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Abstract In this paper, we study the following indefinite fractional parabolic
equation involving pseudo-relativistic Schrödinger operators

∂u

∂t
(x, t) + (−∆+m2)su(x, t) = a(x1)f(u(x, t)), in RN × R,

where 0 < s < 1 and the mass m > 0. We first prove the monotonicity of
positive bounded solutions by using the method of moving planes. Moreover,
the nonexistence of positive bounded solutions is established.
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1. Introduction

In this paper, we study the monotonicity and nonexistence of positive solutions to
the following problem

∂u

∂t
(x, t) + (−∆+m2)su(x, t) = a(x1)f(u(x, t)), in RN × R, (1.1)

where 0 < s < 1 and m > 0. The nonlocal pseudo-relativistic Schrödinger operator
(−∆+m2)s is defined as

(−∆+m2)su(x, t)

= CN,sm
N
2 +sP.V.

∫
RN

u(x, t)− u(y, t)

|x− y|N2 +s
KN

2 +s(m|x− y|)dy +m2su(x, t), (1.2)

where P.V. denotes the Cauchy principal value and

CN,s = 21−
N
2 +sπ−N

2
s(1− s)

Γ(2− s)
,
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see [15]. To ensure that the integral (1.2) is well-defined, we assume that u ∈
C1,1

loc (RN ) ∩ Ls with

Ls =

{
u : RN × R → R |

∫
RN

e−|x||u(x, t)|
1 + |x|N+1

2 +s
dx <∞

}
.

When m→ 0+, (−∆+m2)s becomes the linear fractional Laplacian (−∆)s.
The kernel Kν denotes the modified Bessel function with order ν. It satisfies

the following equation

r2K
′′

ν + rK ′ − (r2 + ν2)Kν = 0.

For ν > 0, we have

Kν(r) ∼
Γ(ν)

2

(r
2

)−ν
,

as r → 0 and Kν = K−ν . For ν > 0, we have

Kν(r) ∼
√
π√
2
r−

1
2 e−r,

as r → ∞ (see [14,15]). That is, there exists a small constant r0 > 0 and constants
C0 > c0 > 0 such that

c0
rν

≤ Kν(r) ≤
C0

rν
for r ≥ r0.

Also, there exists a large constant R∞ > 0 and constants C∞ > c∞ > 0 such that

c∞

r
1
2 er

≤ Kν(r) ≤
C∞

r
1
2 er

for r ≥ R∞.

The operator (−∆ + m2)s have many applications in anomalous diffusion, fi-
nance, optimization and others (see [1, 3, 12, 20]). In particular, (−∆+m2)s −m2

can be seen as an infinitesimal generator of a Levy process called the 2s-stable rel-
ativistic process. For s = 1

2 , it is related to the Hamiltonian H =
√
p2c2 +m2c4 of

a free relativistic particle of momentum p and mass m.
It is worth noting that some classical results valid for local operators fail to

extend to the nonlocal operator (−∆ + m2)s (0 < s < 1, m ≥ 0) due to its
nonlocal nature. To overcome this difficulty, Caffarelli and Silvestre [2] introduced
an extension method, which reduces the nonlocal problems into a local one in higher
dimensions. Another useful approach to deal with such a nonlocal problem is to
derive and investigate its equivalent integral equation, see [2, 6, 7]. Later, a direct
method of moving planes was introduced in [5], which can be applied directly to
the nonlocal problems involving (−∆)s to obtain symmetry and monotonicity of
positive solutions.

In recent years, there have been a large number of results about the monotonicity
and nonexistence of positive solutions to the nonlocal problems involving (−∆+m2)s

(m ≥ 0) in bounded and unbounded domains, see [4, 8, 10, 11, 13, 16, 17, 21, 22]. We
focus on the typical example for indefinite fractional equation involving (−∆+m2)s

(m ≥ 0), especially the nonexistence of positive solutions. It is well known that the
Liouville theorem plays crucial role in deriving a prior estimate and uniqueness of
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solutions. Recently, Guo and Peng [17] studied the following indefinite fractional
equation

(−∆+m2)su(x) = a(x1)f(u,∇u), x ∈ RN , (1.3)

where 0 < s < 1 and m > 0. Under certain assumptions on a(x1) and f(u,∇u), the
authors proved the monotonicity and nonexistence of positive bounded solutions
for equation (1.3) via the method of moving planes. In [21], Wang investigated the
following nonlocal pseudo-relativistic equation

(−∆+m2)su(x) = f(x, u), x ∈ RN ,

and obtained the radial symmetry and monotonicity of positive solutions. In the
case of m = 0 and f(u,∇u) = f(u), equation (1.3) is reduced to the following
problem

(−∆)su(x) = a(x1)f(u), x ∈ RN .

When 1
2 < s < 1 and a(x1)f(u) = x1u

p (1 < p < ∞), Chen and Zhu [10] obtained
the nonexistence of positive solutions of (1). Later, Chen, Li and Zhu [8] extended
the results of [10] to the general case 0 < s < 1 and indefinite nonlinearity a(x1)f(u).

In the case of indefinite parabolic problem, Poláik and Quittner [18] investigated
the monotonicity and nonexistence of positive bounded solutions to the following
equation

∂u

∂t
(x, t)−∆u(x, t) = a(x1)u

p(x, t), in RN × R.

Recently, Chen, Wu and Wang in [9] extended the results of [18] to the following
fractional parabolic problem with indefinite nonlinearities:

∂u

∂t
(x, t) + (−∆)su(x, t) = x1u

p(x, t), in RN × R. (1.4)

In contrast, not much is known for the fractional parabolic pseudo-relativistic
Schrödinger equations since the modified Bessel function KN

2 +s leads the inhomo-

geneity of operator (−∆+m2)s. This makes that the invariance properties under
Kelvin-type or scaling transforms are not valid for the operator (−∆+m2)s. In this
context, our focus is on the monotonicity and nonexistence of positive solutions to
(1.1).

To show that the positive solutions of (1.1) is monotonically increasing in x1-
direction, we employ the method of moving planes. In order to state our main
results, we introduce some well known notations.

For λ ∈ R, let
Tλ = {x ∈ RN | x1 = λ}

be the moving plane. Let

Σλ = {x ∈ RN | x1 < λ}

be the region to the left of Tλ, and let

xλ = (2λ− x1, x2..., xN )

be the the reflection of the point x about the plane Tλ. To compare the value of
uλ(x, t) and u(x, t), we denote

wλ(x, t) = uλ(x, t)− u(x, t),
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where uλ(x, t) = u(xλ, t).

Now we state our main results.

Theorem 1.1. Let u(x, t) ∈ (C1,1
loc (RN )∩Ls)×C1(R) be a positive bounded solution

of equation (1.1). Assume that
(H1) a(x1) ∈ Cs(R) and a(x1) is nondecreasing in x1;
(H2) a(x1) > 0 somewhere for x1 > 0 and a(x1) < 0 for x1 < 0;
(H3) f(u) is locally Lipschitz continuous and nondecreasing with respect to u,
f(0) = 0 and f > 0 in (0,+∞).

Then u(x, t) is monotonically increasing in x1.

Remark 1.1. In case of m = 0, a(x1) = x1 and f(u) = up (1 < p < ∞), the
equation (1.1) is reduced to (1.4).

Motivated by the recent work of [17] and [9], we establish the monotonicity
result of equation (1.1). The main tool we use is the direct method of moving
planes, which was introduced in [5]. Recently, Chen, Wu and Wang [9] introduced
some new ideas such that the direct method of moving planes can be applied to the
indefinite fractional parabolic problem. We will use it to prove Theorem 1.1 with
some modifications.

Based on above result, we prove the nonexistence of positive bounded solution
to equation (1.1).

Theorem 1.2. Assume that u(x, t) ∈ (C1,1
loc (RN )∩Ls)×C1(R) is a positive solution

of equation (1.1) and satisfies conditions (H1) − (H3). Suppose further that there
exists a constant C > 0 such that lim

x→+∞
f(u) ≥ Cuκ with κ ≥ 1, and lim

x1→+∞
a(x1) =

+∞. Then equation (1.1) has no positive bounded solution.

In case of a(x1) = x1 and f(u) = up, we also obtain the monotonicity and
nonexistence results for the following equation

∂u

∂t
(x, t) + (−∆+m2)su(x, t) = x1u

p(x, t), in RN × R, (1.5)

where 0 < s < 1, 1 < p <∞ and m > 0.

Theorem 1.3. Let 0 < s < 1, 1 < p < ∞ and m > 0. Assume that u(x, t) ∈
(C1,1

loc (RN ) ∩ Ls) × C1(R) is a positive bounded solution of equation (1.5), then
u(x, t) is monotonically increasing with respect to x1.

Theorem 1.4. Let 0 < s < 1, 1 < p < ∞ and m > 0. Suppose that u(x, t) ∈
(C1,1

loc (RN )∩Ls)×C1(R) is a positive solution of equation (1.5), then equation (1.1)
possesses no positive bounded solution.

Notice that we use x1 and up instead of a(x1) and f(u) for equation (1.5) in
RN × R, the methods in Section 2 and Section 3 are still holds here with small
modifications, so we present only the results.

This paper is organized as follows. In Section 2, we prove the monotonicity
of positive solutions of equation (1.1) by using the method of moving planes. In
Section 3, we show the nonexistence of positive bounded solutions.

In this paper, positive constants are denoted by c, C (with subscripts in some
cases) and may vary within lines or formulas.
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2. Monotonicity of positive solutions

In this section, we prove Theorem 1.1 via the method of moving planes.

Proof of Theorem 1.1. We carry out the proof in two steps.

Step 1. We show that for λ ≤ 0, we have

wλ(x, t) ≥ 0, in Σλ × R. (2.1)

By the assumption (H1), we have

∂wλ

∂t
(x, t) + (−∆+m2)swλ(x, t)

= a((x1)λ)f(uλ)− a(x1)f(u)

= a((x1)λ)f(uλ)− a(x1)f(uλ) + a(x1)(f(uλ)− f(u))

≥ a(x1)cλ(x, t)wλ(x, t), in Σλ × R, (2.2)

where

cλ(x, t) =
f(uλ(x, t))− f(u(x, t))

uλ(x, t)− u(x, t)
.

Since f(u) is locally Lipschitz continuous, there exists a positive constant b such
that ∥ cλ(x, t) ∥L∞(Σλ)≤ b.

Now we introduce an auxiliary function

g(x) = |x− (λ+ 1)e1|σ, (2.3)

where e1 = (1, 0, ..., 0) and σ > 0 is a small number to be chosen later. We define

w̄λ(x, t) =
wλ(x, t)

g(x)
. (2.4)

It follows from (2.4) that w̄λ(x, t) and wλ(x, t) have the same sign and

lim
|x|→+∞

w̄λ(x, t) = 0. (2.5)

Then we know from (2.5) that for each fixed t ∈ R, there exists a point x(t) such
that

w̄λ(x(t), t) = inf
Σλ

w̄λ(x, t).

Using similar arguments as (2.11) in [17], we know that if wλ(x, t) < 0, then
cλ(x, t) ≥ 0 and

(−∆+m2)swλ(x, t) ≤ Cwλ(x, t)
1

|x1 − λ|2s
+m2swλ(x, t). (2.6)

By the assumption (H2), we deduce that for ∀λ ≤ 0,

a(x1) ≤ 0, ∀ (x, t) ∈ Σλ × R.

Combining (2.2), (2.4), (2.6) with above estimate, one can conclude that for each
fixed t ∈ R, if w̄λ(x(t), t) < 0, then

∂w̄λ

∂t
(x(t), t) ≥ −Cw̄λ(x(t), t)

|x1(t)− λ|2s
+ (a(x1(t))cλ(x(t), t)−m2s)w̄λ(x(t), t)
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≥ − C

|x1(t)− λ|2s
w̄λ(x(t), t). (2.7)

To prove (2.1), it suffices to show that

w̄λ(x(t), t) ≥ 0, ∀ t ∈ R. (2.8)

Suppose (2.8) is not true, then there exists a t0 ∈ R such that

−γ0 = w̄λ(x(t0), t0) < 0.

From Lemma 2.1 in [9], we know that

C

|x1(t0)− λ|2s
> c0 > 0. (2.9)

For any t̄ < t0, we define

z(t) = −Me−c0(t−t̄) and −M = inf
Σλ×R

w̄λ(x, t),

where c0 is a positive constant defined as in Lemma 2.1 of [9].
Next we will prove z(t) is a subsolution, i.e.,

w̄λ(x, t) ≥ z(t) in Σλ × [t̄, t0]. (2.10)

Set
v(x, t) = w̄λ(x, t)− z(t) in Σλ × [t̄, t0].

By the definition of z(t), we have

v(x, t̄) = w̄λ(x, t̄)− z(t̄) = w̄λ(x, t̄)− (−M) ≥ 0, ∀ x ∈ Σλ

and
v(x, t) = w̄λ(x, t)− z(t) = −z(t) ≥ 0, ∀ (x, t) ∈ Tλ × [t̄, t0].

If (2.10) is false, then there exists a point (x(t̂), t̂) ∈ Σλ × (t̄, t0] such that

v(x(t̂), t̂) = inf
Σλ×[t̄,t0]

v(x, t) < 0. (2.11)

It follows
∂v

∂t
(x(t̂), t̂) ≤ 0. (2.12)

On one hand, we have

w̄λ(x(t̂), t̂) = inf
Σλ

w̄λ(x, t̂) < z(t̂) < 0.

Then by (2.7), we have

∂w̄λ

∂t
(x(t̂), t̂) ≥ − C

|x1(t̂)− λ|2s
w̄λ(x(t̂), t̂). (2.13)

On the other hand, using (2.11) and the monotonicity of z(t), we know

v(x(t̂), t̂) ≤ v(x(t0), t0).



Liouville theorem for fractional parabolic equation 3683

Therefore, one has
w̄λ(x(t̂), t̂) ≤ w̄λ(x(t0), t0) = −γ0.

Using similar arguments as (2.9), we conclude that

C

|x1(t̂)− λ|2s
> c0 > 0. (2.14)

By (2.13) and (2.14), we have

∂w̄λ

∂t
(x(t̂), t̂) ≥ −c0w̄λ(x(t̂), t̂).

Then using (2.12), one can deduce that

−c0z(t̂) =
∂z

∂t
(t̂) ≥ ∂w̄λ

∂t
(x(t̂), t̂) ≥ −c0w̄λ(x(t̂), t̂),

which implies
v(x(t̂), t̂) = w̄λ(x(t̂), t̂)− z(t̂) ≥ 0.

This contradicts v(x(t̂), t̂) < 0. Therefore, (2.10) holds.
For any t, we have z(t) → 0 as t→ −∞. Then by (2.10), we have

w̄λ(x, t) ≥ 0, ∀ (x, t) ∈ Σλ × (−∞, t0].

Step 2. Step 1 provides the starting point to move the plane. Then we move the
plane Tλ continuously up as long as (2.1) holds to its limiting position. Define

λ0 = sup{λ | wµ(x, t) ≥ 0 in Σµ × R for all µ ≤ λ}.

We will show that
λ0 = +∞.

To this end, we argue by contradiction. Suppose that 0 < λ0 < +∞. Then there
exists a sequence λk ↘ λ0 such that

inf
Σλk

×R
wλk

(x, t) < 0.

Set

w̄λk
(x, t) =

wλk
(x, t)

g(x)
,

where g(x) is defined as (2.3). Then we have

−γk = inf
Σλk

×R
w̄λk

(x, t) < 0.

To avoid the attainability of the minimum value of w̄λk
(x, t) at infinity with respect

to t, we choose a sequence tk, and corresponding x(tk) and ϵk such that

w̄λk
(x(tk), tk) = inf

Σλk

w̄λk
(·, tk) = −γk + ϵkγk.

Let η(t) be a smooth function in R satisfying |η′(t)| ≤ 1 and

η(t) =

1, if |t| < 1

2
,

0, if |t| ≥ 2.



3684 G. Du, F. Li & Y. Zheng

Now we introduce a sequence of auxiliary functions

w̃λk
(x, t) = w̄λk

(x, t)− ϵkγkηk(t),

where ηk(t) = η(t− tk). It is easy to see that for |t− tk| ≥ 2,

w̃λk
(x, t) = w̄λk

(x, t) ≥ −γk.

Notice that
w̃λk

(x(tk), tk) = w̄λk
(x(tk), tk)− ϵkγk = −γk.

Therefore, there exists (x(t̃k), t̃k) ∈ Σλk
× (tk − 2, tk + 2) such that

w̃λk
(x(t̃k), t̃k) = inf

Σλk
×R
w̃λk

(x, t) < 0.

Then we have
∂w̃λk

∂t
(x(t̃k), t̃k) = 0,

and hence ∣∣∣∣∂w̄λk

∂t
(x(t̃k), t̃k)

∣∣∣∣ = ∣∣∣∣ϵkγk ∂ηk∂t (t)

∣∣∣∣ ≤ ϵkγk. (2.15)

Since w̃λk
(x(t̃k), t̃k) ≤ w̃λk

(x(tk), tk), we have

−γk ≤ w̄λk
(x(t̃k), t̃k) ≤ w̄λk

(x(tk), tk) = −γk + ϵkγk. (2.16)

By the definition of w̃λk
(x, t), we obtain

w̄λk
(x(t̃k), t̃k) = inf

Σλk

w̄λk
(x, t̃k) < 0. (2.17)

Using similar arguments as Step 1, we know from (2.17) that for λk > 0, x1(t̃k) > 0.
Hence we assume 0 < x1(t̃k) < λ0+1. Then by a similar calculation as (2.11) in [17],
we obtain

(−∆+m2)swλk
(x(t̃k), t̃k) ≤ Cwλk

(x(t̃k), t̃k)
1

|x1(t̃k)− λk|2s
+m2swλk

(x(t̃k), t̃k).

(2.18)
By the assumption (H1) and (H2), there exists a positive constant C1 such that

a(x1(t̃k))cλk
(x(t̃k), t̃k) ≤ C1,

where

cλk
(x(t̃k), t̃k) =

f(uλk
(x(t̃k), t̃k))− f(u(x(t̃k), t̃k))

uλk
(x(t̃k), t̃k)− u(x(t̃k), t̃k)

.

By (2.2), (2.18) and wλk
(x(t̃k), t̃k) < 0, we have

∂wλk

∂t
(x(t̃k), t̃k) + Cwλk

(x(t̃k), t̃k)
1

|x1(t̃k)− λk|2s

≥(a(x1(t̃k))cλk
(x(t̃k), t̃k)−m2s)wλk

(x(t̃k), t̃k)

≥C1wλk
(x(t̃k), t̃k). (2.19)
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Then dividing g(x(t̃k), t̃k) on both side of inequality (2.19), we obtain

∂w̄λk

∂t
(x(t̃k), t̃k) + Cw̄λk

(x(t̃k), t̃k)
1

|x1(t̃k)− λk|2s

≥C1w̄λk
(x(t̃k), t̃k). (2.20)

Combining (2.15), (2.16) with (2.20), dividing −γk on both side of (2.20), one can
deduce that

C

|x1(t̃k)− λk|2s
≤ C1

2
, (2.21)

since ϵk is small. This implies that if k is sufficiently large, we have

|x1(t̃k)− λk| ≥ C2

and

|x1(t̃k)− λ0| ≥
C2

2
> 0. (2.22)

It is easy to see that |x1(t̃k)−λk| ≤ λk ≤ λ0+1 for sufficiently large k. Therefore,
there exists a positive constant C3 such that

u(x(t̃k), t̃k) ≥ C3. (2.23)

Using (2.2), (2.22) and (2.23), we have, for sufficiently large k,

∂wλk

∂t
(x(t̃k), t̃k) + Cwλk

(x(t̃k), t̃k)
1

|x1(t̃k)− λk|2s

≥ [a(xλk
1 (t̃k))− a(x1(t̃k))]f(uλk

(x(t̃k), t̃k))

+ [a(x1(t̃k))cλk
(x(t̃k), t̃k)−m2s]wλk

(x(t̃k), t̃k)

≥ C4

> 0, (2.24)

where we have used the fact that uλk
(x, t) is uniformly Hölder continuous and

uλk
(x, t) ⇒ uλ0

(x, t) and wλk
(x, t) ⇒ wλ0

(x, t) ≥ 0.

Since wλk
(x(t̃k), t̃k) < 0, we know from (2.24) that

∂wλk

∂t
(x(t̃k), t̃k) ≥ C4 > 0. (2.25)

Define
ŵλk

(x, t) = wλk
(x+ x(t̃k), t+ t̃k).

It follows from (2.25) that

∂ŵλk

∂t
(0, 0) ≥ C4 > 0.

Since uλk
is bounded, by regularity theory for parabolic equations [19], there exists

a subsequence of (x(t̃k), t̃k) (still denoted by (x(t̃k), t̃k)) such that

ŵλk
(x, t) → ŵλ0(x, t) and

∂ŵλk

∂t
(x, t) → ∂ŵλ0

∂t
(x, t) as k → ∞.
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Since 0 < x1(t̃k) ≤ λk and λk → λ0 as k → ∞, there exists a subsequence of x1(t̃k)
(still denoted by x1(t̃k)) and 0 ≤ x01 ≤ λ0 such that

x1(t̃k) → x01 as k → ∞.

Now we consider the function ŵλ0
(x, t). It is easy to see that

ŵλ0
(x, t) ≥ 0 in Σλ0−x0

1
× R.

Since wλk
(x(t̃k), t̃k) < 0, we conclude that

ŵλ0
(0, 0) = 0 = inf

Σ
λ0−x0

1
×R
ŵλ0

(x, t).

It implies that
∂ŵλ0

∂t
(0, 0) = 0,

which contradicts (2.25). Therefore, we have λ0 = +∞. Hence, u(x, t) is monoton-
ically increasing with respect to x1 in RN × R. □

3. Nonexistence of positive solution

In this section, we will show the nonexistence of positive bounded solution for
equation (1.1). To prove Theorem 1.2, we need the following result.

Lemma 3.1. Let ϕ(x) ∈ C1,1
loc (RN ) ∩ Ls be the first eigenfunction associated with

(−∆+m2)s in B1(0) satisfying (−∆+m2)sϕ(x) = λ1ϕ(x), in B1(0),

ϕ(x) = 0, in Bc
1(0).

Let ρ(x) ∈ C∞
0 (B1(0)) be such that

∫
B1(0)

ρ(x)dx = 1. Then we have∫
RN

(−∆+m2)sϕ(z)ρ(x− z)dz =

∫
RN

ϕ(z)(−∆+m2)sρ(x− z)dz

and

(−∆+m2)sϕ1(x) ≤ λ1ϕ1(x) in RN ,

where ϕ1(x) = (ϕ ∗ ρ)(x) and ∗ denotes the convolution.

The proof of Lemma 3.1 is similar to Lemma A.1 in [9] with small modifications,
so here we omit the details.

Remark 3.1. From the proof process of Lemma 3.1, we note that if u ∈ C1,1
loc (RN )∩

Ls and v ∈ C∞
0 (RN ), then∫
RN

(−∆+m2)su(x)v(x)dx =

∫
RN

u(x)(−∆+m2)sv(x)dx.

Now we are ready to give a complete proof of Theorem 1.2.
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Proof of Theorem 1.2. We argue by contradiction. Suppose there exists a
positive bounded solution u(x, t) of equation (1.1). Let λ1 be the first eigenvalue of
the problem  (−∆+m2)sϕ(x) = λ1ϕ(x), in B1(Re1),

ϕ(x) = 0, in Bc
1(Re1),

where B1(Re1) is the unit ball centered at Re1 = (R, 0, ..., 0) and R > 0 will be
chosen sufficiently large later.

Let ϕ1(x) = (ϕ ∗ ρ)(x) ∈ C∞
0 (RN ), where ρ(x) ∈ C∞

0 (B1(Re1)) satisfies∫
RN ρ(x)dx = 1. By Lemma 3.1, we have

(−∆+m2)sϕ1(x) ≤ λ1ϕ1(x) in RN . (3.1)

Now we assume ∫
RN

ϕ1(x)dx = 1.

Obviously, suppϕ1 is contained in B2(Re1). Set

ψR(t) =

∫
RN

u(x, t)ϕ1(x)dx =

∫
B2(Re1)

u(x, t)ϕ1(x)dx.

Using Jensen’s inequality, Remark 3.1, (H1) and (3.1), we have, for sufficiently
large R, that

∂

∂t
ψR(t) = −

∫
RN

(−∆+m2)su(x, t)ϕ1(x)dx+

∫
RN

a(x1)f(u)ϕ1(x)dx

= −
∫
RN

u(x, t)(−∆+m2)sϕ1(x)dx+

∫
RN

a(x1)f(u)ϕ1(x)dx

≥ −λ1
∫
RN

u(x, t)ϕ1(x)dx+ a(R− 2)

∫
RN

f(u)ϕ1(x)dx

≥ −λ1ψR(t) + a(R− 2)C

∫
RN

uκ(x, t)ϕ1(x)dx

≥ −λ1ψR(t) + a(R− 2)C

(∫
RN

u(x, t)ϕ1(x)dx

)κ

=
(
a(R− 2)Cψκ−1

R (t)− λ1
)
ψR(t). (3.2)

It follows from Theorem 1.1 that for any fixed t ∈ R, ψR(t) is monotonically in-
creasing with respect to R. Therefore, we obtain

ψR(0) ≥ 2c0 := ψ0(0). (3.3)

If t ≥ 0 such that ψR(t) ≥ c0, we can choose R sufficiently large such that

a(R− 2)Cψκ−1
R (t)− λ1 ≥ 1.

Then by (3.2), we have
∂

∂t
ψR(t) ≥ ψR(t).

Thus we deduce from (3.3) that

ψR(t) ≥ 2c0e
t. (3.4)
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Now we use a contradiction argument to verify

ψR(t) ≥ c0. (3.5)

Suppose (3.5) is false, then there exists a point t0 > 0 such that

ψR(t0) = c0 and ψR(t) > c0, ∀ t ∈ [0, t0).

Using (3.4), we know that

ψR(t) ≥ 2c0e
t ≥ 2c0, ∀ t ∈ [0, t0),

which contradicts ψR(t0) = c0. Therefore, (3.5) holds.
From (3.4), one can conclude that

ψR(t) → +∞ as t→ +∞.

This contradicts the boundedness of u(x, t). This completes the proof of Theorem
1.2. □
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