generating the basins of attraction.

p1(z)  pa(2)  p3(2)  pa(2) p5(2) po(2) pr(2) | Average
TOM 17.71 311.91 311.01 404.11 674.84 900.53 2712.29 761.77
KLM 17.23  490.39 504.83 1077.44 957.04 1407.50 1810.91 895.62
MM 28.55 661.42 653.36 1252.45 1766.00 1569.46 2255.06 1183.47
Chunl 26.19 503.54 486.04 689.92 2011.13 1122.02 2056.43 984.18
Chun2 13.51 638.46 565.71 1148.30 933.25 1190.65 1570.22 865.44
CHM 28.69 433.12 366.03 706.61 680.84 838.23  1099.87 593.34
PBM 23.64 684.33 690.19 1268.73 2082.41 1482.91 2732.61 1380.55
NA1 18.10 373.50 403.36  544.57 1326.30 813.68 1283.86 680.48
NA2 21.00 374.41 319.30 452.63 1413.52  751.32 1507.59 691.11
NA3 19.85 399.88 311.02 700.60 1541.01 1118.03 1806.11 842.36

(COC) can be approximated using the following formula [9]:

COC = | (zni1 = 20) /(@0 — Tn-1) |

In | (xn - xn—l)/(xn—l - -Tn—Q) ‘ .

The number of iterations is fixed at n = 5 for all examples. Tables 6 to 13 present
comparisons among iterative methods, reporting the error estimation | x5 — x4 |, the
computational order of convergence (COC), and the CPU time in seconds (Time).
The processing time represents the mean of 1000 executions to ensure reliable values.
In each test case, the best values of |z5 — 24| and CPU time are highlighted in bold.

Example 5.1. (Normal depth in trapezoidal open channels [31]) Consider
an open channel with a trapezoidal cross-section, a bed width of b, and side slopes
of m horizontal to 1 vertical. If Q) represents the water flow under uniform flow
conditions and x denotes the depth of water in the channel, then according to
Manning’s equation [10,21], we have

_ cVS (bx + mx2)5/3

n (bt 20vT T mE)

(5.1)

Here, C equals 1.0 for SI units and 1.486 for BG units, n is the Manning rough-
ness coefficient, and S is the longitudinal channel slope. See [31] for further details.

Assigning specific values to the parameters [10,31]: b = 10 ft,m = 2,5 =
0.0006,n = 0.016,Q = 225 ft3/s, we can determine the depth of water in the
channel using the following equation

2/3
f1(x) = 98.9027 (10 n 2\/51:) — (102 +22%)”* = 0. (5.2)

The solution to this equation is o = 3.406284331340969 - - -. Table 6 shows the
numerical results for an initial guess of zo = 3.0. For this test case, the top four
methods are ranked by accuracy as follows: NA3, CHM, NA1, and TOM. In terms
of CPU time, the methods rank as follows: TOM, followed by NA1 and Chun2,
then NA2 and PBM.
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Table 6. Numerical comparison of distinct methods applied to the test function fi(z).

Method |x5 — 24| |f(xs5)] COC Time
TOM 1.55 x 107246 423 x 10798 4.00 0.0027
KLM 3.42 x 1071°1 373 x 107781 4.00  0.0034
MM 7.99 x 107177 1.53x 10779 4.00  0.0033
Chunl 8.46 x 107212 891 x 1074  4.00  0.0033
Chun?2 1.51 x 107166 249 x 107962 4.00  0.0030
CHM 2.08 x 107271 494 x 107198 400  0.0035
PBM 6.55 x 107196 504 x 107"  4.00  0.0031
NA1 4.80 x 107266 1.42 x 1071061 400  0.0030
NA2 8.27 x 107203 592 x 10789  4.00  0.0031
NA3 6.59 x 107333 443 x 107132  4.00  0.0036

Example 5.2. (Parachutist’s problem [3]) The total force F' acting on a de-
scending parachutist is the result of two opposing forces: The downward gravita-
tional force F; and the upward air resistance force F),, such that F = F;+ F,.

The gravitational force Fy = mg, where g ~ 9.8m/s? represents the acceleration
due to gravity, and m is the mass of the parachutist. The upward air resistance is
modeled as F,, = —zv, where v is the velocity and z is the drag coefficient (kg/s).
The negative sign indicates that this force acts in the upward direction, opposing
the motion.

Therefore, the total force can be expressed as

F =mg— xv.

dv
By the Newton’s second law of motion F' = ma. Substituting the expression for

F, we have

Solving this differential equation with with the initial condition v(0) = 0, we get

gm —¢
v(t) = . (1—e =), (5.3)
Assume the parachutist’s mass is m = 70 kg. To determine the drag coefficient
x required for the velocity to reach v = 40 m/s at t = 11 s, we need to solve the
following nonlinear equation

686 o
fa(x) = — (1 - e_%> —40=0.

. (5.4)

We begin with an initial approximation xg = 12.0 kg/s. Note that the solution
of (5.4) is v = 15.69380132331276 - - -. Table 7 shows the numerical results. In this
test case, the top four methods are ranked by accuracy as follows: TOM, NA3, NA1,
and CHM. With respect to CPU time, the ranking is as follows: CHM, followed by
NA1 and PBM, then KLM.
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Table 7. Numerical comparison of distinct methods applied to the test function fa(z).

Method |xs5 — x4 |f(x5)] COC Time
TOM 1.28 x 10°27%  6.04 x 1071997 400  0.0032
KLM 1.19 x 107189 557 x 10770 400  0.0031
MM 343 x 1071 571 x 107" 4.00  0.0035
Chunl 1.27 x 107208 396 x 107836 4.00  0.0037
Chun?2 1.74 x 107169 498 x 107%7  4.00  0.0034
CHM 1.42 x 107220 440 x 10784  4.00 0.0027
PBM 1.92 x 107187 385 x 10=7°1  4.00  0.0030
NA1 751 x 107223 341 x 10783 400  0.0030
NA2 2.13x 107199 490 x 1077  4.00  0.0037
NA3 8.73 x 107264 248 x 107157 400  0.0038

Example 5.3. (Sheet-pile walls designing model [11]) The embedment depth
x of a sheet-pile wall is determined by the equation

2% 428722 — 10.28
T 1,62

To determine the depth, we must solve the equivalent equation

3 4+ 2.87x2 — 10.28
fs(x) = 1.62 -

The required root is a = 2.002118778953827---. For this study, we start with
an initial approximation of xg = 2.5. The numerical results and comparisons are
presented in Table 8. The top four methods are ranked by accuracy in the following
order: NA1, CHM, NA3, and NA2. Regarding CPU time, the methods rank as
follows: TOM, followed by KLM and Chunl, then Chun2.

x=0.

Table 8. Numerical comparison of distinct methods applied to the test function f3(z).

Method |x5 — x4 |f(x5)] COC Time
TOM 1.25 x 107189 784 x 107  4.00 0.0023
KLM 1.00 x 1071t 1.17x 107994 400 0.0025
MM 1.76 x 10~™3 153 x107°""  4.00  0.0030
Chunl 6.25 x 107164 1.14 x 107653 4.00  0.0025
Chun?2 8.40 x 107137 1.01 x 107°*  4.00  0.0027
CHM 821 x 1072%% 462 x 1071134 400  0.0034
PBM 4.99 x 107159 727 x107%9%  4.00  0.0035
NA1l 6.27 x 107299 157 x 107119 4.00  0.0031
NA2 1.49 x 107202 256 x 1078%% 4,00  0.0033
NA3 2.56 x 10721 473 x1078° 400  0.0028

Example 5.4. (Colebrook-White Equation) The Colebrook-White equation
is used to determine the friction factor in gas pipelines with turbulent flow, see
e.g. [22], and is expressed as

1
Jz

= —2log <€/D

L 261
37 ' Reyz

).

(5.5)
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where x is the friction factor (dimensionless), ¢ is the absolute pipe roughness
(mm), D is the pipe inside diameter (mm), and Re is the Reynolds number of flow
(dimensionless).

Consider a gas pipeline with the following parameters [22], D = 476 mm, ¢ =
0.03 mm, and Re = 11347470. To determine the friction factor equation (5.5) is
reformulated as

0.030/476+ 2.51 B
3.7 11347470z )

file) = =+ 2log (

As an initial guess, we choose x¢o = 0.0088. The numerical results of different
iterative methods converging to the root a = 0.0112288447313997 - - - are presented
in Table 9. The top four methods are ranked by accuracy in this order: TOM, NA3,
Chunl, and NA1. In terms of CPU time, the methods are ranked as follows: KLM,
followed by Chunl, CHM, and Chun2.

Table 9. Numerical comparison of distinct methods applied to the test function f4(z).

Method |xs — x4 |f(x5)] COC Time
TOM 1.38 x 107277 1.18 x 1071190 400  0.0076
KLM 8.17x 10718 244 x1077° 400 0.0068
MM 6.81 x 107170 1.81 x107%%  4.00 0.0076
Chunl 2.60 x 107296 118 x 10734  4.00  0.0071
Chun2 2.26 x 107160 296 x 107530 4.00  0.0075
CHM 1.59 x 107193 2,07 x 10779 4.00  0.0073
PBM 7.20x 107180 148 x 10-7%  4.00  0.0084
NA1 1.92 x 107195 439 x 107"t 4.00  0.0078
NA2 4.73 x 1071 3.08 x 10771 4.00  0.0079
NA3 1.34 x 1072 568 x107%%  4.00  0.0081

Example 5.5. (Benedict-Webb-Rubin equation) The Benedict-Webb-Rubin
equation is an equation of state that describes the behavior of real gases and applies
to both vapor and liquid phases. The basic form of this equation is expressed as

(see e.g. [1])
R,

P =

Co\ 1 1

aa c ol ¥
+5o e () e (-5)

where ¥ represents the molar specific volume (m?3/kmol), R, = 8.314 kPa-m?3/kmol-
K is the universal gas constant, T is the temperature (K), P is the pressure (kPa),
and Ag, By, Co, a, b, ¢, and « are eight empirical parameters specific to the
fluid.

For example, consider nitrogen gas at 7' = 175 K and P = 10009 kPa. The
eight empirical parameters for nitrogen are provided in [1]. To determine the molar
specific volume by (5.6), we obtain

1454.950  74.11329618
= — 5 +

(5.6)

0.8471236  0.000323088
3 + 6
x x

f5(z)

T x
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0.0053 0.0053\ 1
+ 2.409469388 <1 + ) exp (—) — — 10009

z2 2 3

=0.

The solution to this equation is o = 0.1050449929263866 - - -. Using zo = 0.12,
the results are shown in Table 10. Based on accuracy, the top four methods are
TOM, NA3, Chunl, and CHM. In terms of CPU time, the ranking is: Chun2,
followed by NA1 and PBM, then NA2.

Table 10. Numerical comparison of distinct methods applied to the test function fs5(x).

Method |xs — x4 |f(z5)] COC Time
TOM 1.17 x 107256 620 x 1071017 4.00  0.0079
KLM 4.93 x 10711 159 x 10757 4.00  0.0095
MM 3.57x 107151 6.84 x 107594  4.00  0.0093

Chunl 9.59 x 107207 1.00 x 107816 400  0.0081
Chun?2 226 x 107138 1.49x107°%2 400 0.0073

CHM 2.67 x 107192 942 x 1077  4.00  0.0082
PBM 2.56 x 107181 1,15 x 10~7"*  4.00  0.0076
NA1 527 x 107190 142 x 1079  4.00  0.0076
NA2 3.02x 107152 278 x 107°%%  4.00  0.0077
NA3 3.41 x 107207 147 x 10788 4.00  0.0086

Example 5.6. We now apply the proposed methods to a set of nonlinear functions.
Consider the following six commonly test functions and their simple zeros:

fo(z) = 2 + 422 — 10, a = 1.365230013414096 - - - ,
fr(z) = sin®(z) — 2 + 1, o = 1.404491648215341 - - -,
fs(2) = e”sin(z) + In(1 + 2?), a =0,

fo(x) = Va2 +z+3-2sin(z—2) -2 +1, a=2

fio(z) = cos (L;) + —ln(xzx;rixl+ 2)7 a=-1,

fi1(x) = sin(x) + cos(x) + x, a = —0.4566247045676308 - - - .

The comparison results for Example 5.6 are shown in Tables 11, 12, and 13.

Overall, considering all test functions and given initial points in Examples 5.1-
5.6, the top methods, ranked by the accuracy measure |z5 — x4|, are generally as
follows: NA2, NA1, CHM, NA3, and TOM. Concerning processing time, the best
method is generally TOM, followed by KLM.

For further investigations, we set a stopping criterion of |z, — zp_1]| < 10—°0
for the computer programs. Table 14 presents the number of iterations required by
different methods to satisfy this criterion across all test functions. It is observed
that the number of iterations required by the new methods NA1, NA2, and NA3 is
generally less than or equal to that required by the other methods. In general, with
respect to the number of iterations, NA3 is ranked first, followed by NA1, NA2,
TOM, and CHM, which all share approximately the same rank.
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Table 11. Numerical comparison of different methods applied to the test functions fg(x) and f7(z)
with different initial approximations.

Function Method x¢ |zs — 4] |f(z5)] COC Time
fo() TOM 1.5 2.68x1073% 753 x 10712 4.00 0.0016
KLM 147 x 1072 252 x 1071991 400  0.0018

MM 2.83 x 107253 4.66 x 107100 400  0.0019

Chunl 1.20 x 107288 6.96 x 107192 4.00  0.0020

Chun2 3.01 x 107255 7.62 x 107018 400  0.0019

CHM 1.73 x 107367 437 x 1071468 4.00  0.0022

PBM 1.32 x 107272 1.60 x 1071087 400  0.0018

NA1 7.66 x 107372 1.69 x 1071485 4.00  0.0019

NA2 454 x 107399 1.04 x 1071233 4.00 0.0024

NA3 1.49 x 107352 2.39 x 107149 4.00  0.0023

fo(x) TOM 25 332x107M1* 176 x107%%*  4.00 0.0016
KLM 445 %1078 2,09 x 107333 3.99  0.0020

MM 5.75x 107" 8.00 x 107399 3,99  0.0018

Chunl 2.80 x 107?208 x 107370 4,00 0.0021

Chun?2 6.64 x 107 1.80 x 107288 3,99 0.0016

CHM 1.17x 107176 925 x 10779 4.00  0.0022

PBM 244 x 1078 1.88x 107326  3.99  0.0020

NA1 1.86 x 107162 588 x 107%4®  4.00 0.0016

NA2 8.20 x 107172  1.10x 1072 4.00  0.0026

NA3 3.94x 10713 1.16 x 107234 4.00  0.0022

fz(x) TOM 1.8 433 x1071%9  3.60x 1073 400 0.0017
KLM 6.76 x 107131 7.13 x 107221 4.00  0.0018

MM 6.02 x 107124 6.05 x 107493 4.00  0.0021

Chunl 7.38 x 10711 6.56 x 107°61  4.00  0.0024

Chun2 3.37 x 10718 746 x 107470 4.00  0.0025

CHM 217 x1072%% 379 x 10780 400 0.0024

PBM 1.79 x 107129 347 x 107515 4.00  0.0021

NA1 1.21 x 107201 370 x 107%%5  4.00  0.0028

NA2 1.51 x 10722 711 x107°6 4,00 0.0025

NA3 1.60 x 107176 279 x 1077°4  4.00  0.0020

fz(2) TOM 25 196 x107%  1.52x 107343 4.00  0.0020
KLM 7.95x 10771 1.36x 107280 399 0.0018

MM TA7 x 10767 143 x107264 399  0.0021

Chunl 224 x 107" 5.62x 107303 3.99  0.0020

Chun?2 1.63 x 107 4.09x 10721  3.99  0.0026

CHM 8.39 x 107113 843 x107%° 400 0.0022

PBM 4.47 x 10770 1.36 x 107277 3.99  0.0021

NA1 1.53 x 107114 936 x 10747 4.00  0.0027

NA2 6.04 x 10793 1.82x 107362 4,00 0.0026

NA3 3.82x107%  9.10 x 10737 4.00 0.0021
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Table 12. Numerical comparison of different methods applied to the test functions fg(x) and fo(z)

with different initial approximations.

Function Method x¢ |zs — 4] |f(z5)] COC Time
fa(x) TOM 0.5 4.52x1077  3.05x1073%5 399  0.0024
KLM 451 x107°%  9.66 x 10722 3.99  0.0021

MM 8.32x107%  1.50x 107211 3,99  0.0029

Chunl 2.70 x 107%% 815 x1072°¢  3.99  0.0025

Chun2 3.20 x 10759 4.60 x 107197 3.99  0.0023

CHM 4.97 x 107121 4.06 x 107482 4,00  0.0026

PBM 730 x 10757 6.63 x 107224 399  0.0034

NA1 1.78 x 107153 6.76 x 107512 4.00  0.0029

NA2 7.62x 1079 292 x10738 400 0.0024

NA3 2.65 x 10787 1.64 x 107346 4,00  0.0027

fa(x) TOM 1.5 6.16x1073"  1.06 x 107132 3.99 0.0021
KLM 2.03 x 1025 3.99 x 107°%  3.99  0.0026

MM 1.92 x 1072 4.25 x107°°  3.99  0.0030

Chunl 293 x 10728 1.13x 107199 3,99  0.0036

Chun?2 9.19 x 1022 2.81 x 1078 3.99  0.0022

CHM 1.06 x 1078 831 x 107  3.99  0.0023

PBM 7.38 x 1025 6.91 x 10726 3.99  0.0026

NA1 257 x 10747 291 x 107187 3,99  0.0022

NA2 1.50 x 10735 435 x 107219 3,99  0.0024

NA3 243 x 1073  1.15x 10~%  3.99  0.0029

fo(x) TOM 1.5 6.85x107204  2,00x 10734  4.00 0.0024
KLM 4.62 x 107172 7.07 x 107987 4.00  0.0030

MM 1.30 x 107160 526 x 10754 4.00 0.0034

Chunl 1.87x 107186 150x 1077+  4.00 0.0035

Chun?2 5.23 x 107152 1.64 x 107596 4,00  0.0028

CHM 1.21 x 107238 126 x 107°°%  4.00  0.0027

PBM 1.34 x 107176 492 x 10779  4.00  0.0029

NA1 2.30 x 107244 165 x 1077  4.00 0.0029

NA2 9.93 x 107296 259 x 107822 4.00  0.0028

NA3 2.12x 107220 1.50 x 107880 4,00  0.0031

fo(x) TOM 25  7.22x107%9 246 x107%%  4.00  0.0026
KLM 834 x 107238  750x 10790 4,00 0.0024

MM 2.23 x 107233 458 x 107932 4,00  0.0031

Chunl 4.30 x 10724 419 x 107°7Y  4.00  0.0026

Chun?2 1.82 x 107229 240 x 107" 4.00 0.0029

CHM 1.06 x 107258 737 x 107193 400  0.0031

PBM 1.61 x 107237 1.05x 107°%®  4.00 0.0032

NA1 1.44 x 10728 254 x 1071933 4.00  0.0031

NA2 2.36 x 107270 828 x 1071981 4.00  0.0029

NA3 8.01 x 1072%*  3.07 x 1071014 400  0.0030
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Table 13. Numerical comparison of different methods applied to the test functions fig(z) and fi11(z)
with different initial approximations.

Function Method =z x5 — T4 |f(zs5) COC Time
f1o(z) TOM 0.1 8.67x107% 549 x 107382 4.00  0.0044
KLM 1.85x 10782 231 x10732% 399  0.0050

MM 410x 1077  7.02x 107393 3,99  0.0041

Chunl 499 x 1078 9.16 x 1073°°  4.00  0.0042

Chun2 1.30 x 10770 859 x 107281 399  0.0041

CHM 5.15 x 107196 328 x 107423 4.00 0.0040

PBM 9.54 x 1078 1.64 x 107337 3.99  0.0047

NA1 1.72 x 107106 408 x 107425 4.00  0.0049

NA2 1.26 x 107133 1.04 x 107%%*  4.00 0.0041

NA3 1.11 x 107100 1,10 x 107%1  4.00  0.0048

fro(z) TOM  -0.8 3.40x 10722 129 x 1071167 400  0.0042
KLM 1.36 x 107271 6.83 x 1071985 400 0.0039

MM 6.45 x 10725°  4.32 x 1071958 400  0.0050

Chunl 4.21 x 107289 4,65 x 1071112 4.00  0.0049

Chun?2 2.79 x 10729 1.81 x 1071035 400  0.0046

CHM 3.61 x 107311 785 x 107124 4,00  0.0053

PBM 4.00 x 107271 5.06 x 1071083 400  0.0045

NA1 8.28 x 107311 2,18 x 1071242 4,00  0.0041

NA2 4.71 x 107349 2,06 x 107139 4.00  0.0048

NA3 4.42 x 107390 275 x 1071199 4,00  0.0042

f11() TOM 0.0 126x1072%2  6.04 x 1079  4.00 0.0011
KLM 1.14 x 107215 486 x 107862 4.00  0.0013

MM 1.18 x 107208 588 x 10734  4.00 0.0014

Chunl 9.30 x 1072%*  1.95x 107%%  4.00 0.0016

Chun?2 7.10 x 10729 831 x 10781 400 0.0015

CHM 1.77 x 10724 212 x 107977  4.00 0.0016

PBM 3.70 x 107217 530 x 1078%® 4,00  0.0013

NA1 3.51 x 107245 3.32x 107980 400 0.0021

NA2 5.05 x 107292 127 x 107167 4,00  0.0020

NA3 1.10 x 107238 338 x 107%*  4.00  0.0017

fi1(z) TOM  -1.5 251x10711 946 x 10754  4.00 0.0012
KLM 5.85 x 10715 331 x 10751 4,00  0.0013

MM 3.69 x 1071°0 565 x 10750 4,00  0.0015

Chunl 8.75 x 107158 1.53 x 10739 400  0.0019

Chun?2 1.05x 1076 396 x 107°%  4.00 0.0016

CHM 4.03x 107165 574 x 107660 4,00 0.0018

PBM 8.87x1071%  1.75 x 107518 4,00  0.0015

NA1 2.60 x 1071%°  9.89 x 107961 4,00  0.0021

NA2 1.65 x 107172 144 x 10768 4,00 0.0022

NA3 2,13 x 107163 470 x 107553 4,00  0.0019
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Table 14. Methods and number of iterations (n) required for | z, — zp—1 |< 10759,

Method fi@) fa(z) fs(x) fa(z) f5() fo(@) fr(z) fs() fo(x) Jio(@) fii(z)
To=30 =120 z9=25 z0=00088 x9=012 z=15 m=18 z0=15 z0=15 z0=-08 z¢=0.0
TOM 4 4 5 4 4 4 5 6 4 4 4
KLM 5 5 5 5 5 4 5 6 5 4 4
MM 5 5 5 5 5 4 5 6 5 4 4
Chunl 4 4 5 4 4 4 5 6 5 4 4
Chun2 5 5 5 5 5 4 5 6 5 4 4
CHM 4 4 4 5 5 4 4 6 4 4 4
PBM 5 5 5 5 5 4 5 6 5 4 4
NA1 4 4 4 4 5 4 5 6 4 4 4
NA2 4 5 4 5 5 4 4 5 4 4 4
NA3 4 4 4 4 4 4 5 6 4 4 4

6. Conclusion

A new family of optimal fourth-order iterative methods for finding the roots of
non-linear equations has been introduced in this work. The error equation has
been theoretically proven to show that the proposed methods have fourth-order
convergence. We highlight that several well-known methods are special cases within
this family. Additionally, three new specific methods have been derived from this
family: NA1, NA2, and NA3. Comparisons with other known fourth-order methods
in the same family, along with complex dynamics and basin of attraction analysis,
show that the newly developed methods provide better results. Overall, NA2 is the
best in terms of stability and accuracy. Several numerical examples involving real-
life problems further demonstrate the applicability of the newly proposed methods.
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