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ON A SYSTEM OF DIFFERENCE EQUATIONS
DEFINED BY THE CONTINUOUS AND
STRICTLY MONOTONE FUNCTIONS

Mensure Şen1, Yasin Yazlik2 and Merve Kara3,†

Abstract In this paper, we solve the following difference equations system
ωn+1 = g−1

(
g (ωn)

ζ1h (ϑn) + η1h (ϑn−1)

µ1h (ϑn) + ξ1h (ϑn−1)

)
,

ϑn+1 = h−1

(
h (ϑn)

ζ2g (ωn) + η2g (ωn−1)

µ2g (ωn) + ξ2g (ωn−1)

)
,

n ∈ N0,

where the coefficients µ2
k+ξ2k ̸= 0, ζk, ηk, µk, ξk, for k ∈ {1, 2} are real numbers,

the initial values ω−j , ϑ−j , for j ∈ {0, 1} are real numbers, g and h are
continuous and strictly monotone functions, g (R) = R, h (R) = R, g (0) = 0,
h (0) = 0, in explicit form depending on whether or not the parameters are
equal to 0.

Keywords Difference equations systems, solution, monotone functions.
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1. Introduction

The notation of a = b, c stands for {a ∈ Z : b ≤ a ≤ c} if b, c ∈ Z, b ≤ c. In addition,
the other notations of N, N0, Z, R, mean set of natural, non-negative integer, integer
and real numbers, respectively.

Difference equations and systems of difference equations appear in many
branches of mathematics and science, where they model real and abstract phe-
nomena. There is a growing interest in some topics in this area, their solvability,
stability, invariants and applications [2, 5, 7–9, 16, 19–26]. Many solvable difference
equations and systems of difference equations can be transformed into well-known
solvable equations with suitable variable changes. For example, the author of [4]
has solved special cases of the following difference equation

zn+1 = αzn +
βz2n

γzn + δzn−1
, n ∈ N0, (1.1)
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where the initial values z−1, z0 are arbitrary positive real numbers and the coef-
ficients α, β, γ, δ are positive constants. In [18], the authors solved the following
difference equation

zn+1 = h−1

(
h (zn)

ah (zn) + bh (zn−1)

ch (zn) + dh (zn−1)

)
, n ∈ N0, (1.2)

where the initial conditions z−k, for k ∈ {0, 1}, and the parameters a, b, c, d are real
numbers such that c2+d2 ̸= 0 and h is a strictly monotone and continuous function
such that h (R) = R, h (0) = 0, by using transformation. Note that equation (1.2)
is a more general form of equation (1.1).

The natural question is if both equation (1.1) and equation (1.2) transform into
a more general system of difference equations. We give a favourable answer. In
this paper, we extend equations in (1.1) and (1.2) to the following two-dimensional
system of difference equations

ωn+1 = g−1

(
g (ωn)

ζ1h (ϑn) + η1h (ϑn−1)

µ1h (ϑn) + ξ1h (ϑn−1)

)
,

ϑn+1 = h−1

(
h (ϑn)

ζ2g (ωn) + η2g (ωn−1)

µ2g (ωn) + ξ2g (ωn−1)

)
,

n ∈ N0, (1.3)

where the initial conditions ω−t, ϑ−t, for t ∈ {0, 1} are real numbers, the parameters
ζk, ηk, µk, ξk, for k ∈ {1, 2} are real numbers, g and h are continuous and strictly
monotone functions, g (R) = R, h (R) = R, g (0) = 0, h (0) = 0. We achieved the
solutions of system (1.3) according to whether the parameters are equal to zero
or non-zero. Appropriate variable change was used when obtaining solutions in
this paper. Moreover, solutions were found depending on the generalized Fibanocci
sequence in some cases.

Many studies related to number sequences can be found in the literature [1, 6,
11–13]. In addition, it is possible to find general difference equations or systems of
difference equations similar to the system (1.3) in the literature [10,14,17].

The following second order linear difference equation

yn+2 = γyn+1 + δyn, n ∈ N0, (1.4)

was solved by De Moivre in [15]. The solution of (1.4) is given by

yn =
(y1 − λ2y0)λ

n
1 − (y1 − λ1y0)λ

n
2

λ1 − λ2
, n ∈ N0, (1.5)

if γ ̸= 0 and γ2 + 4δ ̸= 0, and

yn = ((y1 − λ1y0)n+ λ1y0)λ
n−1
1 , n ∈ N0, (1.6)

while if γ ̸= 0 and γ2 + 4δ = 0, where λ1,2 =
γ±

√
γ2+4δ

2 are the roots of the
polynomial P (λ) = λ2 − γλ− δ = 0.

We will use the following very well-known results; see, for example, [3].

Lemma 1.1. Consider the linear difference equation

wrn+j = anwr(n−1)+j + bn, n ∈ N0,
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where an and bn are real number sequences and j ∈ {0, 1, . . . , r − 1}. Then, the
general solution of variable coefficients linear difference equation is given by the
following formula

wrn+j =

 n∏
j=0

aj

wj−r +

n∑
k=0

 n∏
j=k+1

aj

 bk,

where the next standard conventions
∏l

i=j γi = 1 and
∑l

i=j ηi = 0, for all l < j,
are utilized here. Moreover if an and bn are constants, that is, an = a and bn = b,
then the general solution to constant coefficient linear difference equation is given
by the following formula

wrn+j =

an+1wj−r +
an+1 − 1

a− 1
b, a ̸= 1,

wj−r + (n+ 1) b, a = 1,

n ∈ N0.

Definition 1.1. Consider the following homogeneous second-order linear difference
equation with constant coefficients, that is, the following one:

sn+2 = αsn+1 + βsn, n ∈ N0, (1.7)

where the initial values s0 = 0, s1 = 1 and the parameters α, β are real numbers.

λ2 −αλ− β = 0 is the characteristic equation of (1.7), where λ1,2 =
α±

√
α2−4β

2 are
the roots of the characteristic equation. It is clear that Binet formula for (1.7) is

sn =
λn
1 − λn

2

λ1 − λ2
, n ∈ N0. (1.8)

The sequence (sn)n≥0 is called the generalized Fibonacci sequence in the literature.

2. Solutions of system (1.3) in explicit-form

Here, we demonstrate that system (1.3) is a specific case of a solvable system of
difference equation.

Theorem 2.1. Suppose that ζi, ηi, µi, ξi ∈ R, for i ∈ {1, 2}, such that µ2
i +ξ2i ̸= 0,

g and h are continuous and strictly monotone functions, g (R) = R, h (R) = R,
g (0) = 0, h (0) = 0. So, the general system (1.3) is solvable in explicit-form.

Proof. If at least one of the initial values ω−j = 0 or ϑ−j = 0, for j ∈ {0, 1}, then
the solution of system (1.3) is not defined. Moreover, assume that ωn0

= 0 for some
n0 ∈ N0. Then from system (1.3) we have ωn0+1 = 0. These facts along with (1.3)
imply that ϑn0+2 is not defined. Similarly, suppose that ϑn1

= 0 for some n1 ∈ N0.
Then from system (1.3) we have ϑn1+1 = 0. These facts along with (1.3) imply that
ωn1+2 is not defined. Hence, for every well-defined solution of system (1.3), we have

ωnϑn ̸= 0, n ≥ −1. (2.1)

Firstly, since g (R) = R, h (R) = R, g (0) = 0, h (0) = 0 and g, h : R → R are
continuous and strictly monotone functions, g, h are one to one functions. The
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only root of the functions g and h is 0. These functions are homomorphism on R.
Taking this property of the functions into consideration, the solutions of system
(1.3) according to the states of the parameters will be examined as follows:

Case 1. ζkξk = ηkµk for k ∈ {1, 2}: Under this assumptions, there are also
additional subcases to take into account.

Subcase 1.1. ζk = 0 = ηk, µkξk ̸= 0, for k ∈ {1, 2}: In this case, system (1.3) is

ωn+1 = g−1 (0) , ϑn+1 = h−1 (0) , n ∈ N0.

By using the properties of functions g and h in the last equations, the solution of
system (1.3) under these conditions is as follows

ωn = 0, ϑn = 0, n ∈ N. (2.2)

Subcase 1.2. ζk = 0, ηkξk ̸= 0, for k ∈ {1, 2}: Under these conditions, we have
µk = 0, for k ∈ {1, 2} and also

ωn+1 = g−1

(
η1
ξ1

g (ωn)

)
, ϑn+1 = h−1

(
η2
ξ2

h (ϑn)

)
, n ∈ N0, (2.3)

from which it follows that

g (ωn+1) =
η1
ξ1

g (ωn) , h (ϑn+1) =
η2
ξ2

h (ϑn) , n ∈ N0. (2.4)

Since the equations in (2.4) are solvable, we define new variables as following forms

ςn = g (ωn) , ϱn = h (ϑn) n ∈ N0. (2.5)

By substituting the new variables to equations in (2.4), we obtain the first-order
linear difference equations as follows:

ςn+1 =
η1
ξ1

ςn, ϱn+1 =
η2
ξ2

ϱn, n ∈ N0. (2.6)

By using Lemma 1.1 for r = 1, we can write the general solutions of (2.6) as in the
following form

ςn =

(
η1
ξ1

)n

ς0, ϱn =

(
η2
ξ2

)n

ϱ0, n ∈ N0. (2.7)

Relations (2.5) and (2.7) yield

ωn = g−1

((
η1
ξ1

)n

g (ω0)

)
, ϑn = h−1

((
η2
ξ2

)n

h (ϑ0)

)
, n ∈ N0. (2.8)

Subcase 1.3. ηk = 0, ζkµk ̸= 0, for k ∈ {1, 2}: Under these conditions, we get
ξk = 0, for k ∈ {1, 2} and also

ωn+1 = g−1

(
ζ1
µ1

g (ωn)

)
, ϑn+1 = h−1

(
ζ2
µ2

h (ϑn)

)
, n ∈ N0, (2.9)

from which it follows

g (ωn+1) =
ζ1
µ1

g (ωn) , h (ϑn+1) =
ζ2
µ2

h (ϑn) , n ∈ N0. (2.10)
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By using transforms in (2.5), we get the first-order linear difference equations as
follows:

ςn+1 =
ζ1
µ1

ςn, ϱn+1 =
ζ2
µ2

ϱn, n ∈ N0. (2.11)

By using Lemma 1.1 for r = 1, then the solutions to equations in (2.11) are

ςn =

(
ζ1
µ1

)n

ς0, ϱn =

(
ζ2
µ2

)n

ϱ0, n ∈ N0. (2.12)

From (2.5) and the solutions in (2.12), we see that the general solution to system
(2.9) in these cases ηk = 0, ζkµk ̸= 0, for k ∈ {1, 2}, is

ωn = g−1

((
ζ1
µ1

)n

g (ω0)

)
, ϑn = h−1

((
ζ2
µ2

)n

h (ϑ0)

)
, n ∈ N0. (2.13)

Subcase 1.4. ξk = 0, for k ∈ {1, 2}: In this case, with these conditions, we
immediately obtain µk ̸= 0, for k ∈ {1, 2} and hereby ηk = 0, for k ∈ {1, 2}. Then
there are two cases to be considered. These cases are either ζk = 0 or ζk ̸= 0, for
k ∈ {1, 2}. Further, they were investigated in sub-case 1 and sub-case 3, respectively.

Subcase 1.5. µk = 0, for k ∈ {1, 2}: In this case, from these conditions, we have
ξk ̸= 0, for k ∈ {1, 2} and also ζk = 0, for k ∈ {1, 2}. Similarly as in the previous
case, there are two-cases to be considered. These cases are either ηk = 0 or ηk ̸= 0,
for k ∈ {1, 2}. They were investigated in sub-case 1 and sub-case 2, respectively.

Subcase 1.6. ζkηkµkξk ̸= 0, for k ∈ {1, 2}: In this case, with these conditions,
we obtain ζk = ηkµk

ξk
. Then, system (1.3) reduce to system (2.3), whose solution is

given by formulas (2.8).

Case 2. ζkξk ̸= ηkµk for k ∈ {1, 2}: In this case, from (2.1) and the monotonicity
of g and h, we obtain

g (ωn) ̸= 0, h (ϑn) ̸= 0, n ≥ −1. (2.14)

Then, the system (1.3) can be written in the following form

g (ωn+1)

g (ωn)
=

ζ1
h(ϑn)

h(ϑn−1)
+ η1

µ1
h(ϑn)

h(ϑn−1)
+ ξ1

,
h (ϑn+1)

h (ϑn)
=

ζ2
g(ωn)

g(ωn−1)
+ η2

µ2
g(ωn)

g(ωn−1)
+ ξ2

, n ∈ N0. (2.15)

Let

ςn =
g (ωn)

g (ωn−1)
, ϱn =

h (ϑn)

h (ϑn−1)
, n ∈ N0. (2.16)

By using (2.16) in (2.15), we get the first-order riccati difference equations as follows:

ςn+1 =
ζ1ϱn + η1
µ1ϱn + ξ1

, ϱn+1 =
ζ2ςn + η2
µ2ςn + ξ2

, n ∈ N0. (2.17)

Then, there are two-cases to be considered.

Subcase 2.1. µk = 0, for k ∈ {1, 2}: In this case, system (2.17) is presented by

ςn+1 =
ζ1
ξ1

ϱn +
η1
ξ1

, ϱn+1 =
ζ2
ξ2

ςn +
η2
ξ2

, n ∈ N0. (2.18)
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By considering system (2.18) with replacing n by n− 1 in (2.18) and by substi-
tuting the first equation in (2.18) into the second ones and the second equation in
(2.18) into the first ones respectively, we obtain the second-order linear difference
equations as follows:

ςn+1 =
ζ1ζ2
ξ1ξ2

ςn−1 +
ζ1η2 + η1ξ2

ξ1ξ2
, ϱn+1 =

ζ1ζ2
ξ1ξ2

ϱn−1 +
ζ2η1 + η2ξ1

ξ1ξ2
, n ∈ N. (2.19)

Now the subcases ζ1ζ2
ξ1ξ2

= 1 and ζ1ζ2
ξ1ξ2

̸= 1 will be considered separately.

Subsubcase 2.1.1. ζ1ζ2 = ξ1ξ2: In this case, by using Lemma 1.1 for r = 2, the
solutions of equations in (2.19) can be written in the following form

ς2n+i = ςi +
ζ1η2 + η1ξ2

ξ1ξ2
n, ϱ2n+i = ϱi +

ζ2η1 + η2ξ1
ξ1ξ2

n, n ∈ N0, (2.20)

for i ∈ {0, 1}. Also, from (2.16), we have

g (ω2n+i) =

(
g (ωi)

g (ωi−1)
+

ζ1η2 + η1ξ2
ξ1ξ2

n

)
×
(
g (ω1−i)

g (ω−i)
+

ζ1η2 + η1ξ2
ξ1ξ2

(n+ i− 1)

)
g
(
ω2(n−1)+i

)
,

h (ϑ2n+i) =

(
h (ϑi)

h (ϑi−1)
+

ζ2η1 + η2ξ1
ξ1ξ2

n

)
×
(
h (ϑ1−i)

h (ϑ−i)
+

ζ2η1 + η2ξ1
ξ1ξ2

(n+ i− 1)

)
h
(
ϑ2(n−1)+i

)
,

(2.21)

for n ∈ N, i ∈ {0, 1}. Thus, the general solutions of equations in (2.19) are

ω2n+i = g−1

g (ωi)

n∏
j=1

(
g (ωi)

g (ωi−1)
+

ζ1η2 + η1ξ2
ξ1ξ2

j

)

×
(
g (ω1−i)

g (ω−i)
+

ζ1η2 + η1ξ2
ξ1ξ2

(j + i− 1)

))
,

ϑ2n+i = h−1

h (ϑi)

n∏
j=1

(
h (ϑi)

h (ϑi−1)
+

ζ2η1 + η2ξ1
ξ1ξ2

j

)

×
(
h (ϑ1−i)

h (ϑ−i)
+

ζ2η1 + η2ξ1
ξ1ξ2

(j + i− 1)

))
,

(2.22)

for n ∈ N0, i ∈ {0, 1}.
Subsubcase 2.1.2. ζ1ζ2 ̸= ξ1ξ2: In this case, by using Lemma 1.1 for r = 2, we
can write the solutions of equations in (2.19) as follows

ς2n+i =

(
ζ1ζ2
ξ1ξ2

)n

ςi + (ζ1η2 + η1ξ2)
1−

(
ζ1ζ2
ξ1ξ2

)n

ξ1ξ2 − ζ1ζ2
,

ϱ2n+i =

(
ζ1ζ2
ξ1ξ2

)n

ϱi + (ζ2η1 + η2ξ1)
1−

(
ζ1ζ2
ξ1ξ2

)n

ξ1ξ2 − ζ1ζ2
,

n ∈ N0, (2.23)
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for i ∈ {0, 1}. By taking into account (2.16), we have

g (ω2n+i) =

(
ζ1ζ2
ξ1ξ2

)n
g (ωi)

g (ωi−1)
+ (ζ1η2 + η1ξ2)

1−
(

ζ1ζ2
ξ1ξ2

)n

ξ1ξ2 − ζ1ζ2



×

(
ζ1ζ2
ξ1ξ2

)n+i−1
g (ω1−i)

g (ω−i)
+ (ζ1η2 + η1ξ2)

1−
(

ζ1ζ2
ξ1ξ2

)n+i−1

ξ1ξ2 − ζ1ζ2


×g

(
ω2(n−1)+i

)
,

h (ϑ2n+i) =

(
ζ1ζ2
ξ1ξ2

)n
h (ϑi)

h (ϑi−1)
+ (ζ2η1 + η2ξ1)

1−
(

ζ1ζ2
ξ1ξ2

)n

ξ1ξ2 − ζ1ζ2



×

(
ζ1ζ2
ξ1ξ2

)n+i−1
h (ϑ1−i)

h (ϑ−i)
+ (ζ2η1 + η2ξ1)

1−
(

ζ1ζ2
ξ1ξ2

)n+i−1

ξ1ξ2 − ζ1ζ2


×h

(
ϑ2(n−1)+i

)
,

(2.24)

for n ∈ N0, i ∈ {0, 1}, and consequently

ω2n+i = g−1

[
g (ωi)

n∏
j=1

(
ζ1ζ2
ξ1ξ2

)j
g (ωi)

g (ωi−1)
+ (ζ1η2 + η1ξ2)

1−
(

ζ1ζ2
ξ1ξ2

)j

ξ1ξ2 − ζ1ζ2

×

(
ζ1ζ2
ξ1ξ2

)j+i−1
g (ω1−i)

g (ω−i)
+ (ζ1η2 + η1ξ2)

1−
(

ζ1ζ2
ξ1ξ2

)j+i−1

ξ1ξ2 − ζ1ζ2

]
,

ϑ2n+i = h−1

[
h (ϑi)

n∏
j=1

(
ζ1ζ2
ξ1ξ2

)j
h (ϑi)

h (ϑi−1)
+ (ζ2η1 + η2ξ1)

1−
(

ζ1ζ2
ξ1ξ2

)j

ξ1ξ2 − ζ1ζ2


×

(
ζ1ζ2
ξ1ξ2

)n+i−1
h (ϑ1−i)

h (ϑ−i)
+ (ζ2η1 + η2ξ1)

1−
(

ζ1ζ2
ξ1ξ2

)j+i−1

ξ1ξ2 − ζ1ζ2

]
,

(2.25)
for n ∈ N0, i ∈ {0, 1}.

Subcase 2.2. µk ̸= 0 for k ∈ {1, 2}: In this case, by employing the first equation
in (2.17) into the second one and the second equation in (2.17) into the first one
respectively, we obtain Riccati-type difference equations as follows:

ςn+1 =
(ζ1ζ2 + η1µ2) ςn−1 + ζ1η2 + η1ξ2
(ζ2µ1 + µ2ξ1) ςn−1 + η2µ1 + ξ1ξ2

,

ϱn+1 =
(ζ1ζ2 + η2µ1) ϱn−1 + ζ2η1 + η2ξ1
(ζ1µ2 + µ1ξ2) ϱn−1 + η1µ2 + ξ1ξ2

, (2.26)
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for n ∈ N. If we apply the decomposition of indexes n → 2n+ i− 1 for n ∈ N and
i ∈ {0, 1} to (2.26), then they become

ς2n+i =
(ζ1ζ2 + η1µ2) ς2(n−1)+i + ζ1η2 + η1ξ2

(ζ2µ1 + µ2ξ1) ς2(n−1)+i + η2µ1 + ξ1ξ2
,

ϱ2n+i =
(ζ1ζ2 + η2µ1) ϱ2(n−1)+i + ζ2η1 + η2ξ1

(ζ1µ2 + µ1ξ2) ϱ2(n−1)+i + η1µ2 + ξ1ξ2
. (2.27)

Let ς2n+i = ς
(i)
n = ς̂n, ϱ2n+i = ϱ

(i)
n = ϱ̂n and n → n+1 for n ∈ N0, i ∈ {0, 1}. Then

equations in (2.27) can be written in the following form

ς̂n+1 =
(ζ1ζ2 + η1µ2) ς̂n + ζ1η2 + η1ξ2
(ζ2µ1 + µ2ξ1) ς̂n + η2µ1 + ξ1ξ2

,

ϱ̂n+1 =
(ζ1ζ2 + η2µ1) ϱ̂n + ζ2η1 + η2ξ1
(ζ1µ2 + µ1ξ2) ϱ̂n + η1µ2 + ξ1ξ2

, (2.28)

for n ∈ N0, which are well-known first-order Riccati difference equations with con-
stant coefficients. By employing the following change of variables for n ∈ N0, then
we have

(ζ2µ1 + µ2ξ1) ς̂n + η2µ1 + ξ1ξ2 =
αn+1

αn
,

(ζ1µ2 + µ1ξ2) ϱ̂n + η1µ2 + ξ1ξ2 =
βn+1

βn
, (2.29)

equations in (2.28) become the following second-order constant coefficients linear
difference equations

αn+2 =(ζ1ζ2 + η1µ2 + η2µ1 + ξ1ξ2)αn+1

− (ζ1ζ2ξ1ξ2 + η1η2µ1µ2 − ζ1η2µ2ξ1 − ζ2η1µ1ξ2)αn, (2.30)

βn+2 =(ζ1ζ2 + η2µ1 + η1µ2 + ξ1ξ2)βn+1

− (ζ1ζ2ξ1ξ2 + η1η2µ1µ2 − ζ1η2µ2ξ1 − ζ2η1µ1ξ2)βn,

for n ∈ N0. Since the equations given in (2.30) have the same recurrence relation,
the characteristic equation of the equations in (2.30) is given by

λ2 − (ζ1ζ2 + η1µ2 + η2µ1 + ξ1ξ2)λ

+ (ζ1ζ2ξ1ξ2 + η1η2µ1µ2 − ζ1η2µ2ξ1 − ζ2η1µ1ξ2) = 0. (2.31)

From (2.31), we see that there are two different cases for the solutions to the equa-

tions in (2.30), depending of whether or not is ∆ = (ζ1ζ2 + η1µ2 + η2µ1 + ξ1ξ2)
2 −

4 (ζ1ζ2ξ1ξ2 + η1η2µ1µ2 − ζ1η2µ2ξ1 − ζ2η1µ1ξ2) = 0.

Subsubcase 2.2.1. ∆ ̸= 0: In this case, since the roots of the characteristic
equation in (2.31) are different, we easily get the roots of characteristic equation as
follows

λ1,2 =
(ζ1ζ2 + η1µ2 + η2µ1 + ξ1ξ2)±

√
∆

2
. (2.32)

Further, the general solutions to the equations in (2.30) in terms of the initial
conditions α0, α1, β0, β1 are given by

αn =
(α1 − α0λ2)λ

n
1 + (α0λ1 − α1)λ

n
2

λ1 − λ2
,
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βn =
(β1 − β0λ2)λ

n
1 + (β0λ1 − β1)λ

n
2

λ1 − λ2
, (2.33)

for n ∈ N0, from which along with (2.29), it follows that

(ζ2µ1 + µ2ξ1) ς̂n + η2µ1 + ξ1ξ2 =
(α1 − α0λ2)λ

n+1
1 + (α0λ1 − α1)λ

n+1
2

(α1 − α0λ2)λn
1 + (α0λ1 − α1)λn

2

(2.34)

=

(
α1

α0
− λ2

)
λn+1
1 −

(
α1

α0
− λ1

)
λn+1
2(

α1

α0
− λ2

)
λn
1 −

(
α1

α0
− λ1

)
λn
2

,

(ζ1µ2 + µ1ξ2) ϱ̂n + η1µ2 + ξ1ξ2 =
(β1 − β0λ2)λ

n+1
1 + (β0λ1 − β1)λ

n+1
2

(β1 − β0λ2)λn
1 + (β0λ1 − β1)λn

2

(2.35)

=

(
β1

β0
− λ2

)
λn+1
1 −

(
β1

β0
− λ1

)
λn+1
2(

β1

β0
− λ2

)
λn
1 −

(
β1

β0
− λ1

)
λn
2

.

After the necessary arrangements in (2.34) and (2.35), we get

ς̂n =
1

Φ1

(Φ1ς̂0 +Φ2)
(

λn+1
1 −λn+1

2

λ1−λ2

)
− λ1λ2

(
λn
1 −λn

2

λ1−λ2

)
(Φ1ς̂0 +Φ2)

(
λn
1 −λn

2

λ1−λ2

)
− λ1λ2

(
λn−1
1 −λn−1

2

λ1−λ2

) − Φ2

Φ1
,

ϱ̂n =
1

Ψ1

(Ψ1ϱ̂0 +Ψ2)
(

λn+1
1 −λn+1

2

λ1−λ2

)
− λ1λ2

(
λn
1 −λn

2

λ1−λ2

)
(Ψ1ϱ̂0 +Ψ2)

(
λn
1 −λn

2

λ1−λ2

)
− λ1λ2

(
λn−1
1 −λn−1

2

λ1−λ2

) − Ψ2

Ψ1
,

n ∈ N0, (2.36)

where ζ2µ1 + µ2ξ1 = Φ1, η2µ1 + ξ1ξ2 = Φ2, ζ1µ2 + µ1ξ2 = Ψ1, η1µ2 + ξ1ξ2 = Ψ2,
from which along with using Definition 1.1, it follows that

ς2n+i =
1

Φ1

(Φ1ςi +Φ2) sn+1 −Υsn
(Φ1ςi +Φ2) sn −Υsn−1

− Φ2

Φ1
,

ϱ2n+i =
1

Ψ1

(Ψ1ϱi +Ψ2) sn+1 −Υsn
(Ψ1ϱi +Ψ2) sn −Υsn−1

− Ψ2

Ψ1
,

n ∈ N0, (2.37)

for i ∈ {0, 1}, where Υ = ζ1ζ2ξ1ξ2 + η1η2µ1µ2 − ζ1η2µ2ξ1 − ζ2η1µ1ξ2. Moreover, by
using (2.16), we can write

g (ω2n+i) =

 1

Φ1

(
Φ1

g(ωi)
g(ωi−1)

+Φ2

)
sn+1 −Υsn(

Φ1
g(ωi)

g(ωi−1)
+Φ2

)
sn −Υsn−1

− Φ2

Φ1



×

 1

Φ1

(
Φ1

g(ω1−i)
g(ω−i)

+Φ2

)
sn+i −Υsn+i−1(

Φ1
g(ω1−i)
g(ω−i)

+Φ2

)
sn+i−1 −Υsn+i−2

− Φ2

Φ1

 g
(
ω2(n−1)+i

)
,

h (ϑ2n+i) =

 1

Ψ1

(
Ψ1

h(ϑi)
h(ϑi−1)

+Ψ2

)
sn+1 −Υsn(

Ψ1
h(ϑi)

h(ϑi−1)
+Ψ2

)
sn −Υsn−1

− Ψ2

Ψ1



×

 1

Ψ1

(
Ψ1

h(ϑ1−i)
h(ϑ−i)

+Ψ2

)
sn+i −Υsn+i−1(

Ψ1
h(ϑ1−i)
h(ϑ−i)

+Ψ2

)
sn+i−1 −Υsn+i−2

− Ψ2

Ψ1

h
(
ϑ2(n−1)+i

)
,

(2.38)
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for n ∈ N0, i ∈ {0, 1}, and consequently

ω2n+i

= g−1

[
g (ωi)

n∏
j=1

 1

Φ1

(
Φ1

g(ωi)
g(ωi−1)

+Φ2

)
sj+1 −Υsj(

Φ1
g(ωi)

g(ωi−1)
+Φ2

)
sj −Υsj−1

− Φ2

Φ1


×

 1

Φ1

(
Φ1

g(ω1−i)
g(ω−i)

+Φ2

)
sj+i −Υsj+i−1(

Φ1
g(ω1−i)
g(ω−i)

+Φ2

)
sj+i−1 −Υsj+i−2

− Φ2

Φ1

]
,

ϑ2n+i

= h−1

[
h (ϑi)

n∏
j=1

 1

Ψ1

(
Ψ1

h(ϑi)
h(ϑi−1)

+Ψ2

)
sj+1 −Υsj(

Ψ1
h(ϑi)

h(ϑi−1)
+Ψ2

)
sj −Υsj−1

− Ψ2

Ψ1


×

 1

Ψ1

(
Ψ1

h(ϑ1−i)
h(ϑ−i)

+Ψ2

)
sj+i −Υsj+i−1(

Ψ1
h(ϑ1−i)
h(ϑ−i)

+Ψ2

)
sj+i−1 −Υsj+i−2

− Ψ2

Ψ1

]
,

(2.39)

for n ∈ N0 and i ∈ {0, 1}.

Subsubcase 2.2.2. ∆ = 0: In this case, similarly as in the previous case, since
the roots of the characteristic equation in (2.31) are same, we immediately get the
roots of characteristic equation as follows

λ3,4 =
ζ1ζ2 + η1µ2 + η2µ1 + ξ1ξ2

2
. (2.40)

Then, the general solutions to the equations in (2.30) in terms of the initial condi-
tions α0, α1, β0, β1 are given by

αn = α0λ
n
3 + (α1 − α0λ3)nλ

n−1
3 ,

βn = β0λ
n
3 + (β1 − β0λ3)nλ

n−1
3 , n ∈ N0.

(2.41)

By using (2.29), we get
Φ1ς̂n +Φ2 =

α0λ
n+1
3 + (α1 − α0λ3) (n+ 1)λn

3

α0λn
3 + (α1 − α0λ3)nλ

n−1
3

,

Ψ1ϱ̂n +Ψ2 =
β0λ

n+1
3 + (β1 − β0λ3) (n+ 1)λn

3

β0λn
3 + (β1 − β0λ3)nλ

n−1
3

,

n ∈ N0, (2.42)

where ζ2µ1 + µ2ξ1 = Φ1, η2µ1 + ξ1ξ2 = Φ2, ζ1µ2 + µ1ξ2 = Ψ1, η1µ2 + ξ1ξ2 = Ψ2,

from which along with ς2n+i = ς
(i)
n = ς̂n, ϱ2n+i = ϱ

(i)
n = ϱ̂n, it follows that

ς2n+i =
1

Φ1

(Φ1ςi +Φ2) (n+ 1)λn
3 − nλn+1

3

(Φ1ςi +Φ2)nλ
n−1
3 − (n− 1)λn

3

− Φ2

Φ1
,

ϱ2n+i =
1

Ψ1

(Ψ1ϱi +Ψ2) (n+ 1)λn
3 − nλn+1

3

(Ψ1ϱi +Ψ2)nλ
n−1
3 − (n− 1)λn

3

− Ψ2

Ψ1
,

n ∈ N0, (2.43)
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for i ∈ {0, 1}. Also, from (2.16), we can write

g (ω2n+i)

=

 1

Φ1

(
Φ1

g(ωi)
g(ωi−1)

+Φ2

)
(n+ 1)λn

3 − nλn+1
3(

Φ1
g(ωi)

g(ωi−1)
+Φ2

)
nλn−1

3 − (n− 1)λn
3

− Φ2

Φ1


×

 1

Φ1

(
Φ1

g(ω1−i)
g(ω−i)

+Φ2

)
(n+ i)λn+i−1

3 − (n+ i− 1)λn+i
3(

Φ1
g(ω1−i)
g(ω−i)

+Φ2

)
(n+ i− 1)λn+i−2

3 − (n+ i− 2)λn+i−1
3

− Φ2

Φ1


×g

(
ω2(n−1)+i

)
,

h (ϑ2n+i)

=

 1

Ψ1

(
Ψ1

h(ϑi)
h(ϑi−1)

+Ψ2

)
(n+ 1)λn

3 − nλn+1
3(

Ψ1
h(ϑi)

h(ϑi−1)
+Ψ2

)
nλn−1

3 − (n− 1)λn
3

− Ψ2

Ψ1


×

 1

Ψ1

(
Ψ1

h(ϑ1−i)
h(ϑ−i)

+Ψ2

)
(n+ i)λn+i−1

3 − (n+ i− 1)λn+i
3(

Ψ1
h(ϑ1−i)
h(ϑ−i)

+Ψ2

)
(n+ i− 1)λn+i−2

3 − (n+ i− 2)λn+i−1
3

− Ψ2

Ψ1


×h

(
ϑ2(n−1)+i

)
,

(2.44)

for n ∈ N0, i ∈ {0, 1}, and consequently

ω2n+i

= g−1

[
g (ωi)

n∏
j=1

 1

Φ1

(
Φ1

g(ωi)
g(ωi−1)

+Φ2

)
(j + 1)λj

3 − jλj+1
3(

Φ1
g(ωi)

g(ωi−1)
+Φ2

)
jλj−1

3 − (j − 1)λj
3

− Φ2

Φ1


×

 1

Φ1

(
Φ1

g(ω1−i)
g(ω−i)

+Φ2

)
(j + i)λj+i−1

3 − (j + i− 1)λj+i
3(

Φ1
g(ω1−i)
g(ω−i)

+Φ2

)
(j + i− 1)λj+i−2

3 − (j + i− 2)λj+i−1
3

− Φ2

Φ1

]
,

ϑ2n+i

= h−1

[
h (ϑi)

n∏
j=1

 1

Ψ1

(
Ψ1

h(ϑi)
h(ϑi−1)

+Ψ2

)
(j + 1)λj

3 − jλj+1
3(

Ψ1
h(ϑi)

h(ϑi−1)
+Ψ2

)
jλj−1

3 − (j − 1)λj
3

− Ψ2

Ψ1


×

 1

Ψ1

(
Ψ1

h(ϑ1−i)
h(ϑ−i)

+Ψ2

)
(j + i)λj+i−1

3 − (j + i− 1)λj+i
3(

Ψ1
h(ϑ1−i)
h(ϑ−i)

+Ψ2

)
(j + i− 1)λj+i−2

3 − (j + i− 2)λj+i−1
3

− Ψ2

Ψ1

]
,

(2.45)

for n ∈ N0, i ∈ {0, 1}.

Corollary 2.1. Consider system (1.3) with the parameters ζk, ηk, µk, ξk, for k ∈
{1, 2} and the initial values ω−j, ϑ−j, for j ∈ {0, 1}, which are real numbers. Then
the following statements are true.

a) If ζkξk = ηkµk, ζk = ηk = 0 and µkξk ̸= 0 for k ∈ {1, 2}, then the general
solution to system (1.3) is given by (2.2).
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b) If ζkξk = ηkµk, ζk = 0 and ηkξk ̸= 0 for k ∈ {1, 2}, then the general solution
to system (1.3) is given by (2.8).

c) If ζkξk = ηkµk, ηk = 0 and ζkµk ̸= 0 for k ∈ {1, 2}, then the general solution
to system (1.3) is given by (2.13).

d) If ζkξk = ηkµk, ξk = 0 and ζk = 0 for k ∈ {1, 2}, then the general solution to
system (1.3) is given by (2.2).

e) If ζkξk = ηkµk, ξk = 0 and ζk ̸= 0 for k ∈ {1, 2}, then the general solution to
system (1.3) is given by (2.13).

f) If ζkξk = ηkµk, µk = 0 and ηk = 0 for k ∈ {1, 2}, then the general solution to
system (1.3) is given by (2.2).

g) If ζkξk = ηkµk, µk = 0 and ηk ̸= 0 for k ∈ {1, 2}, then the general solution to
system (1.3) is given by (2.8).

h) If ζkξk = ηkµk and ζkηkµkξk ̸= 0 for k ∈ {1, 2}, then the general solution to
system (1.3) is given by (2.8).

i) If ζkξk ̸= ηkµk, µk = 0, for k ∈ {1, 2} and ζ1ζ2 = ξ1ξ2, then the general
solution to system (1.3) is given by (2.22).

j) If ζkξk ̸= ηkµk, µk = 0, for k ∈ {1, 2} and ζ1ζ2 ̸= ξ1ξ2, then the general
solution to system (1.3) is given by (2.25).

k) If ζkξk ̸= ηkµk, µk ̸= 0, for k ∈ {1, 2} and ∆ ̸= 0, then the general solution
to system (1.3) is given by (2.39).

l) If ζkξk ̸= ηkµk, µk ̸= 0, for k ∈ {1, 2} and ∆ = 0, then the general solution
to system (1.3) is given by (2.45).

Where

∆ = (ζ1ζ2 + η1µ2 + η2µ1 + ξ1ξ2)
2−4 (ζ1ζ2ξ1ξ2 + η1η2µ1µ2 − ζ1η2µ2ξ1 − ζ2η1µ1ξ2) .

3. Conclusion

In this paper, we investigated the solutions of the following two dimensional system
of difference equations

ωn+1 = g−1

(
g (ωn)

ζ1h (ϑn) + η1h (ϑn−1)

µ1h (ϑn) + ξ1h (ϑn−1)

)
,

ϑn+1 = h−1

(
h (ϑn)

ζ2g (ωn) + η2g (ωn−1)

µ2g (ωn) + ξ2g (ωn−1)

)
,

n ∈ N0,

where the parameters ζk, ηk, µk, ξk, for k ∈ {1, 2} are real numbers, the initial
values ω−l, ϑ−l, for l ∈ {0, 1} are real numbers, g and h are continuous and strictly
monotone functions, g (R) = R, h (R) = R, g (0) = 0, h (0) = 0.
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