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Abstract In this paper, we propose a stochastic SIV epidemic model with
population migration and analyze its stochastic stability and bifurcation. By
utilizing polar coordinate transformation, stochastic averaging method and
singular boundary theory, we prove the stochastic local and global stability of
the system. Moreover, we derive sufficient conditions for the system to undergo
the stochastic pitchfork bifurcation and Hopf bifurcation. Finally, numerical
simulations are performed to verify the theoretical results.
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1. Introduction

Rubella is a highly contagious and serious human disease caused by the rubella
virus. Pregnant women and children are at high risk of contracting rubella [21,32].
If a pregnant woman contracts the virus during the first trimester of pregnancy, it
can potentially result in premature birth, miscarriage or even fetal abnormalities.
Typical symptoms of rubella infection in children are fever, rash, loss of appetite
and can even lead to serious complications. Therefore, it is crucial for children
and pregnant women to receive the MMR (measles, mumps and rubella) vaccine to
prevent this viral disease.

Mathematicians have been using mathematical means to study infectious dis-
eases for over a century. These studies [13, 17] have provided important theoreti-
cal foundations for understanding the mechanisms of disease transmission and for
developing effective prevention and control strategies. In this process, they have
continuously attempted to construct various mathematical models to explore the
dynamics of disease spreading, and have analyzed the asymptotic behavior of these
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epidemic models. In 1932, for example, Kermack and Mckendrick [11] created the
classical compartment model, which has served as a crucial theoretical basis for
subsequent infectious disease research and is still widely used today. Additionally,
Alexander and Moghadas [1] introduced an SIV model with a nonlinear incidence
rate that includes the model with susceptible individuals, infected individuals and
perfect vaccination as follows

dS(t) = [(1− p)Π− β (1 + νI(t)) I(t)S(t)− µS(t)] dt,

dI(t) = [β (1 + νI(t)) I(t)S(t)− (µ+ α) I(t)] dt,

dV (t) = [pΠ+ αI − µV ] dt.

(1.1)

The authors demonstrated that model (1.1) experiences a supercritical Hopf bifur-
cation and a subcritical Hopf bifurcation, respectively. It is worth noting that such
an infectious disease spreads unidirectionally within a population, and thus this
model is suitable for describing diseases with permanent immunity. Considering
the characteristics of various infectious diseases and the effectiveness of vaccines,
the disease described by the model is consistent with rubella (see [32]). To better
reflect the actual spread of rubella in a population, we introduce the birth rate
of the susceptible individuals, denoted as b. Moreover, since infected individuals
who become pregnant usually choose to terminate the pregnancy, we propose the
following model that neglects the birth rate of infected individuals

dS(t) = [(1− p)Π + bS(t)− β (1 + νI(t)) I(t)S(t)− µS(t)] dt,

dI(t) = [β (1 + νI(t)) I(t)S(t)− (µ+ α) I(t)] dt,

dV (t) = [pΠ+ αI − µV ] dt,

(1.2)

where S(t), I(t) and V (t) represent susceptible, infective and vaccinated individuals,
respectively. The significance of parameters in model (1.2) is shown in Table 1.
Based on the biological significance, all the parameters of system (1.2) are positive
constants. Further, the flowchart diagram of model (1.2) is shown in Figure 1.

Figure 1. Flowchart diagram of model (1.2).

For convenience, define the basic reproduction number R0 =
β(1− p)Π

(µ− b)(µ+ α)
and

∆ =
(−µ− α+ (1− p)Πν)

2
β + 4ν (α+ µ)
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(b− µ) + 4β(µ+ α)ν(1− p)Π
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Table 1. The significance of parameters in model (1.2).

Parameter Significance

b the birth rate of susceptible individuals

α the recovery rate

µ the natural death rate

p the proportion of immigrants who are vaccinated

Π the number of immigrants per unit of time

β the rate of disease infection

in system (1.2).

Lemma 1.1. In model (1.2), if b < µ, then

(i) There is a disease-free equilibrium point E0

(
(1−p)Π
µ−b , 0, pΠ

µ

)
. When R0 < 1,

E0 is locally stable, and when R0 > 1, E0 is unstable.

(ii) When ∆ > 0 and ν > max{
√
∆−µ−α
Π(1−p) , α+µ−

√
∆

Π(1−p) }, the endemic equilibrium point

E∗
1 (S

∗
1 , I

∗
1 , V

∗
1 ) exists, where S∗

1 =
√
∆−µ−α−(1−p)Πν

2ν(b−µ) , I∗1 =
√
∆−µ−α+(1−p)Πν

2ν(α+µ) ,

V ∗
1 =

pΠ+αI∗
1

µ .

In particular, we only discuss the stochastic bifurcation at the endemic equilib-
rium point E∗

1 (S
∗
1 , I

∗
1 , V

∗
1 ) in this paper.

First, we perform an equivalence transformation on system (1.2) with respect to
the equilibrium point E∗

1 to obtain the following system

dS(t) = [b (S(t)−S∗
1 )+β (1+νI∗1 ) I

∗
1S

∗
1−β (1+νI(t)) I(t)S(t)

−µ (S(t)−S∗
1 )] dt,

dI(t) = [β (1+νI(t)) I(t)S(t)−β (1+νI∗1 ) I
∗
1S

∗
1−µ (I(t)−I∗1 )

−α (I(t)−I∗1 )] dt,

dV (t) = [α (I(t)− I∗1 )− µ (V (t)− V ∗
1 )] dt.

(1.3)

However, the spread of diseases is often affected by various uncertain factors
such as temperature, weather and natural disasters. These factors make the study
of the disease transmission complicated and the results difficult to predict. To better
simulate this process, many researchers have considered stochastic effects in their
modeling and proposed stochastic models [4–6, 18, 19, 22, 30, 37, 39]. Therefore, for
system (1.3), we assume that the birth rate of susceptible population and recovery
rate of the infective population are influenced by white noise, i.e., b −→ b+σ1Ḃ1(t),
−α −→ −α + σ2Ḃ2(t), where Bi(t) (i = 1, 2) are mutually independent Brownian
motions, and σi (i = 1, 2) represent the white noise intensity. As a result, we yield
the following stochastic model

dS(t) = [(1− p)Π + bS(t)−β (1+νI(t)) I(t)S(t)−µS(t)] dt

+ σ1 (S(t)−S∗
1 ) dB1(t),

dI(t) = [β (1 + νI(t)) I(t)S(t)− (µ+ α) I(t)] dt+σ2 (I(t)− I∗1 ) dB2(t),

dV (t) = [pΠ+ αI(t)− µV (t)] dt− σ2 (I(t)− I∗1 ) dB2(t).

(1.4)
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It is easy to find that the first two equations and the third equation of model
(1.4) are independent. Therefore, we only need to discuss the first two equations of
model (1.4).

dS(t) = [(1− p)Π + bS(t)− β (1 + νI(t)) I(t)S(t)− µS(t)] dt

+ σ1 (S(t)− S∗
1 ) dB1(t),

dI(t) = [β (1 + νI(t)) I(t)S(t)− (µ+ α) I(t)] dt

+ σ2 (I(t)− I∗1 ) dB2(t).

(1.5)

For the deterministic SIV models, many scholars have studied their dynami-
cal behavior and bifurcation phenomenon, such as [16, 38, 41]. While the theory
of bifurcation in deterministic systems is well-established and has been extensively
explored over a long period of time [7, 8, 14, 31], the theory of stochastic bifurca-
tion is still in its infancy. And based on the existing literature, there are currently
no scholars focusing on the bifurcation phenomena of the stochastic model (1.4).
But Arnold [2] made significant contributions to the development of the theory of
random dynamical systems (RDS). This theory has been applied in many fields
such as biology, mathematics, physics and economics to study stochastic bifurca-
tions and stochastic stability [3, 9, 10, 15, 20, 23, 26, 27, 29, 34, 36, 43]. Although the
development of the RDS theory has contributed to the progress of stochastic bi-
furcation theory, it has not yet formed a complete framework until now. On the
one hand, stochastic bifurcation [42] includes only two types: dynamical bifurcation
(D-bifurcation) and phenomenological bifurcation (P-bifurcation). The system un-
dergoes a D-bifurcation if the sign of the maximum Lyapunov exponent suddenly
changes, and from this perspective, the D-bifurcation is a dynamical concept. The
system undergoes a P-bifurcation, which refers to a change in the shape of the sta-
tionary probability density function and hence the P-bifurcation is a static concept.
On the other hand, scholars have not established a standardized approach to judge
the stochastic bifurcation of most models. There are primarily two methods for
studying stochastic bifurcation. One approach is to approximate a two-dimensional
Markov diffusion process by stochastic averaging method and to determine whether
the approximated process undergoes bifurcation. An alternative approach is to
determine it directly by definition. However, not all equations have analytical so-
lutions corresponding to the Fokker-Planck-Kolmogorov (FPK) equation. Nia and
Akrami [25] considered a vocal fold model perturbed by white noise. They em-
ployed polar coordinate transformation, Taylor expansion, and stochastic averaging
method to obtain the conclusion of the existence of P-bifurcation in the stochastic
model. Zhang and Yuan [40] investigated the bifurcation in a stochastic logistic
model with distributed delays in the weak kernel. By solving the FPK equation for
the original equation, they derived the sufficient conditions for the P-bifurcation in
the system.

The rest of the paper is arranged as follows. In Section 2, we provide some
mathematical definitions. In Section 3 we obtain a two-dimensional Markov process
that weakly converges from the original process. Section 4 is devoted to studying
the stochastic local and global stability of the original system (1.4) by dimension
reduction, stochastic averaging method, the maximum Lyapunov exponent and the
singular boundary theory. In Section 5, we derive sufficient conditions for the
stochastic pitchfork bifurcation and Hopf bifurcation to occur in system (1.4). In
Section 6, we use numerical examples to verify the theoretical results in this paper.
The last section ends with a conclusion.
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2. Mathematical preliminaries

In this paper, unless otherwise specified, we use the following notations. Let
(Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions. We let E represent the probability expectation with respect to P.
Next, we give the definitions of stochastic bifurcation, see [9].

Definition 2.1. (D-bifurcation) Dynamical bifurcation is concerned with a family
RDS which is differential and has invariant measure µα. If there exist a constant
αD satisfying in any neighborhood of αD, there exist another constant α and the
corresponding invariant measure να ̸= µα satisfying να → µα as α → αD. Then,
the constant αD is a point of D-bifurcation.

Definition 2.2. (P-bifurcation) Phenomenological bifurcation is concerned with
the change in the shape of stationary probability density of a family RDS as the
change of the parameter. If there exists a constant αP satisfying in any neighbor-
hood of αP , there exist other two constant α1, α2 and their corresponding invariant
measures pα1 , pα2 satisfying pα1 and pα2 are not equivalent. Then the constant αP

is a point of P-bifurcation.

Definition 2.3. (Stochastic pitchfork bifurcation) In the viewpoint of P-bifurcation:
The stationary solution of the FPK equation corresponding to the stochastic differ-
ential equation changes from one peak to two peaks.

In the viewpoint of D-bifurcation: If there exists a constant α0 satisfying the
following conditions.

(i) When α < α0, the stochastic differential equation has only one invariant
measure µ0, moreover µ0 is stable.

(ii) When α = α0, the invariant measure µ0 loses its stability and becomes un-
stable.

(iii) When α > α0, the stochastic differential equation has three invariant measures
µ0, µ1 and µ2, both µ1 and µ2 are stable.

If the stochastic bifurcation of a stochastic differential equation has the above
characteristic, then the stochastic differential equation occurs stochastic pitchfork
bifurcation at α = α0.

Definition 2.4. (Stochastic Hopf bifurcation) In the viewpoint of P-bifurcation:
The stationary solution of the FPK equation which is corresponded with the stochas-
tic differential equation changes from peak to crater.

In the viewpoint of D-bifurcation: If one of the invariant measures of the stochas-
tic differential equation loses its stability and becomes unstable. Meanwhile there
at least appears one new invariant measure.

If the stochastic bifurcation of a stochastic differential equation has the above
characteristic, then the stochastic differential equation occurs stochastic Hopf bi-
furcation.

3. Model analysis

Without loss of generality, we discuss the properties of equilibrium point (S∗
1 , I

∗
1 )

by translation transformations for system (1.5). Let X (t) = S (t) − S∗
1 , Y (t) =
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I (t)− I∗1 . Then we have that

dX(t) = [(−β (νI∗1 + 1) I∗1 + b− µ)X(t)− β (2νI∗1 + 1)S∗
1Y (t)

− β (2νI∗1 + 1)X(t)Y (t)− βνS∗
1Y

2(t)− βνX(t)Y 2(t)]dt

+ σ1X(t)dB1(t),

dY (t) = [β (νI∗1+1) I∗1X(t)+(β (2νI∗1+1)S∗
1−µ−α)Y (t)

+ β (2νI∗1 + 1)X(t)Y (t) + βνS∗
1Y

2(t)+βνX(t)Y 2(t)]dt

+ σ2Y (t)dB2(t).

(3.1)

Next, we perform a stretching transformation of equation (3.1) by

aijk = εāijk, bimn =
√
εb̄imn, i ∈ {1, 2}, j, k ∈ {0, 1, 2}, m, n ∈ {0, 1},

where aijk and bimn represent the coefficients of the drift term XjY k and the
diffusion term XmY n of equation i, respectively. ε is a sufficient small positive
number. For convenience, we drop the bars from the scaled variables and have that

dX(t) = ε[(−β (νI∗1 + 1) I∗1 + b− µ)X(t)− β (2νI∗1 + 1)S∗
1Y (t)

− β (2νI∗1 + 1)X(t)Y (t)− βνS∗
1Y

2(t)

− βνX(t)Y 2(t)]dt+
√
εσ1X(t)dB1(t),

dY (t) = ε[β (νI∗1 + 1) I∗1X(t) + (β (2νI∗1 + 1)S∗
1 − µ− α)Y (t) +β (2νI∗1 + 1)

×X(t)Y (t)+βνS∗
1Y

2(t) + βνX(t)Y 2(t)]dt+
√
εσ2Y (t)dB2(t).

(3.2)

We then employ the polar transformation X = r cos θ, Y = r sin θ to the stochas-
tic system (3.2), which means applying Itô’s formula to r =

√
X2 + Y 2, θ =

arctan(Y/X), respectively. We can obtain

dr = ε[βν(cos4 θ − sin θ cos3 θ − cos2 θ + sin θ cos θ)r3 + β((1 + ν(2I∗1 − S∗
1 )) cos θ

+ νS∗
1 sin θ − (1 + ν(2I∗1 − S∗

1 )) cos
3 θ − (1 + ν(2I∗1 + S∗

1 )) sin θ cos
2 θ)r2

+ ((−σ2
1

2
− σ2

2

2
) cos4 θ + (β(−ν(I∗1 + 2S∗

1 )I
∗
1 − I∗1 − S∗

1 )+
σ2
2

2
+α+

σ2
1

2
+b) cos2 θ

+ β(ν(I∗1 − 2S∗
1 )I

∗
1 + I∗1 − S∗

1 ) sin θ cos θ + β(2νI∗1S
∗
1 + S∗

1 )− α− µ)r]dt

+
√
εσ1r cos

2 θdB1(t) +
√
εσ2r sin

2 θdB2(t),

dθ = ε[−βν(cos4 θ + sin θ cos3 θ − cos2 θ−sin θ cos θ)r2 − β((1 + ν(2I∗1+S
∗
1 )) cos

3 θ

− (1 + ν(2I∗1 − S∗
1 )) sin θ cos

2 θ)− (1 + ν(2I∗1 + S∗
1 )) cos θ − νS∗

1 sin θ)r

− ((−σ2
1 − σ2

2) sin θ cos
3 θ − β(νI∗1 (I

∗
1 − 2S∗

1 ) + I∗1 − S∗
1 ) cos

2 θ

+ (β(ν(−I∗1 (I
∗
1 + 2S∗

1 )−I∗1−S∗
1 ) + σ2

2 + b+ α) sin θ cos θ − β(2νI∗1+1)S
∗
1 )]dt

−
√
εσ1 sin θ cos θdB1(t)+

√
εσ2 sin θ cos θdB2(t).

(3.3)

It is very difficult to compute the analytical solution of the FPK equation corre-
sponding to the two-dimensional system (3.3). Therefore, in this case, we choose
the stochastic averaging method to achieve the dimension reduction of system (3.3).
According to Khasminskii limiting theorem [12], when the intensity of the white
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noise or ε is sufficiently small, the process (r (t) , θ (t)) weakly converge to a two-
dimensional Markov diffusion process. We can yield the Itô stochastic differential
equation by utilizing stochastic averaging method as follows{

dr =m1 (r) dt+ σ1 (r) dBr(t),

dθ =m2 (r) dt+ σ2 (r) dBθ(t),
(3.4)

where Br(t), Bθ(t) are mutually independent Brownian motions. Moreover,m1 (r)

m2 (r)

 is the drift coefficient vector,

σ1 (r) 0

0 σ2 (r)

 is the diffusion coefficient

matrix,

m1 (r) = ε

(
1

2

(
β
(
−νI∗1

2 + (2νS∗
1 − 1) I∗1 + S∗

1

)
+ b− 2µ− α

)
+
11

16

(
σ2
1 + σ2

2

))
r − 1

8
εβνr3,

m2 (r) =
1

2
εβ
(
νI∗1

2 + (2νS∗
1 + 1) I∗1 + S∗

)
+

1

8
εβνr2,

σ2
1 (r) =

3

8
ε
(
σ2
1 + σ2

2

)
r2,

σ2
2 (r) =

1

8
ε
(
σ2
1 + σ2

2

)
.

As a matter of convenience, we define the following variables:

τ1 := ε
(
β
(
−νI∗1

2 + (2νS∗
1 − 1) I∗1 + S∗

1

)
+ b− 2µ− α

)
,

τ2 := 11ε
(
σ2
1 + σ2

2

)
,

τ3 := −εβν,

τ4 := 3ε
(
σ2
1 + σ2

2

)
,

τ5 := εβ
(
νI∗1

2 + (2νS∗
1 + 1) I∗1 + S∗

1

)
,

τ6 := ε
(
σ2
1 + σ2

2

)
.

Thus, we can rewrite system (3.4) as
dr =

[(
1

2
τ1 +

1

16
τ2

)
r +

1

8
τ3r

3

]
dt+

(
1

8
τ4r

2

) 1
2

dBr(t),

dθ =

[
1

2
τ5 −

1

8
τ3r

2

]
dt+

(
1

8
τ6

) 1
2

dBθ(t).

(3.5)

It is easy to notice that the first equation in system (3.5) does not contain θ.
Therefore, we just need to focus on the following equation

dr =

[(
1

2
τ1 +

1

16
τ2

)
r +

1

8
τ3r

3

]
dt+

(
1

8
τ4r

2

) 1
2

dBr(t). (3.6)

Because this paper mainly focuses on the stability and bifurcation of the stochastic
system (3.2), it is necessary to ensure that τ4 ̸= 0. Therefore, we can see that neither
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τ2 nor τ6 is zero. System (3.5) obtained by weak convergence of the stochastic
averaging method is not only formally simplified, but more importantly, we obtain
a system with two equations that are independent of each other, which provides a
great convenience for the later study of stochastic bifurcation. Furthermore, in [42],
it is mentioned that the pth moment of (r(t), θ(t)) in system (3.3) converge to
the corresponding the pth moment in system (3.5). In the circumstances where
ξ(t) := dB(t)/dt is ergodic, this convergence also holds as t approaches infinity.
For sufficiently small ε, the stability and invariant measure of system (3.3) can be
obtained by analyzing system (3.5). Thus, we will only investigate the stability and
existence of invariant measure of system (3.6).

4. Stochastic stability

From the discussion in the previous section, we know that the stability of the equi-
librium point E∗

1 (S
∗
1 , I

∗
1 , V

∗
1 ) of system (1.4) is equivalent to the equilibrium point

r = 0 of system (3.6) by dimension reduction and stochastic averaging method.
Therefore, we will only explore the stochastic local and global stability of the equi-
librium point r = 0 of system (3.6).

4.1. Stochastic local stability

In this subsection, we first determine the stochastic local stability of the equilib-
rium point r = 0 of the linear equation corresponding to system (3.6). Then, we
compute the maximum Lyapunov exponent of the solution process r(t) and derive
the theorem based on its robustness as follows.

Theorem 4.1. The following conclusions hold.

(i) When τ1/2 + τ2/16− τ4/16 < 0, i.e.

σ2
1 + σ2

2 < −
(
β
(
−νI∗1

2 + (2νS∗
1 − 1) I∗1 + S∗

1

)
+ b− 2µ− α

)
,

the stochastic system (3.6) is stable at the equilibrium point r = 0. Then
the stochastic system (1.4) is stable at the endemic equilibrium point E∗

1 (S
∗
1 ,

I∗1 , V
∗
1 ).

(ii) When τ1/2 + τ2/16− τ4/16 > 0, i.e.

σ2
1 + σ2

2 > −
(
β
(
−νI∗1

2 + (2νS∗
1 − 1) I∗1 + S∗

1

)
+ b− 2µ− α

)
,

the stochastic system (3.6) is unstable at the equilibrium point r = 0. Then
the stochastic system (1.4) is unstable at the endemic equilibrium point E∗

1 (S
∗
1 ,

I∗1 , V
∗
1 ).

Proof. As for (3.6), the corresponding homogeneous linear equation at r=0 is

dr =

(
1

2
τ1 +

1

16
τ2

)
rdt+

(
1

8
τ4r

2

) 1
2

dBr(t). (4.1)

Let V (t) = ln r(t), utilizing Itô’s formula to V yields that

dV (t) =

(
1

2
τ1 +

1

16
τ2 −

1

16
τ4

)
dt+

(
1

8
τ4

) 1
2

dBr(t). (4.2)
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Thus, integrating from 0 to t on the both sides of (4.2), that is

V (t)− V (0) =

(
1

2
τ1 +

1

16
τ2 −

1

16
τ4

)
t+M (t) , (4.3)

where M (t) =
∫ t

0
(τ4/8)

1
2 dBr(s). Hence, according to the strong law of large

numbers, we have

lim sup
t→∞

M (t)

t
= 0. (4.4)

Compute maximum Lyapunov exponent

γ = lim sup
t→∞

1

t
ln r(t) =

1

2
τ1 +

1

16
τ2 −

1

16
τ4. (4.5)

We notice that γ < 0 when τ1/2+ τ2/16− τ4/16 < 0. Based on Oseledec’s mul-
tiplicative ergodic theorem [28], this linear equation (4.1) is asymptotically stable
with probability one. By Khasminskii’s conclusion [35] on the stability and asymp-
totic stability of higher order perturbations, we can conclude that the equilibrium
point r = 0 of system (3.6) is stable. Similarly, we can prove the unstable case in
the same way. The proof is complete.

4.2. Stochastic global stability

Next, applying the singular boundary theory, we obtain the sufficient condition for
the stochastic global stability of the equilibrium point E∗

1 (S
∗
1 , I

∗
1 , V

∗
1 ) of system

(1.4).

Theorem 4.2. When 8τ1 + τ2 − τ4 < 0, i.e.

σ2
1 + σ2

2 < −
(
β
(
−νI∗1

2 + (2νS∗
1 − 1) I∗1 + S∗

1

)
+ b− 2µ− α

)
,

the stochastic system (3.6) is globally stable at the equilibrium point r = 0. Then the
stochastic system (1.4) is globally stable at the endemic equilibrium point E∗

1 (S
∗
1 , I

∗
1 ,

V ∗
1 ).

Proof. According to the classification of singular boundaries, when r = 0, the
diffusion coefficient σ1(r) = 0. Therefore, r = 0 is the first kind of singular boundary
of system (3.6). αl, βl and cl represent the diffusion exponent, drift exponent and
character value of the left boundary r = 0, respectively. By a simple calculation,
we can get

αl = 2, βl = 1, cl = lim
r→0+

2[(τ1/2 + τ2/16)r + τ3r
3/8]r2−1

τ4r2/8
=

8τ1 + τ2
τ4

.

By referring to Table 2.8-2 of [42], we can derive the following conclusions:

• if 8τ1+ τ2− τ4 < 0, i.e. cl < 1, the left boundary r = 0 is attractively natural;

• if 8τ1 + τ2 − τ4 = 0, i.e. cl = 1, the left boundary r = 0 is strictly natural;

• if 8τ1 + τ2 − τ4 > 0, i.e. cl > 1, the left boundary r = 0 is repulsively natural.
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Moreover, when r = +∞, the drift coefficient m1(r) = +∞. Therefore, r = +∞
is the second kind of singular boundary at infinity of system (3.6). αr, βr and cr
represent the diffusion exponent, drift exponent and character value of the right
boundary r = +∞, respectively. We can easily compute

αr = 2, βr = 3, cr = lim
r→+∞

−2[(τ1/2 + τ2/16)r + τ3r
3/8]r2−3

τ4r2/8
= −2τ3

τ4
.

Due to m1(+∞) = −∞, σ2
1(+∞) = +∞, βr > αr − 1 and βr > 1, by Table 2.8-4 of

[42], we conclude that the right boundary r = +∞ belongs to the entrance boundary.
Hence, the global stability of the solution of system (3.6) is determined by the left
boundary. If the left boundary is an attractive boundary, all solution curves of
system (3.6) will approach the left boundary as they enter from the right boundary.
This implies that the equilibrium point r = 0 of system (3.6) is stochastically
globally stable. This completes the proof.

5. Stochastic bifurcation

In this section we will discuss the stochastic Hopf bifurcation in the viewpoint of
the P-bifurcation and analyze the stochastic pitchfork bifurcation in the viewpoint
of the D-bifurcation. We will also provide sufficient conditions for system (3.6) to
undergo the stochastic bifurcation.

5.1. Stochastic Hopf bifurcation

Firstly, we consider the following FPK equation corresponding to system (3.6).

∂P (r, t)

∂t
= − ∂

∂r

[((
1

2
τ1+

1

16
τ2

)
r+

1

8
τ3r

3

)
P (r, t)

]
+
1

2

∂2

∂r2

[
1

8
τ4r

2P (r, t)

]
.

(5.1)
Hence, the stationary probability density P (r) is the solution of the following de-
generate system, i.e.,

0 = − ∂

∂r

[((
1

2
τ1 +

1

16
τ2

)
r +

1

8
τ3r

3

)
P (r)

]
+

1

2

∂2

∂r2

[
1

8
τ4r

2P (r)

]
. (5.2)

The solution of FPK equation (5.2) is

P (r) =



δ (r) , τ4 ≥ 8τ1 + τ2,

r
8τ1+τ2−2τ4

τ4 · exp
(

τ3
τ4
r2
)

Γ
(

8τ1+τ2−τ4
2τ4

)(
− τ4

τ3

) 8τ1+τ2−τ4
2τ4

, τ4 < 8τ1 + τ2,
(5.3)

where Γ (·) is Gamma function. Furthermore, define

Nτ :=

[
Γ

(
8τ1 + τ2 − τ4

2τ4

)(
−τ4
τ3

) 8τ1+τ2−τ4
2τ4

]−1

.
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By solving P ′ (r) = 0, namely,

Nτ ·
(
8τ1 + τ2 − 2τ4

τ4
+

2τ3
τ4

r2
)
r

8τ1+τ2−3τ4
τ4 · exp

(
τ3
τ4

r2
)

= 0. (5.4)

We can obtain the extreme value of the probability density function P (r). It is
easy to know that the quantity of the extreme value is determined by the sign of
the parameter 2τ4 − 8τ1 − τ2. If 2τ4 − 8τ1 − τ2 < 0, then there are two extreme
values at point r∗1 = 0 and

r∗2 =

√
2τ4 − 8τ1 − τ2

2τ3
,

otherwise only one extreme value at point r∗1 = 0. Therefore, we yield the following
result.

Lemma 5.1. The following conclusions hold for the probability density function
P (r):

(i) If 4τ1+ τ2/2 < τ4 < 8τ1+ τ2, P (r) is monotonically decreasing in the interval
(0,+∞) and tends to infinity as r → 0+. In this situation, the solution
trajectories of system (3.6) are concentrated in a neighborhood of r = 0.

(ii) If (8τ1 + τ2)/3 < τ4 ≤ 4τ1 + τ2/2, P (r) reaches a minimum value at point
r = 0 and a maximum value at point r = r∗2. In addition, the derivative of
P (r) does not exist at point r = 0. In this case, the solution trajectories of
system (3.6) are concentrated in a neighborhood of r = r∗2.

(iii) If 0 < τ4 ≤ (8τ1 + τ2)/3, P (r) has the minimum value at point r = 0 and
maximum value at point r = r∗2. Moreover, the derivative of P (r) exists at
point r = 0.

Then, we give the following theorem.

Theorem 5.1. System (3.6) undergoes the stochastic P-bifurcation as the parame-
ter τ4 passes through 4τ1+τ2/2 and (8τ1+τ2)/3. Furthermore, considering the effect
of the noise intensity on the P-bifurcation, the critical values for the bifurcation are
σ2
1 + σ2

2 = −8τ1/5ε and σ2
1 + σ2

2 = −4τ1/ε, when τ1 < 0 is satisfied.

Next, we also explore the P-bifurcation of the stochastic system (3.1). Thus,
we will discuss its joint probability density function P̃ (X,Y ). In previous section,
we perform the polar coordinate transformation in order to apply the stochastic
averaging method. Consequently, P̃ (X,Y ) = |J |P (r, θ), where the determinant of
the Jacobian matrix J of the polar coordinate transformation is given by |J | = 1/r.

Combining with the marginal probability density function P (r) =
∫ π

2

−π
2
P (r, θ) dθ

of joint probability density function P̃ (X,Y ) (see [33]), we can calculate

P̃ (X,Y ) =

(
X2 + Y 2

) 8τ1+τ2−3τ4
2τ4 · exp

(
τ3
τ4

(
X2 + Y 2

))
πΓ
(

8τ1+τ2−τ4
2τ4

)(
− τ4

τ3

) 8τ1+τ2−τ4
2τ4

. (5.5)

Further, define Mτ :=

[
πΓ
(

8τ1+τ2−τ4
2τ4

)(
− τ4

τ3

) 8τ1+τ2−τ4
2τ4

]−1

. Similar to the ap-

proach discussed in Lemma 5.1, we focus on describing the variation of the prob-
ability density function as the parameter τ4 changes. In addition, we determine
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the extreme value points of system (3.1) by calculating ∇P̃ (X,Y ) = 0, where ∇
denotes the gradient in R2 and

∂P̃ (X,Y )

∂X

= 2MτX
(
X2+Y 2

) 8τ1+τ2−5τ4
2τ4

(
τ3
τ4
(X2+Y 2)+

8τ1+τ2−3τ4
2τ4

)
exp

(
τ3
τ4

(
X2+Y 2

))
,

∂P̃ (X,Y )

∂Y

= 2MτY
(
X2+Y 2

) 8τ1+τ2−5τ4
2τ4

(
τ3
τ4
(X2+Y 2)+

8τ1+τ2−3τ4
2τ4

)
exp

(
τ3
τ4

(
X2+Y 2

))
.

As a consequence, we obtain the following lemma.

Lemma 5.2. The following conclusions hold for the joint probability density func-
tion P̃ (X,Y ).

(i) If τ4 ≥ (8τ1 + τ2)/3, the joint probability density function P̃ (X,Y ) tends to
infinity as (X,Y ) → (0, 0).

(ii) If (8τ1 + τ2)/5 < τ4 < (8τ1 + τ2)/3, P̃ (X,Y ) reaches a minimum value at
point (0, 0) and a maximum value on cycle X2 + Y 2 = (3τ4 − 8τ1 − τ2)/2τ3.
Moreover, the partial derivatives of P̃ (X,Y ) are discontinuous at point (0, 0).

(iii) If 0 < τ4 ≤ (8τ1 + τ2)/5, P̃ (X,Y ) has a minimum value at point (0, 0) and
a maximum value on cycle X2 + Y 2 = (3τ4 − 8τ1 − τ2)/2τ3. In addition,
P̃ (X,Y ) is continuously differentiable at (0, 0).

Remark 5.1. In the viewpoint of the biological significance in Lemma 5.2, for
case (i), P̃ (X,Y ) tends to infinity at point (0, 0). According to Namachchivaya’s
theory [24] yields that the sample paths (X(t), Y (t)) eventually stay near (0, 0),
which implies that the susceptible individuals S(t) and infected individuals I(t)
eventually remain near S∗

1 and I∗1 with high probability, respectively, thus leading
to the persistence of the disease.

Theorem 5.2. System (3.1) undergoes stochastic P-bifurcation as the parameter
τ4 passes through (8τ1 + τ2)/5 and (8τ1 + τ2)/3.

5.2. Stochastic pitchfork bifurcation

Let ut = (−τ3/8)
1
2 r, and according to the Itô formula yields that

dut =

[(
1

2
τ1 +

1

16
τ2

)
ut − u3

t

]
dt+

(
1

8
τ4

) 1
2

utdBr(t), (5.6)

which is equivalent to the following Stratonovich stochastic differential equation

dut =

[(
1

2
τ1 +

1

16
τ2 −

1

16
τ4

)
ut − u3

t

]
dt+

(
1

8
τ4

) 1
2

ut ◦ dBr(t). (5.7)

Set α = τ1/2 + τ2/16− τ4/16. We can rewrite system (5.7) as

dut =
(
αut − u3

t

)
dt+

(
1

8
τ4

) 1
2

ut ◦ dBr(t), (5.8)
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which is solved by

u → φα (t, ω)u =
u · exp

(
αt+

(
1
8τ4
) 1

2 Br(t)
)

(
1 + 2u2

∫ t

0
exp

(
2αs+ 2

(
1
8τ4
) 1

2 Br(s)
)
ds
) 1

2

, (5.9)

where u is the initial value of ut. Before studying the stochastic pitchfork bifurca-
tion, we need some preparatory work as detailed on page 101 of reference [2]. Thus,
we will transform system (3.6) into the following local RDS φα (t, ω).

Lemma 5.3. For the local RDS φα (t, ω) : Dα
t (ω) → Rα

t (ω) generated by (3.6),
the domain Dα

t (ω) and range Rα
t (ω) of φα (t, ω) can be defined as follows,

Dα
t (ω) =

{
R, t ≥ 0,

(−dαt (ω) , dαt (ω)) , t < 0,
(5.10)

and

Rα
t (ω) = Dα

−t (ϑtω) =

{
(−rαt (ω) , rαt (ω)) , t > 0,

R, t ≤ 0,
(5.11)

where ϑt means a flow of Ω and

dαt (ω) =
1(

2
∣∣∣∫ t

0
exp

(
2αs+ 2( 18τ4)

1
2Br(s)

)
ds
∣∣∣) 1

2

> 0, (5.12)

and

rαt (ω) = dα−t (ϑtω) =
exp

(
αt+

(
1
8τ4
) 1

2 Br(t)
)

(
2
∫ t

0
exp

(
2αs+ 2

(
1
8τ4
) 1

2 Br(s)
)
ds
) 1

2

> 0. (5.13)

Define Dα (ω) :=
⋂

t∈R Dα
t (ω), which is the collection of initial value u ensuring the

non-explosion of RDS φα (t, ω)u. Therefore,

Dα (ω) =

{
(−dα (ω) , dα (ω)) , α > 0,

{0}, α ≤ 0,
(5.14)

where

0 < dα (ω) =
1(

2
∫ 0

−∞ exp
(
2αs+ 2( 18τ4)

1
2Br(s)

)
ds
) 1

2

< ∞. (5.15)

Theorem 5.3. Let α = τ1/2+τ2/16−τ4/16, the family of RDS (φα)α∈R generated
by (3.6) undergoes the stochastic pitchfork bifurcation at αD = 0, More precisely:

(i) (φα)α∈R has an invariant measure κα
1,ω = δ0 with Lyapunov exponent λ(κα

1,ω) =
α. Therefore, the invariant measure κα

1,ω loses stability at αD = 0. If α < αD,
δ0 is the unique invariant measure.

(ii) If α > αD, (φα)α∈R has two additional invariant measures κα
2,ω = δdα(ω)

and κα
3,ω = δ−dα(ω). Both measures are F0

−∞ measurable and have negative
Lyapunov exponents λ(κα

i,ω) = −2α, (i = 2, 3).
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For φα−invariant measure κα
i,ω(i = 1, 2, 3), which are all Markov measures, whose

probability density functions are the solution of the corresponding FPK equations.

Proof. The existence of the ergodic invariant measures is discussed in [2]. Further,
we calculate the Lyapunov exponent to judge the stability of the invariant measure.

The linearized RDS ζt = Dφα (t, ω, u) ζ satisfies

dζt = [α− 3(φα(t, ω)u)
2]dt+

(
1

8
τ4

) 1
2

ζt ◦ dBr(t),

whose solution ζt is given by

Dφα(t, ω, u)ζ = ζ exp

(
αt+

(
1

8
τ4

) 1
2

Br (t)− 3

∫ t

0

(φα(s, ω)u)
2
ds

)
.

Consequently, when κα
i,ω = δui(ω)(i = 1, 2, 3) are φα−invariant measures, their

Lyapunov exponents are

λ
(
κα
i,ω

)
= lim

t→∞

1

t
ln ∥Dφα(t, ω, u)ζ∥

= α− 3 lim
t→∞

1

t

∫ t

0

(φα(s, ω)u)
2ds

= α− 3Eu2
i ,

(5.16)

provided that the integrability conditions (IC) u2
i ∈ L1(P) hold.

(i) For α ∈ R, the IC for κα
1,ω = δ0 is trivially satisfied and we can obtain

λ(κα
1,ω) = α. It follows that κα

1,ω is stable for α < 0 and unstable for α > 0.

(ii) For α > 0, the invariant measure κα
2,ω = δdα(ω) is F0

−∞ measurable. The prob-
ability density function pα1 (x) of κ

α
2,ω satisfies the FPK equation as follows:

0 = − ∂

∂x

[((
α+

1

16
τ4

)
x− x3

)
pα1 (x)

]
+

1

2

∂2

∂x2

[
1

8
τ4x

2pα1 (x)

]
, (5.17)

which possesses the unique probability density solution

pα1 (x) =


0, x ≤ 0,

Nαx
16α
τ4

−1 exp

(
−8x2

τ4

)
, x > 0,

(5.18)

with the normalizing parameter Nα satisfying N−1
α = Γ (8α/τ4) (8/τ4)

8α/τ4 ,
where Γ (·) is Gamma function. Because

Eu2 = E (dα (ω))
2
=

∫ ∞

0

u2pα1 (u)du < ∞,

then IC is satisfied. Moreover,

(dα (ϑtω))
2 =

exp
(
2αt+ 2( 18τ4)

1
2Br(t)

)
2
∫ t

−∞ exp
(
2αs+ 2( 18τ4)

1
2Br(s)

)
ds

.
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Let Φ (t) =
∫ t

−∞ exp
(
2αs+ 2( 18τ4)

1
2Br(s)

)
ds. Then

(dα (ϑtω))
2 =

exp
(
2αt+ 2( 18τ4)

1
2Br(t)

)
2
∫ t

−∞ exp
(
2αs+ 2( 18τ4)

1
2Br(s)

)
ds

=
Φ′ (t)

2Φ (t)
.

Applying the ergodic theorem leads to

E (dα (ω))
2
= lim

t→∞

1

t

∫ t

0

(dα (ϑtω))
2
ds =

1

2
lim
t→∞

1

t
lnΦ (t) = α. (5.19)

Thus, by (5.16), we have λ
(
κα
2,ω

)
= −2α. Therefore, the invariant measure

κα
2,ω is stable for α > 0.

(iii) For α > 0, the invariant measure κα
3,ω = δ−dα(ω) is F0

−∞ measurable, and
its probability density pα2 (x) satisfied with pα2 (x) = pα1 (−x). In addition, we

have E (−dα (ω))
2
= E (dα (ω))

2
= α and hence λ

(
κα
3,ω

)
= −2α. Similarly,

we conclude that the invariant measure κα
3,ω is stable for α > 0.

Therefore, system (1.5) undergoes a D-bifurcation. Similar to the analysis of
(5.1), we can prove that two families of densities pα1 (x) and pα2 (x) undergo the
P-bifurcation at τ4/16. Hence, the stochastic system (1.5) undergoes the stochastic
pitchfork bifurcation. As a result, the proof is complete.

Next, Figure 2 describes the change in the number and stability of the invariant
measures for a stochastic pitchfork bifurcation.

D P

𝑝1
𝛼

𝑝1
𝛼

𝑝2
𝛼

𝛼

𝛼𝐷 = 0

𝜅2,𝜔
𝛼

invariant measure

𝜅3,𝜔
𝛼

𝜅1,𝜔
𝛼 =𝛿0

𝑝2
𝛼

𝛼𝑝 =
𝜏4
16

Figure 2. Bifurcation diagram of the stochastic pitchfork bifurcation.

Remark 5.2. If we choose the intensity of white noise as the bifurcation parameter
value, then when

σ2
1 + σ2

2 = −
(
β
(
−νI∗1

2 + (2νS∗
1 − 1) I∗1 + S∗

1

)
+ b− 2µ− α

)
,

the stochastic system (3.6) undergoes a stochastic pitchfork bifurcation.
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6. Numerical simulations

In this section, we verify the theorems of the stochastic model (3.1) by several
numerical examples. Firstly, we employ the Euler-Maruyama method to provide
numerical solutions for model (3.1), resulting in the following discretized equations
Xi+1 =Xi + [(−β (νI∗1 + 1) I∗1 + b− µ)Xi − (β (2νI∗1 + 1)S∗

1 )Yi

− β (2νI∗1 + 1)XiYi − βνS∗
1Yi

2 − βνXiYi
2]∆t+ σ1Xi

√
∆tςi,

Yi+1 =Yi + [β (νI∗1 + 1) I∗1Xi + (β (2νI∗1 + 1)S∗
1 − µ− α)Yi + β (2νI∗1 + 1)XiYi

+ βνS∗
1Yi

2 + βνXiYi
2]∆t+σ2Yi

√
∆tϱi,

(6.1)

where ςi, ϱi(i = 1, 2, . . . ) are independent Gaussian random variables which obey
the norm distribution N(0, 1).

Example 6.1. Let Π = 50, β = 0.03, µ = 0.6, α = 0.7, p = 0.9, ν = 0.2, ε = 0.001,

σ1 = 0.1, σ2 = 0.1 and the initial values X (0) = 1 and Y (0) = 1 in system (3.1).

We simulate the stochastic stability of point (0, 0) for system (3.1).

Let b = 0.4884 such that τ1/2 + τ2/16− τ4/16 < 0 satisfies the condition (i) of
Theorem 4.1. Then, the trivial solution of system (3.1) is stable with probability
one. From Figure 3(a), we can see that sample path from the point (1, 1) converges
to the origin point (0, 0). Furthermore, let b = 0.5 such that τ1/2+τ2/16−τ4/16 > 0
satisfies the condition (ii) of Theorem 4.1. Hence, the origin point (0, 0) is unstable
with probability one. Figure 3(b) depicts that sample path from the point (1, 1)
stays away from the origin point (0, 0).
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(a) b = 0.4884
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(b) b = 0.5

Figure 3. Phase portraits for the stable and unstable solutions of system (3.1), respectively.

Example 6.2. For system (3.1) with parameters Π = 50, β = 0.03, µ = 0.6,

α = 0.7, p = 0.9, ν = 0.2, ε = 0.001, σ1 = 0, σ2 = 0 and the initial values X (0) = 1

and Y (0) = 1, we consider the effect of noise on the phase portraits.

When σ1 = σ2 = 0, the stochastic system (3.1) degenerates the deterministic
system. The phase portrait of the deterministic system is shown in Figure 4(a),
which possesses a limit cycle in this situation. However, the shape of the limit
cycle changes slightly for small noise perturbations in Figure 5, but the limit cycle
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Figure 4. Phase portraits for system (3.1) when σ1 = σ2 = 0.
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(c) σ1 = 0.1, σ2 = 0.1
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(d) σ1 = 0.2, σ2 = 0.2

Figure 5. For b = 0.49, phase portraits of system (3.1) as the noise intensity increases.

disappears when the noise intensity is continuously increasing, and the solution of
system (3.1) tends to be stable under large noise. Furthermore, in Figure 4(b)
and Figure 6, when other parameters are unchanged, we only vary b = 0.492 to
observe the changes of phase portrait and obtain the similar results to Figure 4(a)
and Figure 5. Consequently, the limit cycle will break when the noise intensity
increases to a certain value, i.e., the dynamic behavior of system (3.1) will change
with the addition of noise.

Example 6.3. Consider the qualitative changes of probability density function

P (r) when Π = 10, β = 0.04, µ = 0.055, α = 0.4, p = 0.75, ν = 0.015, b = 0.04,

ε = 0.001 and the initial values X (0) = 1 and Y (0) = 1.

With the help of Maple, we can calculate S∗
1 ≈ 10.5598, I∗1 ≈ 5.1464 and

τ1 = −2.0414×10−4. Next, we discuss the shape of the probability density function
P (r) by varying noise intensity as follows.

(i) Let σ1 = 0.2 and σ2 = 0.5. Therefore, we have −τ1/ε < σ2
1 + σ2

2 ≤ −8τ1/5ε.
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Figure 6. For b = 0.492, phase portraits of system (3.1) as the noise intensity increases.

Then, lim
t→0+

P (r) = +∞. The probability density function P (r) is shown in

Figure 7(a).

(ii) Let σ1 = 0.5 and σ2 = 0.7, and we can yield −8τ1/5ε < σ2
1 + σ2

2 ≤ −4τ1/ε.
Then P (r) has minimum value point r∗1 = 0 and maximum value point r∗2 ≈
41.5019. In addition, the derivative of P (r) at r = 0 does not exist and the
probability density function P (r) is shown in Figure 7(b).

(iii) Let σ1 = σ2 = 0.65 such that σ2
1 + σ2

2 > −4τ1/ε. P (r) possesses minimum
value point r∗1 = 0 and maximum value point r∗2 ≈ 46.4748. Figure 7(c) shows
the probability density function P (r) and the derivative of P (r) exists at
r = 0.

Figure 8 shows the stochastic Hopf bifurcation graph, which region I, region II and
region III represent the range of noise intensity in case (i), case (ii) and case (iii),
respectively.

0 20 40 60 80 100 120 140 160 180 200

r

0

0.01

0.02

0.03

0.04

0.05

0.06

P
(r

)

(a) σ1 = 0.2, σ2 = 0.5

0 20 40 60 80 100 120 140 160 180 200

r

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

P
(r

)

(b) σ1 = 0.5, σ2 = 0.7

0 20 40 60 80 100 120 140 160 180 200

r

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

P
(r

)

(c) σ1 = 0.65, σ2 = 0.65

Figure 7. The probability density function P (r) for system (3.6) under different noise intensity.

Similar to Theorem 5.1, we want to utilize noise intensity as bifurcation parame-
ters to simulate the change in the shape of the probability density function P̃ (X,Y )
in Theorem 5.2. Unfortunately, choosing the noise intensity as parameters may lead
to some inequalities that do not hold in Theorem 5.2. Therefore, we choose b as a
stochastic Hopf bifurcation parameter and give the following example.
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Figure 8. The range of noise intensity of the stochastic Hopf bifurcation for system (3.6).

Example 6.4. Consider the qualitative changes of the probability density function

P (X,Y ) when Π = 50, β = 0.03, µ = 0.6, α = 0.7, p = 0.9, ν = 0.2, ε = 0.001,

σ1 = 0.1, σ2 = 0.1 and the initial values X (0) = 1 and Y (0) = 1.

The Hopf bifurcation values τ4 = (8τ1 + τ2)/5 and τ4 = (8τ1 + τ2)/3 have
been obtained in Section 5. Therefore, we can compute all parameters of the Hopf
bifurcation in the stochastic system (3.1) as shown in Table 2.

Table 2. The main parameters of the Hopf bifurcation in the stochastic system (3.1).

the rate of birth S∗
1 I∗1 τ1 τ2 τ4 (8τ1 + τ2)/3 (8τ1 + τ2)/5

b = 0.489 39.7223 0.4544 −1.7571× 10−5 2.2× 10−4 6× 10−5 2.6478× 10−5 1.5887× 10−5

b = 0.490 39.1463 0.5323 −2.5952× 10−6 2.2× 10−4 6× 10−5 6.6413× 10−5 3.9848× 10−5

b = 0.492 38.1891 0.6735 2.3399× 10−5 2.2× 10−4 6× 10−5 1.3573× 10−4 8.1439× 10−5

(i) If b = 0.489, then τ4 > (8τ1 + τ2)/3. In system (3.1), Figure 9 shows the limit
of the probability density function P̃ (X,Y ) does not exist at (0, 0) and the
sample paths of (X(t), Y (t)) eventually approach point (0, 0) in Figure 12(a).

(ii) If b = 0.490, then (8τ1 + τ2)/5 < τ4 < (8τ1 + τ2)/3. For system (3.1), we
find the partial derivatives of joint probability density function P̃ (X,Y ) do
not exist at point (0, 0) in Figure 10 and the sample paths of (X(t), Y (t)) is
shown in Figure 12(b).

(iii) If b = 0.492, therefore, 0 < τ4 < (8τ1 + τ2)/5. In system (3.1), it can be seen
that the partial derivatives of joint probability density function P̃ (X,Y ) exist
at point (0, 0) in Figure 11 and Figure 12(c) illustrates the sample paths of
(X(t), Y (t)).
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Figure 9. In system (3.1), for b = 0.489, (a) joint probability density function P̃ (X,Y ), (b) the cross

section of P̃ (X,Y ), (c) joint probability density function P̃ (X, 0), (d) the projection of P̃ (X,Y ).
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Figure 10. In system (3.1), for b = 0.490, (a) joint probability density function P̃ (X,Y ), (b) the cross

section of P̃ (X,Y ), (c)joint probability density function P̃ (X, 0), (d) the projection of P̃ (X,Y ).
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Figure 11. In system (3.1), for b = 0.492, (a) joint probability density function P̃ (X,Y ), (b) the cross

section of P̃ (X,Y ), (c) joint probability density function P̃ (X, 0), (d) the projection of P̃ (X,Y ).
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Figure 12. The sample paths of X(t) and Y (t) of system (3.1).

7. Conclusion

In this paper, we focus on the stability and bifurcation of the stochastic SIV epi-
demic model. Firstly, we investigate the stochastic stability of the equilibrium
point E∗

1 by stochastic averaging method, maximum Lyapunov exponent and sin-
gular boundary theory. It can be seen from Theorem 4.1 and Theorem 4.2 that
when the noise intensity is large enough, the endemic equilibrium point is unstable,
while when the noise intensity is small, the endemic equilibrium point is stochasti-
cally stable. Next, we find the shape of the stationary probability density function
changes from peak to crater, which implies that system (3.1) undergoes the stochas-
tic P-bifurcation (see Theorem 5.2). That is to say, it is also the stochastic Hopf
bifurcation in viewpoint of P-bifurcation. Then, according to the existence and
stability of the invariant measure, we prove system (3.6) undergoes the stochastic
pitchfork bifurcation in Theorem 5.3. By numerical simulations, we know that the
noises can change the dynamical behavior of system (1.4). Therefore, according
to the noise intensity, we can adjust the prevention and control strategies, such as
increasing the coverage rate of vaccination to enhance the immunity of the popu-
lation and strengthening the isolation and treatment of rubella patients to prevent
the spread of the virus to others, etc. In addition, it is necessary to promptly
monitor the bifurcation parameters of model (1.4) to avoid the occurrence of the
stochastic bifurcations, which keep the number of patients fluctuating within the
range of available medical resources.
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