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ON A SYSTEM OF DIFFERENCE EQUATIONS
DEFINED BY THE CONTINUOUS AND
STRICTLY MONOTONE FUNCTIONS

Mensure Sen', Yasin Yazlik? and Merve Kara®?

Abstract In this paper, we solve the following difference equations system

_ -1 Cih (9n) + mh (9n-1)
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Insr = h~1 (h (9,) 29 (n) +7729(wn_1)>
! " p2g (wn) + €29 (Wn—1) )’

where the coefficients p34+£; # 0, Ck, Nk, ik, £k, for k € {1, 2} are real numbers,
the initial values w—_j;, 9_;, for j € {0,1} are real numbers, g and h are
continuous and strictly monotone functions, g (R) = R, h(R) =R, ¢g(0) =0,
h(0) = 0, in explicit form depending on whether or not the parameters are
equal to 0.
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1. Introduction

The notation of a = b, c stands for {a € Z: b < a < ¢} if b,c € Z, b < ¢. In addition,
the other notations of N, Ny, Z, R, mean set of natural, non-negative integer, integer
and real numbers, respectively.

Difference equations and systems of difference equations appear in many
branches of mathematics and science, where they model real and abstract phe-
nomena. There is a growing interest in some topics in this area, their solvability,
stability, invariants and applications [2,5,7-9,16,19-26]. Many solvable difference
equations and systems of difference equations can be transformed into well-known
solvable equations with suitable variable changes. For example, the author of [4]
has solved special cases of the following difference equation
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— L noe N, 1.1
Yzn +5Zn71 0 ( )

Zpt+l = QZp +
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where the initial values z_1, zo are arbitrary positive real numbers and the coef-
ficients «, 3, 7, & are positive constants. In [18], the authors solved the following
difference equation

ah (zn) + bh (zn—1)
ch(zn) + dh (2n—1)

Znp1 =h1 (h (2n) ) , n € Ny, (1.2)

where the initial conditions z_, for k € {0, 1}, and the parameters a, b, ¢, d are real
numbers such that ¢ +d? # 0 and h is a strictly monotone and continuous function
such that i (R) =R, h(0) = 0, by using transformation. Note that equation (1.2)
is a more general form of equation (1.1).

The natural question is if both equation (1.1) and equation (1.2) transform into
a more general system of difference equations. We give a favourable answer. In
this paper, we extend equations in (1.1) and (1.2) to the following two-dimensional
system of difference equations

- Clh(ﬁn)""_nlh(ﬁn 1
w1 =97 (g ) o (B) T €7 (D
)

)

_ C29 (Wn) + M2g (Wn—1
[, =hp1 (h Y,
i (V) pag (wn) + €29 (Wn—1

> n € Ny, (13)

)

where the initial conditions w_¢, ¥_¢, for t € {0, 1} are real numbers, the parameters
Chs My iy &k, for k € {1,2} are real numbers, g and h are continuous and strictly
monotone functions, g (R) =R, h(R) =R, ¢(0) = 0, ~(0) = 0. We achieved the
solutions of system (1.3) according to whether the parameters are equal to zero
or non-zero. Appropriate variable change was used when obtaining solutions in
this paper. Moreover, solutions were found depending on the generalized Fibanocci
sequence in some cases.

Many studies related to number sequences can be found in the literature [1,6,
11-13]. In addition, it is possible to find general difference equations or systems of
difference equations similar to the system (1.3) in the literature [10,14,17].

The following second order linear difference equation

)
)
)
)

Ynt2 = VYn+1 + 0Yn, 1 € No, (1.4)

was solved by De Moivre in [15]. The solution of (1.4) is given by

(Y1 = Aayo) AT — (1 — Aiyo) Ay
Yn =
AL — As

, n € Ny, (15)

if v # 0 and y2 4 49 # 0, and

Yn = ((y1 — Atyo) n+ Aiyo) AT, n € Ny, (1.6)

while if 7 # 0 and 72 + 46 = 0, where )\, = =Y \/;+45 are the roots of the
polynomial P (\) = A2 — 4\ — 4§ = 0.
We will use the following very well-known results; see, for example, [3].

Lemma 1.1. Consider the linear difference equation

Wrn+j = GpWyr(n—1)+j + bn7 n € Ny,
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where a,, and b, are real number sequences and j € {0,1,...,r — 1}. Then, the
general solution of variable coefficients linear difference equation is given by the
following formula

n

n n
Wyrpn+j = H Qi | Wj—r + E H Q; bka
j=0

k=0 \j=k+1

where the next standard conventions Hé:j v =1 and Zé:j n =0, for all 1 < j,
are utilized here. Moreover if a, and b, are constants, that is, a, = a and b, = b,
then the general solution to constant coefficient linear difference equation is given
by the following formula

4 an+1 _
a""twi_, + ——b, a#1,
Wrptj = J a—1 7 n € Np.
wj—r + (n+1)b, a=1,

Definition 1.1. Consider the following homogeneous second-order linear difference
equation with constant coefficients, that is, the following one:

Snt2 = QSpy1 + Bsp, n € Ny, (1.7)

where the initial values sy = 0, s; = 1 and the parameters «, 8 are real numbers.

A2 —a) — 8 = 0 is the characteristic equation of (1.7), where \; 2 = w are

the roots of the characteristic equation. It is clear that Binet formula for (1.7) is
_AL A

n=—-—", . 1.
S M= o n € Ny ( 8)

The sequence (sy,),,~ is called the generalized Fibonacci sequence in the literature.

2. Solutions of system (1.3) in explicit-form

Here, we demonstrate that system (1.3) is a specific case of a solvable system of
difference equation.

Theorem 2.1. Suppose that (i, 1, i, & € R, fori € {1,2}, such that p2 +£2 #0,
g and h are continuous and strictly monotone functions, g(R) = R, h(R) = R,
g(0) =0, h(0) =0. So, the general system (1.3) is solvable in explicit-form.

Proof. If at least one of the initial values w_; =0 or ¥_; =0, for j € {0,1}, then
the solution of system (1.3) is not defined. Moreover, assume that w,, = 0 for some
ng € Ng. Then from system (1.3) we have wy,+1 = 0. These facts along with (1.3)
imply that 9,12 is not defined. Similarly, suppose that ¥,,, = 0 for some n; € Ny.
Then from system (1.3) we have ¥,,, 11 = 0. These facts along with (1.3) imply that
W, +2 is not defined. Hence, for every well-defined solution of system (1.3), we have

watdy #£0, n > —1. (2.1)

Firstly, since g (R) = R, h(R) = R, g(0) = 0, h(0) = 0 and ¢g,h : R — R are
continuous and strictly monotone functions, g, h are one to one functions. The
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only root of the functions g and h is 0. These functions are homomorphism on R.
Taking this property of the functions into consideration, the solutions of system
(1.3) according to the states of the parameters will be examined as follows:

Case 1. (i& = nppi for k € {1,2}: Under this assumptions, there are also
additional subcases to take into account.

Subcase 1.1. {; =0 = ng, prér # 0, for k € {1,2}: In this case, system (1.3) is
Wn+1 = g_l (0) ’ 1971+1 - h_l (0) , neE NO.

By using the properties of functions g and h in the last equations, the solution of
system (1.3) under these conditions is as follows

wp,=0,%9,=0, neN. (2.2)

Subcase 1.2. (; = 0, n&x # 0, for k£ € {1,2}: Under these conditions, we have
pur =0, for k € {1,2} and also

Wnp1 =g (Zig (wn)> , Opyr =h71 (Zih(ﬁ,ﬂ) , n € Ny, (2.3)

from which it follows that

9 (Wni1) = %g (@n)s h(Ont1) = 2R (), n €N (2.4)
1 &

Since the equations in (2.4) are solvable, we define new variables as following forms
Sn=9g(wn), 0n ="h(9,) n€No. (2.5)

By substituting the new variables to equations in (2.4), we obtain the first-order
linear difference equations as follows:

Sn4+1 = @917 On+1 = @Qru nec N0~ (26)
&1 &
By using Lemma 1.1 for » = 1, we can write the general solutions of (2.6) as in the
following form
m\" n2\"
Sn = () 0, On = <> 00, n € No. (2.7)
& &2

Relations (2.5) and (2.7) yield

wn = gL ((Z)ng (w0)> - ((Z)n h(ﬁ0)> , n € N. (2.8)

Subcase 1.3. n; = 0, pur # 0, for k € {1,2}: Under these conditions, we get
& =0, for k € {1,2} and also

Wna1 = g_l (Clg (wn)> s 19n+1 = h_1 (CQh (19n)> , n € Ny, (29)
M1 H2
from which it follows

g (wn+1) = gg (W), h(Ont1) = Qh (¥n), n € No. (2.10)
M1 H2
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By using transforms in (2.5), we get the first-order linear difference equations as
follows:

Sn+1 = ggna On+1 = QQYH ne NO' (211)
(11 12

By using Lemma 1.1 for 7 = 1, then the solutions to equations in (2.11) are

Sn = (Cl) S0y On = <C2) 0o, M € NO' (212)
M2

M1

From (2.5) and the solutions in (2.12), we see that the general solution to system
(2.9) in these cases n; = 0, (ux # 0, for k € {1,2}, is

wp =g ! <(l€11>ng(wo)> , U =ht ((Z)n h(ﬂo)) , n € Np. (2.13)

Subcase 1.4. & = 0, for k € {1,2}: In this case, with these conditions, we
immediately obtain ug # 0, for k& € {1,2} and hereby n; = 0, for k£ € {1,2}. Then
there are two cases to be considered. These cases are either (, = 0 or (; # 0, for
k € {1,2}. Further, they were investigated in sub-case 1 and sub-case 3, respectively.

Subcase 1.5. i =0, for k£ € {1,2}: In this case, from these conditions, we have
&k # 0, for k € {1,2} and also {; = 0, for k € {1,2}. Similarly as in the previous
case, there are two-cases to be considered. These cases are either n; = 0 or 7 # 0,
for k € {1,2}. They were investigated in sub-case 1 and sub-case 2, respectively.
Subcase 1.6. (pnpurés # 0, for k € {1,2}: In this case, with these conditions,
we obtain ¢ = ’7’,2% Then, system (1.3) reduce to system (2.3), whose solution is
given by formulas (2.8).

Case 2. (k& # ey for k € {1,2}: In this case, from (2.1) and the monotonicity
of g and h, we obtain

g(wn) #0, h(Vn) #0, n>—1. (2.14)
Then, the system (1.3) can be written in the following form

h(9,) (Wn)

G1 yEm (@ Cz ™ + 12
9(@ni1) _ h(:w ; Wni1) _ ((; ;) . neNp. (2.15)
gwn) el 46’ h(Wa) //Qg?w RS
bt () h(9,)
g \Wwn n
Gy = ), W) e N 2.16
) O R (0n) 0 (2.16)

By using (2.16) in (2.15), we get the first-order riccati difference equations as follows:

C1on +m ~ CaSn T2

On+t1 = , n € Np. 2.17
pon+&0 T las, + 6 0 (2.17)

Sn4+1 =

Then, there are two-cases to be considered.

Subcase 2.1. uy =0, for k € {1,2}: In this case, system (2.17) is presented by

G m G2 72
Sntl = = 0n + —, On+1 = —Sn + —, n € Np. 2.18
Ty &1 g & 0 (2.18)
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By considering system (2.18) with replacing n by n — 1 in (2.18) and by substi-
tuting the first equation in (2.18) into the second ones and the second equation in
(2.18) into the first ones respectively, we obtain the second-order linear difference
equations as follows:

C1C2 Cim2 +méa C1C2 - Cam + m2éa

e T T e U T asY a6

Now the subcases % =1 and <1C2 # 1 will be considered separately.
Subsubcase 2.1.1. (1(> = &1 In thls case, by using Lemma 1.1 for » = 2, the

solutions of equations in (2.19) can be written in the following form

neN. (2.19)

Sonti = Si + Mn, O2n+i = 0i + Mﬂ, n € N, (2:20)
§&& §1&2
for i € {0,1}. Also, from (2.16), we have
N 9wi) | Gmt+mbe )
9 (wanti) = (g(wz‘—l) * &1 "
y <9 (Wl—%‘) + Gz +mé (n+i— 1)> 9 (@atnyss)
g (L"Lz) 6152 (2 21)
h (9amss) = ( (191‘) CzTh + m261 n) '
2n+1 h 5152
« ( 191 z Cin + 7]2£1 (n +i— 1)> h (192(“71)+i) ’
&1&2
for n € N, 4 € {0,1}. Thus, the general solutions of equations in (2.19) are
-1 . g (wi) C17]2 +mé2 )
Won+i = 9 1;[ ( wz 1 .6 J
gwii)  Gme+mé B ))
) <g(w—i) " §1&2 Uri=n)).
(2.22)
-1 _ - h (9;) Com + 261 )
192n+1 - h h(,&’b)g (h(ﬂi—l) + 6152 J
h(Wh-i)  Cmt+m& o . ))
<Ry + et u+i-n)),

for n € Ny, i € {0, 1}.

Subsubcase 2.1.2. (1(s # £1&2: In this case, by using Lemma 1.1 for r = 2, we
can write the solutions of equations in (2.19) as follows

G \"
o C1¢2\" 4 1- (5152)
Sonti = (5152) i + (C1m2 + mé2) e — G

_ [ &g "
1 (5152)

§1& — GG’

n € Ny, (2.23)

O2nti = (22) 0i + (Gom + m261)
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for ¢ € {0,1}. By taking into account (2.16), we have

n _ @ n
g (Wan+i) = ((Cl@> g () + (C1m2 + m&2) 1(5152))

5152 g (wi—l) 5152 - C1C2
n+i—1
Clﬁ n-+i—1 g (wis) 1— (%)
<5152) g (w—;) T (G +més) §1§2 — C1G2

Xg (wz(n—1)+i) )

h (V2n+i) = ((%)" h (9) + (Gam + m261) 1‘(22))

§i&2) h(¥i-1) &8 — Qe

1— (Cl(z)n+i_1
) &162

&1 — G

GG\ R )
<§1§2) h(0_) + (Cm +m&

Xh (192(n—1)+i) )

(2.24)
for n € Ny, ¢ € {0, 1}, and consequently
, GG\’
ol T (aeY gw) - (88)
Wanti =g {g (wl)]l;[l (&52) 7 (@i1) + (G112 + m&2) e
ji—1
(fl&) g (w—y) * (G +més) 162 — Q1G2 ’
n ; (aaY
R gl@)f h(9;) - (&g
P =l {h (191')]—1;[1 (5152 R T Cm b)) e
ji—1
GG\ R (914) 1-(88) ]
<§1§2) h(9-)  (Gom - mey) §1&2 — GG ’
(2.25)

for n € Ny, i € {0, 1}.

Subcase 2.2. pi # 0 for k € {1,2}: In this case, by employing the first equation
in (2.17) into the second one and the second equation in (2.17) into the first one
respectively, we obtain Riccati-type difference equations as follows:

S (€182 +mp2) Sn—1 + G2 + mé2

" (Gopn + p261) St + Moy + E1E

(G1Ga + m2p1) On—1 + Cam + m2&n
)

(Crpg + p1&2) On—1 +mpe + &6

On+1 =

(2.26)
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for n € N. If we apply the decomposition of indexes n — 2n + i — 1 for n € N and
i €{0,1} to (2.26), then they become

(GGt mp2)
)

; So(n—1)4i T C1m2 + méa
2n+1i —
T (G + 2

So(n—1)4i T m2p1 +E1&’
02(n—1)+i T C2m + n281
02(n—1)+i + M2 + &

(GG +mop)
)

02n+i =
" (e + o

(2.27)

Let ¢opti = 9(;) = Cn, O2nti = QS) =onand n - n+1forn € Ny, i€ {0,1}. Then
equations in (2.27) can be written in the following form

(GG +mp2) S + Qe + méo
(Gopa + p2ér) S + mapn + €162’
(C1G2 + m2p1) 0 + Comy + 21
(Cupz + p11€2) On + mp2 + &6’
for n € Ny, which are well-known first-order Riccati difference equations with con-

stant coefficients. By employing the following change of variables for n € Ny, then
we have

§n+1

Ont1 = (2.28)

o~ a'n/
(Coprr + p2é1) S+ m2p1 + &1&2 = a+1’
~ _ 5n+1
(Crpz + p1&2) 0n + mp2 + &6 = B, (2.29)

equations in (2.28) become the following second-order constant coefficients linear
difference equations

Qnyo = (C1G2 +nup2 + napr + &1&2) ang1

= (C1G28162 + mmapip2 — Cuimapaés — Campiéa) i, (2.30)
Brtz = (Ci1C2 + m2p + mp2 + &182) Bnta

= (C1G2&182 + mmapip2 — Cumapaéy — Campiée) B,

for n € Ny. Since the equations given in (2.30) have the same recurrence relation,
the characteristic equation of the equations in (2.30) is given by

— (GG +mp2 +m2p1 + &1&2) A
+ (€1¢2&1&2 + mmapra pro — Cimapeés — Campméa) = 0. (2.31)

From (2.31), we see that there are two different cases for the solutions to the equa-

tions in (2.30), depending of whether or not is A = ((1Ca + e + mopn + E162)° —

4 (G161 & + mnappe — Qnppeés — G éz) = 0.

Subsubcase 2.2.1. A # 0: In this case, since the roots of the characteristic

equation in (2.31) are different, we easily get the roots of characteristic equation as

follows

(GG + mpo + mopn + E1&) £VA
5 .

Further, the general solutions to the equations in (2.30) in terms of the initial

conditions «q, ay, By, B1 are given by

(a1 —agA2) AT 4 (apA1 — a1) Ay
Qp = )
A1 — A

A2 = (2.32)
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(B1 — BoA2) AT + (BoA1 — B1) A

B = Jia o , (2.33)
for n € Ny, from which along with (2.29), it follows that
~ (041 — Ozo)\g) )\?+1 + (ao)\l — 011) )\g+1
+ n + + = 2.34
(Capa + p281) n + M2 + 6162 (01 — aoda) N0+ (@ohs — an) A2 (2.34)
(2ot (3] 1"
(8 =) - (5 - n) %
. (81— BoA2) AT + (BoAs — Bu) A3+
+ n + + = 2.35
(Cpz + p1&2) 0n + mp2 + 162 (Br — Boda) Mo + (Bods — Bu) A (2.35)
(o (3 oa)e
(E-) (6
After the necessary arrangements in (2.34) and (2.35), we get
~ ApFtaptt
~ 1 (@15 + Do) (ﬁ) — A1z (Al_M)
Sn = T n—1_yn-1
L (@G + By) (/\ 3 ) A1Aa (A pop 22 )
e )\n+1 )\n+1 AT _\™ n e NO, (2.36)
. 1 (W10 +¥2) ( YR ) A1dz (All Ai) U,
On = 7= n=1_yn—1N 10
1 (\11150 =+ \1/2) <>\1 o ) )\1)\2 (%) \Ijl

where (apiy + p2é1 = @1, nopr + §1&2 = Po, G + 1o = Vi, mipo + §1&e = Uy,
from which along with using Definition 1.1, it follows that
- 1 (P16 4+ Po) spp1 — Vs P2
Py (P16 + Do) 5y — Vs Py
1 (Wi + V) spp1 — Vs, Wy
Qi = g, (W10i + Ua)sp — Ty Uy

for i € {0,1}, where T = (126182 + mn2pap2 — Gimep2és — Camp&e. Moreover, by
using (2.16), we can write

(e,
T q)l (q)l _glwd) +(I)2) 5p — Tsp_1 P,

n € Ny, (2.37)

g(wi—1)

1 (q)lgq((wl i) + (I)Q) Sn4i — TS,L+,L*_1 o,

0 (‘1)1@ + @2) Sntiz1 — L Spti—2 !

X g (WQ(nq)ﬂ‘) >

w_j)

h(¥;)
h (Vonti) = 1 (‘I’l R T ‘1’2) S~ Ton vy
2n+i U, (‘I’1 h(9:) + \112) Sp— Ysp_1 \Ijl

h(9i—1)
1 (\Ill };1(591::)) + \1}2) Snti — LSnpio1 T,
— —= | h (Y20n-1)1i) »

V1 (\IllM + \112) Sntim1 — L8pti—o k2!

AN
(2.38)
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for n € Ny, i € {0,1}, and consequently

Won+i

n 1 <(I)1 (“()7 )1) + @2) Sj+1 — TS]‘ @2

—gl[g(wi)H E(q; o) 3,

J=1 gwin) T ¢2> — i o

1 (fIJ gg((wl 1)) + <I>2> Sj+i — L8jti1 P, ]
(I)l (@ g((v-fwl 7z)) + ¢2> Sjvic1 — Tsj4i o P, )
(2.39)

n 1 (lI/l h(é )) —+ \112) Sj+1 — TSJ' \112

—pt [h @) [T

h(9; B
j=1 B! <\I’1 h('lgi—)l) + \Ilg) s; —Ts;1 vy

h(¥1_;
1 (\111 h((191 )) + %) siti — Tsjrio1 g, }

X

for n € Ny and 7 € {0,1}.

Subsubcase 2.2.2. A = 0: In this case, similarly as in the previous case, since
the roots of the characteristic equation in (2.31) are same, we immediately get the
roots of characteristic equation as follows

Ny C1C2 +mipa + mapr + §162
34 = 5 )

(2.40)

Then, the general solutions to the equations in (2.30) in terms of the initial condi-
tions ay, aq, Bo, B1 are given by

apn = apAy + (a1 — apAs) n)\gfl,

n i (2.41)
Bn = BoAs + (B1 — BoAs)nAy ", n € Ny.
By using (2.29), we get
An+L — A 1) Ay
<I>1€n+‘1>2=a03 * (= ao 3)(n—:71) 37
oA} + (a1 — apAs) nA;
BT 4 (B - Bod) a1y T 28
U0, + Uy = 2202 Lo Pods) 1 2

BoAy + (B1 — BoAz)nAy—t

where Copi1 + p12§1 = @1, mapn + &1&2 = P2, Gpe + e = Vi, mipe + &&= o,
from which along with ¢, = gff) =Cn,y O2nti = ng ) — On, it follows that

. 1 (D16 + Do) (n+ 1)\ —nAgTH Dy
2nti = T n—1 B,
Dy (D, + P —(n—-1)x; @
1 (@16 + $2) nAy (n )i‘il ! n € Ny, (2.43)
ooy — L (10T V2) (n+ DA — AT Ly
Ty (Tr0; + To)nAF ™ —(n— 1)\ Uy’
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for i € {0,1}. Also, from (2.16), we can write
g (wan+i)

1 (@588 @) (1) A X g,

o (@582 + @) Ay = (n-1)xy B

g(w;

(e @) )T - (i - ) AT

P
P (@2 ) (ki AT (i 2 B
xXg <w2(n71)+1) ’
h (19271,-{-1')

1 (\111 h}(L(m)) + \I’2> (TL + 1) )\n — n)\ngl Uy

U (o ) g - -1y

1 (‘I’l f;L((%l:;)) + \112) (n + ’L) )\g-‘ri—l _ (TL 4 1) )\g-‘rz’
Uy (\111};1((%71::)) + \Ilg) (n+i—1) )\g+if2 —(n+i-2) /\ngifl U,
xh (192(n71)+i) )

(2.44)
for n € Ny, i € {0,1}, and consequently
W2n+i
1 (<I>1g(£ )) +<I>2) GHLDN -GN g,
[ wi ]1:[1 Dy (ngfv(wq))jth)g)j/\J (j—1))\g_<171
1 (@1% +<I>2) G+ Gri—1)AT o,
= (%% +‘I’2) G+i-DNYT2_(jri—gntt )
Donyi
—pt {h (9;) ﬁ kS (‘Ijlh%ﬁi)) + ‘1’2) (j + 1) N, —j)%“{ R
(G o e T
L2 (‘1’1 h((ﬂl ’)) + \112) GHHMNTT —Gi—1) AT L,
n (qjl }((191 ‘)) + \I’2> GHi—-DNT 2o (G+i—2Ntt W ,
(2.45)
for n € No, i € {0,1}. N

Corollary 2.1. Consider system (1.3) with the parameters (i, ni, ti, &, for k €

{1,2} and the initial values w_;, V_;, for j € {0,1}, which are real numbers. Then
the following statements are true.

a) If Gk = Nrpin, Ce = mk = 0 and upéy # 0 for k € {1,2}, then the general
solution to system (1.3) is given by (2.2).
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b) If (k& = nipr, G = 0 and np& # 0 for k € {1,2}, then the general solution
to system (1.3) is given by (2.8).

¢) If G = nitik, Mk = 0 and Ceux # 0 for k € {1,2}, then the general solution
to system (1.3) is given by (2.13).

d) If (k&€ = ik, E = 0 and (= 0 for k € {1,2}, then the general solution to
system (1.3) is given by (2.2).

e) If Ciérx = ik, &k = 0 and (i # 0 for k € {1,2}, then the general solution to
system (1.3) is given by (2.13).

) If Cii = mipo, ik = 0 and ny, = 0 for k € {1,2}, then the general solution to
system (1.3) is given by (2.2).

9) If Ck€k = N, pe =0 and n, # 0 for k € {1,2}, then the general solution to
system (1.3) is given by (2.8).

h) If Cu&k = nepr and Cemipnlr 7 0 for k € {1,2}, then the general solution to
system (1.3) is given by (2.8).

i) If Gk # nkp, pe = 0, for k € {1,2} and (1G2 = &1&2, then the general
solution to system (1.3) is given by (2.22).

3) If G # M, pe = 0, for k € {1,2} and (1¢ # &i&a, then the general
solution to system (1.3) is given by (2.25).

k) If (i # ek, pr # 0, for k € {1,2} and A # 0, then the general solution
to system (1.3) is given by (2.39).

1) If ¢k # Mppik, pr # 0, for k € {1,2} and A = 0, then the general solution
to system (1.3) is given by (2.45).

Where

A = (G164 s + naps + E162)° =4 (C1Co€1Ea + M pia — Cimpapin€ — Campnéa) .

3. Conclusion

In this paper, we investigated the solutions of the following two dimensional system
of difference equations

_ 1 w Cih (9n) +mh (9n_1)
Wntl =9 (g( n) pih (9y) + &1k (19,”)>’ -
-1 29 (wn) + 129 (W—1) ’
Uner =h (h ) 129 (@n) + 29 <wn_1>> ’

where the parameters (g, nk, pk, &, for k& € {1,2} are real numbers, the initial
values w_;, ¥_y, for I € {0,1} are real numbers, g and h are continuous and strictly
monotone functions, g (R) =R, h(R) =R, g(0) =0, h(0) =0
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