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OPTIMAL FOURTH-ORDER ITERATIVE
METHODS FOR SOLVING NONLINEAR

EQUATIONS: AN INNOVATIVE GENERAL
CLASS WITH STABLE MEMBERS AND

ENGINEERING APPLICATIONS
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Abstract In this work, we construct a new class of two-step fourth-order
iterative methods for solving nonlinear equations. Each iteration requires two
function evaluations and one evaluation of the first derivative. Consequently,
this family is optimal according to the Kung-Traub conjecture. The first step
of the family coincides with the classical Newton’s method, while the second
step involves three parameters and a weight function, offering a wide range
of options and including several well-known methods as special cases. Addi-
tionally, we identify three new particular cases that perform well compared to
existing methods within the same family. The analysis of complex dynamics
and basins of attraction shows that these methods have a wider range of ini-
tial points that ensure convergence. Furthermore, numerical examples using
various test functions and real-life applications illustrate that, in general, the
new methods produce good results in terms of accuracy.

Keywords Iterative methods, optimal methods, basins of attraction, engi-
neering applications.
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1. Introduction
Developing efficient and high-order iterative methods for solving nonlinear equations
is a fundamental challenge in numerical analysis. This is because these equations
often cannot be solved analytically, and many problems in engineering and applied
sciences are modeled by nonlinear equations.

Iterative methods fall into two main categories: One-point and multi-point
schemes. One-point iterative methods can achieve high orders of convergence by
using higher derivatives of the function, often resulting in a significant computa-
tional cost. Multi-point methods, on the other hand, improve both convergence
order and computational efficiency by leveraging previously computed informa-
tion, see Petković et al. [26]. In recent decades, a variety of multi-step itera-
tive methods have been introduced to achieve higher orders of convergence, see
e.g. [5, 7, 8, 14,15,17,19,25].
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The efficiency indicator of an iterative method is measured by the efficiency
index, defined as E.I. = p

1
d , where p is the order of convergence and d is the to-

tal number of functional evaluations per iteration. In 1974, Kung and Traub [18]
proposed what is now known as the Kung-Traub conjecture: A multi-point itera-
tive method without memory for finding simple roots of a function can achieve a
maximum convergence order of 2d−1. Methods achieving this bound are called op-
timal methods. Naturally, they are of particular interest. The well-known Newton’s
method is considered an optimal method, converging quadratically to simple roots.

In the literature, considerable attention has been devoted to developing optimal
fourth-order iterative methods [2, 4–8, 12, 13, 15–17, 19, 20, 23–25, 27–29, 31]. Some
of these methods adopt an initial step similar to Jarratt’s step [15, 23, 25, 28, 31],
while others employ Newton’s method as their initial step [2,7,8,16,17,19,20,24,27].
Among these optimal methods, some use two evaluations of the function and one
evaluation of the first derivative per iteration [2,5–8,17,19,20], while others use one
evaluation of the function and two evaluations of the first derivative [15,23,25,28,31].

In this paper, we introduce a new class of two-step optimal fourth-order iterative
methods for solving nonlinear equations. These methods utilize Newton’s method
in the first step and involve a weight function in the second step. Each iteration
requires two evaluations of the function and one evaluation of the first derivative.
The general formulation of the second step allows for a diverse range of options. We
show that the proposed family encompasses several well-known methods as special
cases. Additionally, three distinct methods have been derived from this proposed
family, which generally achieve higher accuracy than existing methods from the
same family, based on the test cases considered, which include various nonlinear
functions and engineering applications. Furthermore, through the analysis of basins
of attraction, we demonstrate that these new methods exhibit better stability, that
is, they possess wider sets of initial points leading to convergence.

The paper is structured as follows: Section 2 introduces the construction and
convergence analysis of a new family of optimal fourth-order methods. In Section
3, some well-known schemes are listed as particular cases of the proposed family,
and new specific methods within the proposed family are established. Section 4 is
devoted to study the stability of particular methods by using the basins of attraction
technique. Finally, in Section 5, numerical examples are presented to illustrate the
performance of these new methods. Additionally, real-life applications are discussed.

2. Design and convergence analysis of the new fam-
ily

The new family of fourth-order iterative methods consists of two steps. The first
step is the well-known Newton’s method, and the second step involves a weight
function, as follows:

yn = xn − f(xn)
f ′(xn) ,

xn+1 = xn − θ
f(xn)
f ′(xn) − G(ηn)Af(xn) + Bf(yn)

f ′(xn) ,

(2.1)

where θ, A and B are parameters, and G is a weight function in terms of

ηn = f(yn)
f(xn) . (2.2)
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The parameters θ, A and B are chosen arbitrarily. The weight function G is
then designed to ensure fourth-order convergence, as demonstrated in the following
theorem.

Theorem 2.1. Let α ∈ I be a simple root of a sufficiently differentiable function
f : I ⊆ R → R for an open interval I. If x0 is sufficiently close to α, and the
weight functions G(η) satisfies

G(0) = 1 − θ

A
, G′(0) = Bθ + A − B

A2 , G′′(0) = 2(−B2θ + 2A2 − AB + B2)
A3 ,

(2.3)
then the scheme (2.1) converges to α with order of convergence four and satisfies
the error equation

en+1

= −

[(
A4G′′′(0) − 30A3 + 12A2B − 6AB2 − 6B3(θ − 1)

)
c3

2
6A3 + c2c3

]
e4

n + O(e5
n),

where en = xn − α and cj = f (j)(α)
j! f ′(α) , j = 2, 3, ..., provided A ̸= 0 .

Proof. Applying Taylor’s expansion to f(xn) and f ′(xn) around α, we obtain

f(xn) = f ′(α)[en + c2e2
n + c3e3

n + c4e4
n] + O(e5

n), (2.4)

and
f ′(xn) = f ′(α)[1 + 2c2en + 3c3e2

n + 4c4e3
n + 5c5e4

n] + O(e5
n). (2.5)

Then from (2.4) and (2.5), we get

f(xn)
f ′(xn) = en − c2e2

n + (2c2
2 − 2c3)e3

n + (−4c3
2 + 7c2c3 − 3c4)e4

n + O(e5
n). (2.6)

Subtracting α from both sides of the first equation in (2.1) and using (2.6), we
obtain

yn − α = c2e2
n − (2c2

2 − 2c3)e3
n + (4c3

2 − 7c2c3 + 3c4)e4
n + O(e5

n). (2.7)

Using the expansion of f(yn) about α and (2.7), we obtain

f(yn) = f ′(α)[c2e2
n + (−2c2

2 + 2c3)e3
n + (5c3

2 − 7c2c3 + 3c4)e4
n] + O(e5

n). (2.8)

From (2.4), (2.5), and (2.8), we have

Af(xn) + Bf(yn)
f ′(xn)

=Aen − c2(A − B)e2
n + ((2A − 4B)c2

2 − 2c3(A − B))e3
n

+ ((−4A + 13B)c3
2 + 7c3(A − 2B)c2 − 3c4(A − B))e4

n + O(e5
n). (2.9)

Using (2.4) and (2.8), the expansion of the weight function variable η in (2.2) is as
follows

ηn = f(yn)
f(xn) = c2en + (−3c2

2 + 2c3)e2
n + (8c3

2 − 10c2c3 + 3c4)e3
n + O(e4

n).
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Then, expanding the weight function G(ηn) around zero results in

G(ηn) = G(0) + G′(0)ηn + G′′(0)η2
n

2 + G′′′(0)η3
n

6 + G(4)(0)η4
n

24 + · · ·

= G(0) + G′(0)c2en +
[

(−6G′(0) + G′′(0))c2
2

2 + 2c3G′(0)
]

e2
n

+
[(

8G′(0) − 3G′′(0) + G′′′(0)
6

)
c3

2 − (10G′(0) − 2G′′(0)) c2c3

+ 3c4G′(0)
]
e3

n + · · · . (2.10)

Finally, according to (2.6), (2.9) and (2.10) the error equation of the scheme
(2.1) is

en+1 = xn − α − θ
f(xn)
f ′(xn) − G(ηn)Af(xn) + Bf(yn)

f ′(xn)

=
[
1 − θ − AG(0)

]
en +

[
(A − B)G(0) − AG′(0) + θ

]
c2e2

n

+
[(

A
(

−4G(0) + 8G′(0) − G′′(0)
)

+ 8BG(0) − 2BG′(0) − 4θ

)
c2

2
2

+ 2
(

A(G(0) − G′(0)) − BG(0) + θ
)

c3

]
e3

n

+
[(

A
(

24G(0) − 78G′(0) + 21G′′(0) − G′′′(0)
)

− 78BG(0)

+ B
(

42G′(0) − 3G′′(0)
)

+ 24θ

)
c3

2
6

−
(

A
(

7G(0) − 14G′(0) + 2G′′(0)
)

− 14BG(0) + 4BG′(0) + 7θ

)
c2c3

+ 3
(

A(G(0) − G′(0)) − BG(0) + θ
)

c4

]
e4

n + O(e5
n). (2.11)

For fourth-order convergence, the coefficients of en, e2
n, and e3

n in (2.11) must
vanish, giving:

1 − θ − AG(0) = 0,

(A − B)G(0) − AG′(0) + θ = 0,(
A

(
−4G(0) + 8G′(0) − G′′(0)

)
+ 8BG(0) − 2BG′(0) − 4θ

)
c2

2
2

+ 2
(

A(G(0) − G′(0)) − BG(0) + θ
)

c3 = 0.

Upon solving this system of equations for G(0), G′(0) and G′′(0), we obtain

G(0) = 1 − θ

A
, G′(0) = Bθ + A − B

A2 , and

G′′(0) = 2(−B2θ + 2A2 − AB + B2)
A3 .
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These conditions in (2.3), when substituted into (2.11), yield the following error
equation

en+1

= −

[(
A4G′′′(0) − 30A3 + 12A2B − 6AB2 − 6B3(θ − 1)

)
c3

2
6A3 + c2c3

]
e4

n + O(e5
n),

and the proof is complete.

3. Particular cases within the proposed family
Numerous specific fourth-order methods can be derived from the family (2.1) by
adjusting the parameters θ, A, and B, as well as by selecting different weight func-
tions. This section presents several well-known methods as particular instances of
the proposed family (2.1), along with the introduction of three new schemes.

1. Suppose θ = 0, A = 1, and B = 0. According to (2.3) the weight function
should satisfy

G(0) = 1, G′(0) = 1, G′′(0) = 4.

By Selecting the weight function G(η) = η − 1
2η − 1 , then we obtain the well-

known Traub-Ostrowski’s method (TOM) [24,30], which is given by
yn = xn − f(xn)

f ′(xn) ,

xn+1 = xn − f(xn)
f ′(xn)

f(xn) − f(yn)
f(xn) − 2f(yn) .

(3.1)

If we consider the weight function G(η) = 1 + η2

1 − η
, we get the following method


yn = xn − f(xn)

f ′(xn) ,

xn+1 = xn − 1
f ′(xn)

f2(xn) + f2(yn)
f(xn) − f(yn) .

(3.2)

This is the method proposed by Kou et al. (KLM) [17].
Another choice for the weight function G(η) = η2 + 1

1 − η
, leads to the fol-

lowing method
yn = xn − f(xn)

f ′(xn) ,

xn+1 = xn − f(xn)
f ′(xn)

[
f(xn)

f(xn) − f(yn) +
(

f(yn)
f(xn)

)2
]

,

(3.3)

which is the method of Maheshwari (MM) [19].
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2. For θ = 1, A = 1, and B = 0, the conditions in (2.3) hold if

G(0) = 0, G′(0) = 1, G′′(0) = 4.

By taking the weight function G(η) = η

1 − 2η + η2 , the resulting scheme is
given by 

yn = xn − f(xn)
f ′(xn) ,

xn+1 = yn − f(yn)
f ′(xn)

[
f(xn)

f(xn) − f(yn)

]2
.

(3.4)

This is the method proposed by Chun (Chun1) [5].
3. Let θ = 1, A = 1, and B = 2. The conditions in (2.3) are satisfied if

G(0) = 0, G′(0) = 1, G′′(0) = 0.

Assuming G(η) = η, we get the scheme of Chun (Chun2) [6, 8], which is
expressed as 

yn = xn − f(xn)
f ′(xn) ,

xn+1 = yn − f(yn)
f ′(xn)

f(xn) + 2f(yn)
f(xn) .

(3.5)

4. If θ = 1 , A = 2, and B = −1, the conditions in (2.3) hold as follows

G(0) = 0, G′(0) = 1
2 , G′′(0) = 5

2 .

Using the weight function G(η) = η

2 − 5η
, results in the following method


yn = xn − f(xn)

f ′(xn) ,

xn+1 = yn − f(yn)
f ′(xn)

2f(xn) − f(yn)
2f(xn) − 5f(yn) .

(3.6)

This is the method introduced by Chun and Ham (CHM) [7].
5. Suppose θ = 0, A = 1, and B = 1, according to (2.3)

G(0) = 1, G′(0) = 0, G′′(0) = 4.

Assuming G(η) = 1 + 2η2, we obtain the scheme developed by Chand et al.
(PBM) [2], which is given by

yn = xn − f(xn)
f ′(xn) ,

xn+1 = xn − f(yn) + f(xn)
f ′(xn)

[
1 + 2

(
f(yn)
f(xn)

)2
]

.

(3.7)

Now, by selecting different values for θ, A, and B, we derive three new specific
methods within the proposed family (2.1) as detailed below:
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i. Assuming θ = 1, A = 1, and B = 0, then the weight function G(η) satisfies the
conditions in (2.3) when

G(0) = 0, G′(0) = 1, G′′(0) = 4.

Selecting the weight function G(η) = η

1 − 2η − η2 , then we obtain the following

scheme (NA1)
yn = xn − f(xn)

f ′(xn) ,

xn+1 = yn − f(xn)
f ′(xn)

f(xn)f(yn)
f2(xn) − f2(yn) − 2f(xn)f(yn) .

(3.8)

ii. Let θ = 1, A = −1, and B = −2, the conditions in (2.3) are satisfied when

G(0) = 0, G′(0) = −1, G′′(0) = 0.

Choosing the weight function G(η) = η

6η2 − 1 , the resulting scheme (NA2) is
expressed as

yn = xn − f(xn)
f ′(xn) ,

xn+1 = yn − −f(xn) − 2f(yn)
f ′(xn)

f(xn)f(yn)
6f2(yn) − f2(xn) .

(3.9)

iii. Suppose θ = 0, A = 1, and B = 0, according to (2.3)

G(0) = 1, G′(0) = 1, G′′(0) = 4.

Taking the following weight function G(η) = η

ln(η + 1) − 3η + 1 + 1, then the

resulting scheme (NA3) is given as
yn = xn − f(xn)

f ′(xn) ,

xn+1 = xn −

 f(yn)
f(xn) ln

(
f(yn)
f(xn) + 1

)
− 3f(yn) + f(xn)

+ 1

 f(xn)
f ′(xn) .

(3.10)

4. Basins of attraction
Many authors have utilized the basins of attraction technique to analyze the stability
of iterative methods for nonlinear equations. This approach illustrates how different
initial estimates within a specified region of the complex plane affect the behavior
of the function, providing graphical comparisons between various methods.

To generate basins of attraction, we select a rectangular region D in the complex
plane that contains all the roots of the nonlinear polynomial p(z). Using iterative
methods, we start from each initial guess z0 ∈ D and assign a color to each point
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based on the root to which the sequence converges. The color intensity reflects
the number of iterations required for convergence: Brighter colors indicate fewer
iterations, while darker colors represent more iterations. Points that do not converge
are colored black.

We compare the outcomes of our newly proposed methods: NA1 (3.8), NA2
(3.9), and NA3 (3.10), with those of existing methods: TOM (3.1), KLM (3.2),
MM (3.3), Chun1 (3.4), Chun2 (3.5), CHM (3.6), and PBM (3.7). The basins
of attraction for these methods are analyzed by applying them to seven complex
functions listed in Table 1, over the region D = [−2, 2] × [−2, 2] with a grid of
800×800 points. Convergence is determined by a tolerance of 10−3, with a maximum
of 20 iterations allowed.

Tables 2 and 3 respectively report the number of black points, indicating di-
vergence, and their proportion to the total number of initial points for each test
case. Tables 4 and 5 present the average number of iterations per convergent point
and the processing time (in seconds) required to generate the basins of attraction,
respectively.

Figure 1 displays the basins of attraction for the polynomial p1(z). The meth-
ods TOM, CHM, NA1, NA2, NA3, Chun1, and KLM perform well, with a low
percentage of divergent points (approximately 0.125%), followed by MM, Chun2,
and finally PBM, which exhibits a divergent point percentage of 0.3562%. The new
methods NA1, NA2, and NA3, as well as the TOM method, produce clear bound-
aries between the two basins. In contrast, the remaining methods display regions
near the basin boundaries where interweaving between basins occurs.

Figure 2 illustrates the basins of attraction for the polynomial p2(z). The meth-
ods TOM, NA1, NA2, and NA3 perform very well, followed by Chun1, which shows
a small percentage of divergent points. The CHM method exhibits some chaotic be-
havior. In contrast, the methods KLM, MM, Chun2, and PBM display larger black
regions, highlighting their sensitivity to the initial guess in this test case. Addi-
tionally, TOM, NA1, NA2, and NA3 exhibit smaller areas of interweaving between
basins compared to the remaining methods.

Figure 3 represents the basins of attraction for the polynomial p3(z). The meth-
ods NA1, NA2, and NA3 perform well, showing the fewest black points. Chun1 and
CHM follow, with a small number of black points. The methods KLM and TOM
exhibit some chaotic behavior, while the remaining methods display larger black
regions.

Figure 4 shows the basins of attraction for the polynomial p4(z). The methods
NA2, NA1, NA3, and TOM perform well, with a low percentage of divergent points
(approximately 0.26%). They are followed by Chun1, which exhibits some chaotic
behavior. The remaining methods are highly sensitive to the initial guess, with
significant percentages of divergent points, ranging from 5.776% for CHM to 29.57%
for PBM.

Figure 5 displays the basins of attraction for the polynomial p5(z). The methods
TOM, NA1, NA2, and NA3 perform very well, with no black points observed in
the specified region. Chun1 and CHM follow, exhibiting a very low percentage of
black points (approximately 0.024%). In contrast, the methods KLM, MM, Chun2,
and PBM show greater sensitivity to the initial guess. Moreover, NA1, NA2, NA3,
TOM, and CHM display smaller regions of interwoven basins compared to the other
methods.

Figure 6 illustrates the basins of attraction for the polynomial p6(z). The meth-
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ods NA1, NA2, NA3, and TOM perform very well. The Chun1 method shows some
chaotic behavior. Meanwhile, the remaining methods are more sensitive to the ini-
tial guess, exhibiting higher percentages of divergent points, ranked from best to
worst as follows: CHM, KLM, MM, Chun2, and PBM.

Figure 7 shows the basins of attraction for the polynomial p7(z). The methods
NA2, NA1, NA3, and TOM exhibit some chaotic behavior, with increasing percent-
ages of black points in that order. The remaining methods show significantly larger
black regions, indicating a higher sensitivity to the initial guess. The proportion of
divergent points ranges from 5.313% for Chun1 to approximately 32% for Chun2
and PBM.

In conclusion, based on Figures 1, 2, 3, 4, 5, 6, 7 and the quantitative compar-
isons in Tables 2, 3, and 4, we find that our new methods, NA1, NA2, and NA3,
exhibit superior dynamical behavior, encompassing broader sets of initial points
that lead to convergence. Based on the number of black points, the new meth-
ods, NA2, NA1, and NA3, demonstrate the best performance, with averages of 905,
1205, and 1376, respectively, followed by the TOM method with an average of 1979.
In contrast, the MM, Chun2, and PBM methods exhibit higher averages, indicating
greater sensitivity to the choice of initial guesses in several cases.

Regarding the mean number of iterations required for convergence, as shown
in Table 4, the methods, NA1, NA2, NA3 and TOM outperform the others, with
averages of 3.20, 3.24, 3.29, and 3.29 respectively. On the other hand, methods such
as PBM and Chun2 require significantly higher average numbers of iterations.

Concerning the processing time for generating the basins of attraction, as shown
in Table 5, the CHM method requires the shortest time, followed by NA1, NA2,
TOM, and then NA3.

Table 1. Complex polynomials and their roots accurate to 6 decimal digits.

Function Root
p1(z) = z2 − 1 1, −1

p2(z) = z3 − 1 1, −0.5 ± 0.866025i

p3(z) = z3 + z + i −0.562280 − 0.662359i, 0.562280 − 0.662359i, 1.324718i

p4(z) = z4 + 16 −1.414214 ± 1.414214i, 1.414214 ± 1.414214i

p5(z) = z4 − z + i −0.532605 − 1.088288i, −0.759845 + 0.592595i,

0.181924 + 0.732098i, 1.110525 − 0.236405i

p6(z) = z5 − 1 1, −0.809017 ± 0.587785i, 0.309017 ± 0.951057i

p7(z) = z6 − 4 ±1.259921, −0.629961 ± 1.091124i, 0.629961 ± 1.091124i

5. Numerical results and engineering applications
This section investigates the effectiveness of the newly developed methods by testing
various functions, including several engineering applications. Results are compared
with those of well-known methods in the same family.
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(a) TOM (b) KLM (c) MM

(d) Chun1 (e) Chun2 (f) CHM

(g) PBM (h) NA1 (i) NA2

(j) NA3

Figure 1. Basins of attraction for p1(z) = z2 − 1.
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(a) TOM (b) KLM (c) MM

(d) Chun1 (e) Chun2 (f) CHM

(g) PBM (h) NA1 (i) NA2

(j) NA3

Figure 2. Basins of attraction for p2(z) = z3 − 1.
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(a) TOM (b) KLM (c) MM

(d) Chun1 (e) Chun2 (f) CHM

(g) PBM (h) NA1 (i) NA2

(j) NA3

Figure 3. Basins of attraction for p3(z) = z3 + z + I.
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(a) TOM (b) KLM (c) MM

(d) Chun1 (e) Chun2 (f) CHM

(g) PBM (h) NA1 (i) NA2

(j) NA3

Figure 4. Basins of attraction for p4(z) = z4 + 16.
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(a) TOM (b) KLM (c) MM

(d) Chun1 (e) Chun2 (f) CHM

(g) PBM (h) NA1 (i) NA2

(j) NA3

Figure 5. Basins of attraction for p5(z) = z4 − z + i.
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(a) TOM (b) KLM (c) MM

(d) Chun1 (e) Chun2 (f) CHM

(g) PBM (h) NA1 (i) NA2

(j) NA3

Figure 6. Basins of attraction for p6(z) = z5 − 1.
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(a) TOM (b) KLM (c) MM

(d) Chun1 (e) Chun2 (f) CHM

(g) PBM (h) NA1 (i) NA2

(j) NA3

Figure 7. Basins of attraction associated with p7(z) = z6 − 4.
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Table 2. Comparison of the number of black points in specific fourth-order iterative methods.

p1(z) p2(z) p3(z) p4(z) p5(z) p6(z) p7(z) Average
TOM 798 0 2093 1756 0 1474 7730 1979
KLM 832 9500 1290 91632 14772 91734 148582 51192
MM 974 28248 5922 149216 19460 125524 178990 72619
Chun1 808 184 234 5332 154 11937 34006 7522
Chun2 1246 40270 10875 179228 31405 150336 209526 88984
CHM 800 1599 382 36968 157 39744 88340 23999
PBM 2280 48388 17879 189240 39046 154623 206852 94044
NA1 800 0 101 1652 0 737 5146 1205
NA2 800 4 78 1624 0 410 3416 905
NA3 800 8 91 1712 0 1078 5944 1376

Table 3. The ratio of black points to the total number of initial points.

p1(z) p2(z) p3(z) p4(z) p5(z) p6(z) p7(z) Average
TOM 1.246 × 10−3 0 3.270 × 10−3 2.744 × 10−3 0 2.303 × 10−3 1.208 × 10−2 3.696 × 10−3

KLM 1.300 × 10−3 1.484 × 10−2 2.016 × 10−3 1.432 × 10−1 2.308 × 10−2 1.433 × 10−1 2.322 × 10−1 8.193 × 10−2

MM 1.522 × 10−3 4.414 × 10−2 9.253 × 10−3 2.332 × 10−1 3.041 × 10−2 1.961 × 10−1 2.797 × 10−1 1.117 × 10−1

Chun1 1.262 × 10−3 2.875 × 10−4 3.656 × 10−4 8.331 × 10−3 2.406 × 10−4 1.865 × 10−2 5.313 × 10−2 1.249 × 10−2

Chun2 1.947 × 10−3 6.292 × 10−2 1.699 × 10−2 2.800 × 10−1 4.907 × 10−2 2.349 × 10−1 3.274 × 10−1 1.274 × 10−1

CHM 1.250 × 10−3 2.498 × 10−3 5.969 × 10−4 5.776 × 10−2 2.453 × 10−4 6.210 × 10−2 1.380 × 10−1 4.256 × 10−2

PBM 3.562 × 10−3 7.561 × 10−2 2.794 × 10−2 2.957 × 10−1 6.101 × 10−2 2.416 × 10−1 3.232 × 10−1 1.348 × 10−1

NA1 1.250 × 10−3 0 1.578 × 10−4 2.581 × 10−3 0 1.152 × 10−3 8.041 × 10−3 1.460 × 10−3

NA2 1.250 × 10−3 6.250 × 10−6 1.219 × 10−4 2.538 × 10−3 0 6.406 × 10−4 5.338 × 10−3 1.149 × 10−3

NA3 1.250 × 10−3 1.250 × 10−5 1.422 × 10−4 2.675 × 10−3 0 1.684 × 10−3 9.288 × 10−3 1.501 × 10−3

Table 4. Comparison of the mean number of iterations per convergent point in specific fourth-order
iterative methods.

p1(z) p2(z) p3(z) p4(z) p5(z) p6(z) p7(z) Average
TOM 2.45 2.97 2.98 3.57 3.14 3.79 4.13 3.29
KLM 3.07 4.44 4.23 5.88 4.60 5.37 5.53 4.73
MM 3.30 4.60 4.41 5.60 4.91 5.22 5.36 4.77
Chun1 2.81 3.85 3.80 5.21 3.92 5.35 5.95 4.41
Chun2 3.60 5.95 4.80 5.81 5.37 5.37 5.42 5.19
CHM 2.26 3.12 2.76 4.84 3.02 3.89 4.15 3.43
PBM 3.48 4.68 4.75 5.50 5.08 5.10 5.19 4.82
NA1 2.29 2.85 2.73 3.76 2.93 3.65 4.20 3.20
NA2 2.37 2.94 2.85 3.71 3.01 3.65 4.14 3.24
NA3 2.33 2.87 2.81 3.52 2.95 3.60 3.97 3.29

All computations are performed using Maple 2021 with a precision of 2000 sig-
nificant digits. The hardware platform is an ASUS laptop equipped with an Intel(R)
Core(TM) i7-7500U CPU @ 2.70GHz and 8 GB of RAM, running Microsoft Win-
dows 10 Pro operating system.

To check the order of convergence, the computational order of convergence
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Table 5. Processing time for generating the basins of attraction.

p1(z) p2(z) p3(z) p4(z) p5(z) p6(z) p7(z) Average
TOM 17.71 311.91 311.01 404.11 674.84 900.53 2712.29 761.77
KLM 17.23 490.39 504.83 1077.44 957.04 1407.50 1810.91 895.62
MM 28.55 661.42 653.36 1252.45 1766.00 1569.46 2255.06 1183.47
Chun1 26.19 503.54 486.04 689.92 2011.13 1122.02 2056.43 984.18
Chun2 13.51 638.46 565.71 1148.30 933.25 1190.65 1570.22 865.44
CHM 28.69 433.12 366.03 706.61 680.84 838.23 1099.87 593.34
PBM 23.64 684.33 690.19 1268.73 2082.41 1482.91 2732.61 1380.55
NA1 18.10 373.50 403.36 544.57 1326.30 813.68 1283.86 680.48
NA2 21.00 374.41 319.30 452.63 1413.52 751.32 1507.59 691.11
NA3 19.85 399.88 311.02 700.60 1541.01 1118.03 1806.11 842.36

(COC) can be approximated using the following formula [9]:

COC = ln | (xn+1 − xn)/(xn − xn−1) |
ln | (xn − xn−1)/(xn−1 − xn−2) |

.

The number of iterations is fixed at n = 5 for all examples. Tables 6 to 13 present
comparisons among iterative methods, reporting the error estimation | x5 −x4 |, the
computational order of convergence (COC), and the CPU time in seconds (Time).
The processing time represents the mean of 1000 executions to ensure reliable values.
In each test case, the best values of |x5 −x4| and CPU time are highlighted in bold.

Example 5.1. (Normal depth in trapezoidal open channels [31]) Consider
an open channel with a trapezoidal cross-section, a bed width of b, and side slopes
of m horizontal to 1 vertical. If Q represents the water flow under uniform flow
conditions and x denotes the depth of water in the channel, then according to
Manning’s equation [10,21], we have

Q = C
√

S

n

(
bx + mx2)5/3(

b + 2x
√

1 + m2
)2/3 . (5.1)

Here, C equals 1.0 for SI units and 1.486 for BG units, n is the Manning rough-
ness coefficient, and S is the longitudinal channel slope. See [31] for further details.

Assigning specific values to the parameters [10, 31]: b = 10 ft, m = 2, S =
0.0006, n = 0.016, Q = 225 ft3/s, we can determine the depth of water in the
channel using the following equation

f1(x) = 98.9027
(

10 + 2
√

5x
)2/3

−
(
10x + 2x2)5/3 = 0. (5.2)

The solution to this equation is α = 3.406284331340969 · · ·. Table 6 shows the
numerical results for an initial guess of x0 = 3.0. For this test case, the top four
methods are ranked by accuracy as follows: NA3, CHM, NA1, and TOM. In terms
of CPU time, the methods rank as follows: TOM, followed by NA1 and Chun2,
then NA2 and PBM.
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Table 6. Numerical comparison of distinct methods applied to the test function f1(x).

Method |x5 − x4| |f(x5)| COC Time
TOM 1.55 × 10−246 4.23 × 10−983 4.00 0.0027
KLM 3.42 × 10−191 3.73 × 10−761 4.00 0.0034
MM 7.99 × 10−177 1.53 × 10−703 4.00 0.0033
Chun1 8.46 × 10−212 8.91 × 10−844 4.00 0.0033
Chun2 1.51 × 10−166 2.49 × 10−662 4.00 0.0030
CHM 2.08 × 10−271 4.94 × 10−1083 4.00 0.0035
PBM 6.55 × 10−196 5.04 × 10−780 4.00 0.0031
NA1 4.80 × 10−266 1.42 × 10−1061 4.00 0.0030
NA2 8.27 × 10−203 5.92 × 10−808 4.00 0.0031
NA3 6.59 × 10−333 4.43 × 10−1329 4.00 0.0036

Example 5.2. (Parachutist’s problem [3]) The total force F acting on a de-
scending parachutist is the result of two opposing forces: The downward gravita-
tional force Fd and the upward air resistance force Fu, such that F = Fd + Fu.

The gravitational force Fd = mg, where g ≈ 9.8m/s2 represents the acceleration
due to gravity, and m is the mass of the parachutist. The upward air resistance is
modeled as Fu = −xv, where v is the velocity and x is the drag coefficient (kg/s).
The negative sign indicates that this force acts in the upward direction, opposing
the motion.

Therefore, the total force can be expressed as

F = mg − xv.

By the Newton’s second law of motion F = m
dv

dt
. Substituting the expression for

F , we have
dv

dt
= g − x

m
v.

Solving this differential equation with with the initial condition v(0) = 0, we get

v(t) = gm

x

(
1 − e− x

m t
)

. (5.3)

Assume the parachutist’s mass is m = 70 kg. To determine the drag coefficient
x required for the velocity to reach v = 40 m/s at t = 11 s, we need to solve the
following nonlinear equation

f2(x) = 686
x

(
1 − e− 11x

70

)
− 40 = 0. (5.4)

We begin with an initial approximation x0 = 12.0 kg/s. Note that the solution
of (5.4) is α = 15.69380132331276 · · ·. Table 7 shows the numerical results. In this
test case, the top four methods are ranked by accuracy as follows: TOM, NA3, NA1,
and CHM. With respect to CPU time, the ranking is as follows: CHM, followed by
NA1 and PBM, then KLM.
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Table 7. Numerical comparison of distinct methods applied to the test function f2(x).

Method |x5 − x4| |f(x5)| COC Time
TOM 1.28 × 10−273 6.04 × 10−1097 4.00 0.0032
KLM 1.19 × 10−189 5.57 × 10−760 4.00 0.0031
MM 3.43 × 10−178 5.71 × 10−714 4.00 0.0035
Chun1 1.27 × 10−208 3.96 × 10−836 4.00 0.0037
Chun2 1.74 × 10−169 4.98 × 10−679 4.00 0.0034
CHM 1.42 × 10−220 4.40 × 10−884 4.00 0.0027
PBM 1.92 × 10−187 3.85 × 10−751 4.00 0.0030
NA1 7.51 × 10−223 3.41 × 10−893 4.00 0.0030
NA2 2.13 × 10−199 4.90 × 10−799 4.00 0.0037
NA3 8.73 × 10−264 2.48 × 10−1057 4.00 0.0038

Example 5.3. (Sheet-pile walls designing model [11]) The embedment depth
x of a sheet-pile wall is determined by the equation

x = x3 + 2.87x2 − 10.28
4.62 .

To determine the depth, we must solve the equivalent equation

f3(x) = x3 + 2.87x2 − 10.28
4.62 − x = 0.

The required root is α = 2.002118778953827 · · ·. For this study, we start with
an initial approximation of x0 = 2.5. The numerical results and comparisons are
presented in Table 8. The top four methods are ranked by accuracy in the following
order: NA1, CHM, NA3, and NA2. Regarding CPU time, the methods rank as
follows: TOM, followed by KLM and Chun1, then Chun2.

Table 8. Numerical comparison of distinct methods applied to the test function f3(x).

Method |x5 − x4| |f(x5)| COC Time
TOM 1.25 × 10−189 7.84 × 10−757 4.00 0.0023
KLM 1.00 × 10−151 1.17 × 10−604 4.00 0.0025
MM 1.76 × 10−143 1.53 × 10−571 4.00 0.0030
Chun1 6.25 × 10−164 1.14 × 10−653 4.00 0.0025
Chun2 8.40 × 10−137 1.01 × 10−544 4.00 0.0027
CHM 8.21 × 10−284 4.62 × 10−1134 4.00 0.0034
PBM 4.99 × 10−150 7.27 × 10−598 4.00 0.0035
NA1 6.27 × 10−299 1.57 × 10−1194 4.00 0.0031
NA2 1.49 × 10−202 2.56 × 10−808 4.00 0.0033
NA3 2.56 × 10−215 4.73 × 10−860 4.00 0.0028

Example 5.4. (Colebrook-White Equation) The Colebrook-White equation
is used to determine the friction factor in gas pipelines with turbulent flow, see
e.g. [22], and is expressed as

1√
x

= −2 log
(

ε/D

3.7 + 2.51
Re

√
x

)
, (5.5)
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where x is the friction factor (dimensionless), ε is the absolute pipe roughness
(mm), D is the pipe inside diameter (mm), and Re is the Reynolds number of flow
(dimensionless).

Consider a gas pipeline with the following parameters [22], D = 476 mm, ε =
0.03 mm, and Re = 11347470. To determine the friction factor equation (5.5) is
reformulated as

f4(x) = 1√
x

+ 2 log
(

0.030/476
3.7 + 2.51

11347470
√

x

)
= 0.

As an initial guess, we choose x0 = 0.0088. The numerical results of different
iterative methods converging to the root α = 0.0112288447313997 · · · are presented
in Table 9. The top four methods are ranked by accuracy in this order: TOM, NA3,
Chun1, and NA1. In terms of CPU time, the methods are ranked as follows: KLM,
followed by Chun1, CHM, and Chun2.

Table 9. Numerical comparison of distinct methods applied to the test function f4(x).

Method |x5 − x4| |f(x5)| COC Time
TOM 1.38 × 10−277 1.18 × 10−1100 4.00 0.0076
KLM 8.17 × 10−183 2.44 × 10−720 4.00 0.0068
MM 6.81 × 10−170 1.81 × 10−668 4.00 0.0076
Chun1 2.60 × 10−206 1.18 × 10−814 4.00 0.0071
Chun2 2.26 × 10−160 2.96 × 10−630 4.00 0.0075
CHM 1.59 × 10−193 2.07 × 10−763 4.00 0.0073
PBM 7.20 × 10−180 1.48 × 10−708 4.00 0.0084
NA1 1.92 × 10−195 4.39 × 10−771 4.00 0.0078
NA2 4.73 × 10−178 3.08 × 10−701 4.00 0.0079
NA3 1.34 × 10−219 5.68 × 10−868 4.00 0.0081

Example 5.5. (Benedict-Webb-Rubin equation) The Benedict-Webb-Rubin
equation is an equation of state that describes the behavior of real gases and applies
to both vapor and liquid phases. The basic form of this equation is expressed as
(see e.g. [1])

P =RuT

v̄
+

(
B0RuT − A0 − C0

T 2

)
1
v̄2 + (bRuT − a) 1

v̄3

+ αa

v̄6 + c

v̄3T 2

(
1 + γ

v̄2

)
exp

(
− γ

v̄2

)
, (5.6)

where v̄ represents the molar specific volume (m3/kmol), Ru = 8.314 kPa·m3/kmol·
K is the universal gas constant, T is the temperature (K), P is the pressure (kPa),
and A0, B0, C0, a, b, c, α and γ are eight empirical parameters specific to the
fluid.

For example, consider nitrogen gas at T = 175 K and P = 10009 kPa. The
eight empirical parameters for nitrogen are provided in [1]. To determine the molar
specific volume by (5.6), we obtain

f5(x) =1454.950
x

− 74.11329618
x2 + 0.8471236

x3 + 0.000323088
x6
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+ 2.409469388
(

1 + 0.0053
x2

)
exp

(
−0.0053

x2

)
1
x3 − 10009

=0.

The solution to this equation is α = 0.1050449929263866 · · ·. Using x0 = 0.12,
the results are shown in Table 10. Based on accuracy, the top four methods are
TOM, NA3, Chun1, and CHM. In terms of CPU time, the ranking is: Chun2,
followed by NA1 and PBM, then NA2.

Table 10. Numerical comparison of distinct methods applied to the test function f5(x).

Method |x5 − x4| |f(x5)| COC Time
TOM 1.17 × 10−256 6.20 × 10−1017 4.00 0.0079
KLM 4.93 × 10−171 1.59 × 10−673 4.00 0.0095
MM 3.57 × 10−151 6.84 × 10−594 4.00 0.0093
Chun1 9.59 × 10−207 1.00 × 10−816 4.00 0.0081
Chun2 2.26 × 10−138 1.49 × 10−542 4.00 0.0073
CHM 2.67 × 10−192 9.42 × 10−759 4.00 0.0082
PBM 2.56 × 10−181 1.15 × 10−714 4.00 0.0076
NA1 5.27 × 10−190 1.42 × 10−749 4.00 0.0076
NA2 3.02 × 10−152 2.78 × 10−598 4.00 0.0077
NA3 3.41 × 10−207 1.47 × 10−818 4.00 0.0086

Example 5.6. We now apply the proposed methods to a set of nonlinear functions.
Consider the following six commonly test functions and their simple zeros:

f6(x) = x3 + 4x2 − 10, α = 1.365230013414096 · · · ,

f7(x) = sin2(x) − x2 + 1, α = 1.404491648215341 · · · ,

f8(x) = ex sin(x) + ln(1 + x2), α = 0,

f9(x) =
√

x2 + x + 3 − 2 sin(x − 2) − x2 + 1, α = 2,

f10(x) = cos
(πx

2

)
+ ln(x2 + 2x + 2)

x2 + 1 , α = −1,

f11(x) = sin(x) + cos(x) + x, α = −0.4566247045676308 · · · .

The comparison results for Example 5.6 are shown in Tables 11, 12, and 13.

Overall, considering all test functions and given initial points in Examples 5.1-
5.6, the top methods, ranked by the accuracy measure |x5 − x4|, are generally as
follows: NA2, NA1, CHM, NA3, and TOM. Concerning processing time, the best
method is generally TOM, followed by KLM.

For further investigations, we set a stopping criterion of |xn − xn−1| < 10−50

for the computer programs. Table 14 presents the number of iterations required by
different methods to satisfy this criterion across all test functions. It is observed
that the number of iterations required by the new methods NA1, NA2, and NA3 is
generally less than or equal to that required by the other methods. In general, with
respect to the number of iterations, NA3 is ranked first, followed by NA1, NA2,
TOM, and CHM, which all share approximately the same rank.
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Table 11. Numerical comparison of different methods applied to the test functions f6(x) and f7(x)
with different initial approximations.

Function Method x0 |x5 − x4| |f(x5)| COC Time
f6(x) TOM 1.5 2.68 × 10−318 7.53 × 10−1271 4.00 0.0016

KLM 1.47 × 10−273 2.52 × 10−1091 4.00 0.0018
MM 2.83 × 10−263 4.66 × 10−1050 4.00 0.0019

Chun1 1.20 × 10−288 6.96 × 10−1152 4.00 0.0020
Chun2 3.01 × 10−255 7.62 × 10−1018 4.00 0.0019
CHM 1.73 × 10−367 4.37 × 10−1468 4.00 0.0022
PBM 1.32 × 10−272 1.60 × 10−1087 4.00 0.0018
NA1 7.66 × 10−372 1.69 × 10−1485 4.00 0.0019
NA2 4.54 × 10−309 1.04 × 10−1233 4.00 0.0024
NA3 1.49 × 10−352 2.39 × 10−1408 4.00 0.0023

f6(x) TOM 2.5 3.32 × 10−114 1.76 × 10−454 4.00 0.0016
KLM 4.45 × 10−84 2.09 × 10−333 3.99 0.0020
MM 5.75 × 10−78 8.00 × 10−309 3.99 0.0018

Chun1 2.80 × 10−93 2.08 × 10−370 4.00 0.0021
Chun2 6.64 × 10−73 1.80 × 10−288 3.99 0.0016
CHM 1.17 × 10−176 9.25 × 10−705 4.00 0.0022
PBM 2.44 × 10−82 1.88 × 10−326 3.99 0.0020
NA1 1.86 × 10−162 5.88 × 10−648 4.00 0.0016
NA2 8.20 × 10−179 1.10 × 10−712 4.00 0.0026
NA3 3.94 × 10−134 1.16 × 10−534 4.00 0.0022

f7(x) TOM 1.8 4.33 × 10−160 3.60 × 10−638 4.00 0.0017
KLM 6.76 × 10−131 7.13 × 10−521 4.00 0.0018
MM 6.02 × 10−124 6.05 × 10−493 4.00 0.0021

Chun1 7.38 × 10−141 6.56 × 10−561 4.00 0.0024
Chun2 3.37 × 10−118 7.46 × 10−470 4.00 0.0025
CHM 2.17 × 10−205 3.79 × 10−820 4.00 0.0024
PBM 1.79 × 10−129 3.47 × 10−515 4.00 0.0021
NA1 1.21 × 10−201 3.70 × 10−805 4.00 0.0028
NA2 1.51 × 10−229 7.11 × 10−916 4.00 0.0025
NA3 1.60 × 10−176 2.79 × 10−704 4.00 0.0020

f7(x) TOM 2.5 1.96 × 10−86 1.52 × 10−343 4.00 0.0020
KLM 7.95 × 10−71 1.36 × 10−280 3.99 0.0018
MM 7.47 × 10−67 1.43 × 10−264 3.99 0.0021

Chun1 2.24 × 10−76 5.62 × 10−303 3.99 0.0020
Chun2 1.63 × 10−63 4.09 × 10−251 3.99 0.0026
CHM 8.39 × 10−113 8.43 × 10−450 4.00 0.0022
PBM 4.47 × 10−70 1.36 × 10−277 3.99 0.0021
NA1 1.53 × 10−114 9.36 × 10−457 4.00 0.0027
NA2 6.04 × 10−93 1.82 × 10−369 4.00 0.0026
NA3 3.82 × 10−95 9.10 × 10−379 4.00 0.0021
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Table 12. Numerical comparison of different methods applied to the test functions f8(x) and f9(x)
with different initial approximations.

Function Method x0 |x5 − x4| |f(x5)| COC Time
f8(x) TOM 0.5 4.52 × 10−77 3.05 × 10−305 3.99 0.0024

KLM 4.51 × 10−58 9.66 × 10−229 3.99 0.0021
MM 8.32 × 10−54 1.50 × 10−211 3.99 0.0029

Chun1 2.70 × 10−64 8.15 × 10−254 3.99 0.0025
Chun2 3.29 × 10−50 4.60 × 10−197 3.99 0.0023
CHM 4.97 × 10−121 4.06 × 10−482 4.00 0.0026
PBM 7.30 × 10−57 6.63 × 10−224 3.99 0.0034
NA1 1.78 × 10−153 6.76 × 10−612 4.00 0.0029
NA2 7.62 × 10−96 2.92 × 10−380 4.00 0.0024
NA3 2.65 × 10−87 1.64 × 10−346 4.00 0.0027

f8(x) TOM 1.5 6.16 × 10−34 1.06 × 10−132 3.99 0.0021
KLM 2.03 × 10−25 3.99 × 10−98 3.99 0.0026
MM 1.92 × 10−23 4.25 × 10−90 3.99 0.0030

Chun1 2.93 × 10−28 1.13 × 10−109 3.99 0.0036
Chun2 9.19 × 10−22 2.81 × 10−83 3.99 0.0022
CHM 1.06 × 10−48 8.31 × 10−193 3.99 0.0023
PBM 7.38 × 10−25 6.91 × 10−96 3.99 0.0026
NA1 2.57 × 10−47 2.91 × 10−187 3.99 0.0022
NA2 1.50 × 10−55 4.35 × 10−219 3.99 0.0024
NA3 2.43 × 10−38 1.15 × 10−150 3.99 0.0029

f9(x) TOM 1.5 6.85 × 10−204 2.00 × 10−814 4.00 0.0024
KLM 4.62 × 10−172 7.07 × 10−687 4.00 0.0030
MM 1.30 × 10−160 5.26 × 10−641 4.00 0.0034

Chun1 1.87 × 10−186 1.50 × 10−744 4.00 0.0035
Chun2 5.23 × 10−152 1.64 × 10−606 4.00 0.0028
CHM 1.21 × 10−238 1.26 × 10−953 4.00 0.0027
PBM 1.34 × 10−176 4.92 × 10−705 4.00 0.0029
NA1 2.30 × 10−244 1.65 × 10−976 4.00 0.0029
NA2 9.93 × 10−206 2.59 × 10−822 4.00 0.0028
NA3 2.12 × 10−220 1.50 × 10−880 4.00 0.0031

f9(x) TOM 2.5 7.22 × 10−250 2.46 × 10−998 4.00 0.0026
KLM 8.34 × 10−238 7.50 × 10−950 4.00 0.0024
MM 2.23 × 10−233 4.58 × 10−932 4.00 0.0031

Chun1 4.30 × 10−243 4.19 × 10−971 4.00 0.0026
Chun2 1.82 × 10−229 2.40 × 10−916 4.00 0.0029
CHM 1.06 × 10−258 7.37 × 10−1034 4.00 0.0031
PBM 1.61 × 10−237 1.05 × 10−948 4.00 0.0032
NA1 1.44 × 10−258 2.54 × 10−1033 4.00 0.0031
NA2 2.36 × 10−270 8.28 × 10−1081 4.00 0.0029
NA3 8.01 × 10−254 3.07 × 10−1014 4.00 0.0030
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Table 13. Numerical comparison of different methods applied to the test functions f10(x) and f11(x)
with different initial approximations.

Function Method x0 |x5 − x4| |f(x5)| COC Time
f10(x) TOM -0.1 8.67 × 10−96 5.49 × 10−382 4.00 0.0044

KLM 1.85 × 10−82 2.31 × 10−328 3.99 0.0050
MM 4.10 × 10−76 7.02 × 10−303 3.99 0.0041

Chun1 4.99 × 10−89 9.16 × 10−355 4.00 0.0042
Chun2 1.30 × 10−70 8.59 × 10−281 3.99 0.0041
CHM 5.15 × 10−106 3.28 × 10−423 4.00 0.0040
PBM 9.54 × 10−85 1.64 × 10−337 3.99 0.0047
NA1 1.72 × 10−106 4.08 × 10−425 4.00 0.0049
NA2 1.26 × 10−133 1.04 × 10−534 4.00 0.0041
NA3 1.11 × 10−100 1.10 × 10−401 4.00 0.0048

f10(x) TOM -0.8 3.40 × 10−292 1.29 × 10−1167 4.00 0.0042
KLM 1.36 × 10−271 6.83 × 10−1085 4.00 0.0039
MM 6.45 × 10−265 4.32 × 10−1058 4.00 0.0050

Chun1 4.21 × 10−280 4.65 × 10−1119 4.00 0.0049
Chun2 2.79 × 10−259 1.81 × 10−1035 4.00 0.0046
CHM 3.61 × 10−311 7.85 × 10−1244 4.00 0.0053
PBM 4.00 × 10−271 5.06 × 10−1083 4.00 0.0045
NA1 8.28 × 10−311 2.18 × 10−1242 4.00 0.0041
NA2 4.71 × 10−349 2.06 × 10−1396 4.00 0.0048
NA3 4.42 × 10−300 2.75 × 10−1199 4.00 0.0042

f11(x) TOM 0.0 1.26 × 10−232 6.04 × 10−930 4.00 0.0011
KLM 1.14 × 10−215 4.86 × 10−862 4.00 0.0013
MM 1.18 × 10−208 5.88 × 10−834 4.00 0.0014

Chun1 9.30 × 10−224 1.95 × 10−894 4.00 0.0016
Chun2 7.10 × 10−203 8.31 × 10−811 4.00 0.0015
CHM 1.77 × 10−244 2.12 × 10−977 4.00 0.0016
PBM 3.70 × 10−217 5.30 × 10−868 4.00 0.0013
NA1 3.51 × 10−245 3.32 × 10−980 4.00 0.0021
NA2 5.05 × 10−292 1.27 × 10−1167 4.00 0.0020
NA3 1.10 × 10−238 3.38 × 10−954 4.00 0.0017

f11(x) TOM -1.5 2.51 × 10−161 9.46 × 10−645 4.00 0.0012
KLM 5.85 × 10−154 3.31 × 10−615 4.00 0.0013
MM 3.69 × 10−150 5.65 × 10−600 4.00 0.0015

Chun1 8.75 × 10−158 1.53 × 10−630 4.00 0.0019
Chun2 1.05 × 10−146 3.96 × 10−586 4.00 0.0016
CHM 4.03 × 10−165 5.74 × 10−660 4.00 0.0018
PBM 8.87 × 10−155 1.75 × 10−618 4.00 0.0015
NA1 2.60 × 10−165 9.89 × 10−661 4.00 0.0021
NA2 1.65 × 10−172 1.44 × 10−689 4.00 0.0022
NA3 2.13 × 10−163 4.70 × 10−653 4.00 0.0019
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Table 14. Methods and number of iterations (n) required for | xn − xn−1 |< 10−50.

Method f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x) f9(x) f10(x) f11(x)
x0 = 3.0 x0 = 12.0 x0 = 2.5 x0 = 0.0088 x0 = 0.12 x0 = 1.5 x0 = 1.8 x0 = 1.5 x0 = 1.5 x0 = −0.8 x0 = 0.0

TOM 4 4 5 4 4 4 5 6 4 4 4

KLM 5 5 5 5 5 4 5 6 5 4 4

MM 5 5 5 5 5 4 5 6 5 4 4

Chun1 4 4 5 4 4 4 5 6 5 4 4

Chun2 5 5 5 5 5 4 5 6 5 4 4

CHM 4 4 4 5 5 4 4 6 4 4 4

PBM 5 5 5 5 5 4 5 6 5 4 4

NA1 4 4 4 4 5 4 5 6 4 4 4

NA2 4 5 4 5 5 4 4 5 4 4 4

NA3 4 4 4 4 4 4 5 6 4 4 4

6. Conclusion
A new family of optimal fourth-order iterative methods for finding the roots of
non-linear equations has been introduced in this work. The error equation has
been theoretically proven to show that the proposed methods have fourth-order
convergence. We highlight that several well-known methods are special cases within
this family. Additionally, three new specific methods have been derived from this
family: NA1, NA2, and NA3. Comparisons with other known fourth-order methods
in the same family, along with complex dynamics and basin of attraction analysis,
show that the newly developed methods provide better results. Overall, NA2 is the
best in terms of stability and accuracy. Several numerical examples involving real-
life problems further demonstrate the applicability of the newly proposed methods.
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