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THEORIES AND APPLICATIONS OF
ADOMIAN DECOMPOSITION

J -TRANSFORM METHOD WITH
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Abstract This work focuses on using the Adomian decomposition
J -transform method (ADJM) to solve both linear and nonlinear differen-
tial equations, with the aim of obtaining exact solutions for various types of
differential equations, such as the Bratu equations and second-order linear par-
tial telegraph equation. We present comprehensive proofs for new theorems
associated with the J -transform method. This approach combines the J -
transform method (JT M) and the Adomian decomposition method (ADM).
We carry out a theoretical analysis of ADJM applied to certain nonlinear dif-
ferential equations and give proofs to the existence and uniqueness theorems
along with error estimates. The solutions obtained are compared with exact
solutions from other established methods in the literature. The study empha-
sizes the notable advantages ofADJM, highlighting its effectiveness in solving
both ODEs and PDEs. In order to demonstrate the unique advantages of the
employed method, we give exact solutions in the form of convergent power
series with easily obtainable coefficients. Some of the symbolic and numerical
calculations were executed using Mathematica software 13.
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1. Introduction

Integral transforms play an important role in the solution of differential and integral
equations with initial and boundary value conditions. One of the most popular
methods for solving these equations is the integral transform method [11, 15–17,
20, 26, 27]. The most popular transform in the literature is the Laplace transform
[8, 10]. The variable s in the Laplace transform is regarded as a dummy variable,
transforming the function f(t) in the t domain into the function F(s). The Laplace-
Carson transform, also known as the p-multiplied form of the ordinary Laplace
transform, was first proposed by Watugala in 1993 [3]. The Sumudu transform is
closely related to it and has been used to solve controlled engineering problems
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[2, 28, 29]. Similar to the Laplace-Carson and Sumudu integral transforms, the N-
transform, commonly referred to as the natural transform, was first presented in
2008. By modifying the variables, the problem of unstable fluid flow through a flat
wall has been solved effectively using the N-transform, which offers both Laplace
and Sumudu integral transformations (see [22,24]).

Linear and nonlinear differential equations may accurately represent a wide
range of linear and nonlinear phenomena across a variety of scientific fields, in-
cluding population dynamics, fluid mechanics, solid-state physics, plasma physics,
and chemical kinetics [12,13,33–35]. As a result, the need to obtain exact or approx-
imate solutions for these equations remains a critical problem in applied mathemat-
ics and physics, necessitating the development of new methods [5, 14, 18]. Several
powerful mathematical approaches have been proposed to address this, including
the Adomian decomposition method [4,31], the variational iteration method [9,32],
the reduced differential transform method [21,30], the natural Adomian decomposi-
tion method [7,23], the Yang-Abdel-Cattani derivative method [6], and the Laplace
transform residual power series method [19].

Most physical phenomena are nonlinear and can be represented using partial
differential equations (PDEs) or ordinary differential equations (ODEs) of integer
order. Analyzing these equations, both analytically and numerically, is challeng-
ing. Consequently, a variety of integral transform techniques have recently been
developed to solve nonlinear PDEs and ODEs. Integral transforms are particularly
effective and valuable for finding both exact and analytical approximate solutions to
PDEs and ODEs. They are crucial because they avoid perturbations or long-lasting
polynomials. Motivated and inspired by recent studies in this area, we introduce a
new approach for solving both linear and nonlinear differential equations, which we
call the Adomian decomposition J -transform method, outlined in [1, 25].

The rest of this research is organized as follows: In Section 2, we give some
background on the theory of integral transform, including definitions and important
properties of the J−transform method. Section 3 is devoted to the theories of
J−transform with detailed proofs. In Section 4, we give proofs for the theoretical
analysis of the ADJM, including the uniqueness and existence along with the
error estimates. We give exact solutions to nonlinear Bratu equations in Section
5. Section 6 is devoted to giving exact solutions to the linear telegraph equation.
Finally, in Section 7, we give the conclusion of our work.

The original contribution of this research is mainly comprised of detailed proofs
of theorems related to the J−transform in Section 3. Moreover, we give detailed
proofs to the theoretical analysis of ADJM in Section 4. Additionally, exact
solutions to four applications in Sections 5 and 6 are presented.

2. Adomian polynomials and J -transform: An
overview

In this section, we provide some background material on the J−transform method;
refer to [4, 31]. The function Ω(ϵ), ϵ ∈ R is assumed to exist. The following is the
definition of the general integral transform:

F [Ω(ϵ)] (θ) =

∫ ∞

−∞
K(θ, ϵ)Ω(ϵ) dϵ, (2.1)
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where θ is a real (or complex) number that is independent of ϵ and K(θ, ϵ) is the
transform’s kernel. It should be noted that Eq. (2.1) corresponds to the Laplace,
Hankel, and Mellin transforms, respectively, when K(θ, ϵ) is e−θϵ, ϵJn(θϵ), or ϵ

θ−1.
Now, for Ω(ϵ), ϵ ∈ (−∞,∞), consider the integral transforms defined by:

F [Ω(ϵ)] (µ) =

∫ ∞

−∞
K(ϵ)Ω(µϵ) dϵ, (2.2)

and

F [Ω(ϵ)] (θ, µ) =

∫ ∞

−∞
K(θ, ϵ)Ω(µϵ) dϵ. (2.3)

When K(ϵ) = e−ϵ, Eq. (2.2) converges to the Sumudu integral transform, where
the parameter θ is substituted with µ, it is important to note. Additionally, the
generalized Laplace and Sumudu transformations are defined by the following for
any value of n:

L [Ω(ϵ)] = Ψ(θ) = θn
∫ ∞

0

e−θn+1ϵΩ(θnϵ) dϵ, (2.4)

and

S [Ω(ϵ)] = G(µ) = µn

∫ ∞

0

e−µnϵΩ(µn+1ϵ) dϵ. (2.5)

Note that when n, then Eq. (2.4) and Eq. (2.5) become the Laplace and Sumudu
transform, respectively.

Basic definitions: J−transform method
The J−transform method was introduced by Shehu Maitama and W. Zhao [25].

By using the J−transform method, we do not require any unnecessary linearization,
discretization or taking some restrictive assumption as in the case of using (HPM).
The new computational algorithm of J−transform method drastically reduces the
size of the computational work and round-off error is avoided.

Definition 2.1. Let Ω(ϵ) be a piece-wise continuous function over R withM,p > 0
along with the characteristic function χ(0,∞)(ϵ), and A = {Ω(ϵ) : |Ω(ϵ)| < Mep ϵ

χ(0,∞)(ϵ)
}
.

So, |Ω(ϵ)| ≤ Mep ϵ for ϵ −→ ∞, and given Ω(ϵ) ∈ A, whereθ, µ > 0, then we
have: ∣∣∣∣∫ ∞

0

e−θϵΩ(ϵµ)dϵ

∣∣∣∣ ≤M

∫ ∞

0

e−θϵep|ϵµ|dϵ

=M

∫ ∞

0

e(pµ−θ)ϵdϵ.

The above is convergent if pµ− θ < 0. Hence, Ω(ϵ) is of exponential order.
The J−transformation is then provided as follows:

J (Ω(ϵ)) = Ψ(θ, µ) = µ

∫ ∞

0

e
−θϵ
µ Ω(ϵ)dϵ, θ, µ > 0, (2.6)

where θ, µ are the J−transform variables.
Therefore, Eq. (2.6) can be expressed as:

J (Ω(ϵ)) = Ψ(θ, µ) = µ2

∫ ∞

0

e−θϵΩ(µϵ) dϵ, θ, µ ∈ (0,∞). (2.7)
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Before we show how to use the J -transform, it is important to comprehend its
inverse property. We start by going over the following significant theorems.

Theorem 2.1. [1] Assume that σ is a simple closed curve and that the function
Ω(ϵ) is analytic on an area that contains σ and its interior. Assume that σ is
oriented counterclockwise. Next, we have the following for each ϵ0 inside σ:

Ω(ϵ0) =
1

2πi

∫
σ

Ω(ϵ)

ϵ− ϵ0
dϵ.

Theorem 2.2. [1] If σ is a simple closed, positively orientated contour and Ω is
analytic on C, with the exception of a few points inside it, ϵ1, ϵ2, ..., ϵn, then∮

σ

Ω(ϵ) dϵ = 2πi

n∑
k=1

Res (Ω, ϵk) .

Definition 2.2. (Inverse J -transform) [30]. Assume that J−1 is the inverse
J−transform of Ψ(θ, µ), where Ψ(θ, µ) is the J−transform of the function Ω(ϵ).
Subsequently, that

J−1[Ψ(θ, µ)] = Ω(ϵ), for ϵ ⩾ 0.

Equivalently, based on Theorem 2.1 and Theorem 2.2, the complex inverse
J−transform is defined as follows:

Ω(ϵ) = lim
β→∞

1

2πi

∫ α+iβ

α−iβ

1

µ2
e(

θs
µ )Ψ(θ, µ)dθ

=
∑

residues of
1

µ2
e(

θs
µ )Ψ(θ, µ) at the poles of Ψ(θ, µ).

J -transform’s properties
Here we introduce some properties of the J -transform (J T ), which we will use

throughout this work [25].
1. If we have two functions, Ω(ϵ) and ω(ϵ), and two constants, α and β, then the
J -transform has the following linear property:

J [αΩ(ϵ) + βω(ϵ)] = αJ [Ω(ϵ)] + βJ [ω(ϵ)].

2. If we multiply a function Ω(ϵ) by an exponential term eαϵ, where α is a constant,
the J -transform of this product is given by:

J [eαϵΩ(ϵ)] =
θ − αµ

θ
Ψ

(
θ,

θµ

θ − αµ

)
.

3. Let Ψ(θ, µ) =
µn+2

θn+1
, µ, θ > 0, n=0, 1, 2, 3,..., then the inverse J−transform

transform (IJ T ) is given by:

J−1

[
µn+2

θn+1

]
=
ϵn

n!
=

ϵn

Γ(n+ 1)
, n = 0, 1, 2, 3, ....

4. For the n-th derivative of the function Ω(ϵ), denoted as Ω(n)(ϵ), the J -transform
is:

Ψn(θ, µ) = J [Ω(n)(ϵ)] =
θn

µn
Ψ(θ, µ)−

n−1∑
k=0

θn−(k+1)

µn−(k+2)
Ω(k)(0).
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5. If n is a non-negative integer and Ω(ϵ), ϵΩ(n)(ϵ), and ϵ2Ω(n)(ϵ) are valid functions
in set A, then: The J -transform of ϵΩ(n)(ϵ) is:

J [ϵΩ(n)(ϵ)] =
µ2

θ

d

dµ
[Ψn(θ, µ)]−

µ

θ
[Ψn(θ, µ)].

The J -transform of ϵ2Ω(n)(ϵ) is:

J [ϵ2Ω(n)(ϵ)] =
µ4

θ2
d2

dµ2
[Ψn(θ, µ)].

Computational Adomian polynomials
An invaluable tool for effectively decomposing a complicated nonlinear com-

ponent into smaller, more manageable, and maybe integrable components is the
Adomian polynomials. The following is a representation of the unknown function
Θ:

Θ =

∞∑
m=0

Θm, (2.8)

where the establishment of a recursive relation is necessary to determine Θm, m ≥
0. It is possible to define G(Θ) as an infinite series when working with nonlinear
terms or Adomian polynomials Bm, using the formula below:

G(Θ) =

∞∑
m=0

Bm(Θ0, Θ1, ....,Θm). (2.9)

Additionally, the nonlinear term Bm of G(Θ) can be obtained using the formula
in [23]:

B
m
=

1

m!

dm

dηm

[
G

(
m∑
i=0

ηiΘi

)]
η=0

, m = 0, 1, 2, .... (2.10)

The following is an expression for the general formula for Eq. (2.10): Let G(Θ) be
the nonlinear function, for instance. The following outcomes can be achieved by
applying Eq. (2.9) and the definition of an Adomian polynomial:

B0 = G(Θ0),

B1 = Θ1G
′(Θ0),

B2 = Θ2G
′(Θ0) +

1

2!
Θ2

1G
′′(Θ0).

(2.11)

Finally, the other terms can be constructed using a similar procedure. The polyno-
mials previously presented in Eq. (2.9) provide two significant observations. While
B2 depends solely on Θ0, Θ1, and Θ2, etc., B0 and Θ0 are the only variables on
which B1, B0, and Θ1 rely.

By changing Eq. (2.9) to Eq. (2.10), one can observe:

G(Θ) = B0 +B1 +B2 + ...

= G(Θ0) + (Θ1 +Θ2 +Θ3 + ...)G′(Θ0)

+
1

2!
(Θ2

1 + 2Θ1Θ2 + 2Θ1Θ3 +Θ2
2 + ...)G′′(Θ0)
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+
1

3!
(Θ3

1 + 3Θ2
1Θ2 + 3Θ2

1Θ3 + 6Θ1Θ2Θ3 + ...)G′′′(Θ0) + ...

= G(Θ0) + (Θ−Θ0)G
′(Θ0) +

1

2!
(Θ−Θ0)

2G′′(Θ0) + ....

3. Theories of J−transform with detailed proofs

In this section, we give detailed proofs to the transform−ג for some useful theorems.
We shall use these theorems later on to solve linear and nonlinear ODEs and PDEs.

Theorem 3.1. Let Ω(ϵ) = eβϵ sinh (αϵ)
α ∈ A, where α ∈ R+ and β ∈ R. Then its

transform−ג is given by:

ג
[
eβϵ sinh (αϵ)

α

]
=

µ3

(θ − βµ)2 − α2µ2
.

Proof. By using the transform−ג definition, we get:

ג
[
eβϵ sinh (αϵ)

α

]
=
µ2

α

∫ ∞

0

e−θϵeβϵµ sinh (αϵµ) dϵ

=
µ2

2α

∫ ∞

0

e−θϵeβϵµ(eαµϵ − e−αµϵ) dϵ

=
µ2

2α

∫ ∞

0

(
e−ϵ(θ−βµ−αµ) − e−ϵ(θ−βµ−αµ)

)
dϵ

=
µ2

2α

[(
−e−ϵ(θ−βµ−αµ)

θ − βµ− αµ
+
e−ϵ(θ−βµ+αµ)

θ − βµ+ αµ

)∣∣∣∣∣
∞

0

]

=
µ2

2α

(
1

θ − βµ− αµ
− 1

θ − βµ+ αµ

)
=

µ3

(θ − βµ)2 − α2µ2
.

Theorem 3.2. Let Ω(ϵ) = ϵ sin (αϵ)
2α ∈ A, where α ∈ R \ {0}. Then its transform−ג

is given by

]ג
ϵ sin (αϵ)

2α
] =

µ4θ

(θ2 + α2µ2)2
.

Proof. Applying property 5 of ,transform−ג we have

ג
[
ϵ sin (αϵ)

2α

]
=
µ2

θ

d

dµ

(
µ3

2(θ2 + α2µ2)

)
− µ

θ

µ3

2(θ2 + α2µ2)

=
µ2

2θ

(
3µ2(θ2 + α2µ2)− 2α2µ4

(θ2 + α2µ2)2

)
− µ4

2θ(θ2 + α2µ2)

=

(
3µ4(θ2 + α2µ2)− 2α2µ6

2θ(θ2 + α2µ2)2

)
− µ4

2θ(θ2 + α2µ2)
× (θ2 + α2µ2)

(θ2 + α2µ2)



3734 N. A. Obeidat, M. S. Rawashdeh & L. M. Khaleel

=
3µ4θ2 + 3α2µ6 − 2α2µ6 − µ4θ2 − α2µ6

2θ(θ2 + α2µ2)2

=
2µ4θ2

2θ(θ2 + α2µ2)2

=
µ4θ

(θ2 + α2µ2)2
.

Hence,

ג
[
ϵ sin (αϵ)

2α

]
=

µ4θ

(θ2 + α2µ2)2
.

Theorem 3.3. Let Ω(ϵ) = sin (αϵ)+αϵ cos (αϵ)
2α ∈ A, where α ∈ R \ {0}. Then its

transform−ג is given by

ג
[

sin (αϵ) + αϵ cos (αϵ)

2α

]
=

µ3θ2

(θ2 + µ2α2)2
.

Proof. Using linearity property and the transform−ג of sin (αϵ)
α , and ϵ cosαϵ, we

obtain:

ג
[
sin (αϵ) + αϵ cos (αϵ)

2α

]
=

1

2
ג
[
sinαϵ

α

]
+

1

2
ג [ ϵ cosαϵ]

=
1

2

(
µ3

θ2 + α2µ2
+
µ3(θ2 − α2µ2)

(θ2 + α2µ2)2

)
=
µ3

2

(
(θ2 + α2µ2)

(θ2 + α2µ2)2
+

(θ2 − α2µ2)

(θ2 + α2µ2)2

)
=

µ3θ2

(θ2 + µ2α2)2
.

Hence,

ג
[
sin (αϵ) + αϵ cos (αϵ)

2α

]
=

µ3θ2

(θ2 + µ2α2)2
.

Theorem 3.4. Let Ω(ϵ) = cos (αϵ) − αϵ sin (αϵ)
2 ∈ A, where α ∈ R \ {0}. Its

transform−ג is then provided by:

ג
[
cos (αϵ)− αϵ sin (αϵ)

2

]
=

µ2θ3

(θ2 + µ2α2)2
.

Proof. Using linearity property and the transform−ג of ϵ sin (αϵ)
2α , cos (αϵ), we ob-
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tain:

ג
[
cos (αϵ)− αϵ sin (αϵ)

2

]
= ג [ cos (αϵ)]− α2J

[
ϵ sin (αϵ)

2α

]
=

(
µ2θ

θ2 + α2µ2
− α2

(
µ4θ

(θ2 + α2µ2)2

))
=

(
µ2θ(θ2 + α2µ2)

(θ2 + α2µ2)2
− α2

(
µ4θ

(θ2 + α2µ2)2

))
=
µ2θ3 + µ4α2θ − µ4α2θ

(θ2 + α2µ2)2

=
µ2θ3

(θ2 + α2µ2)2
.

Hence,

ג
[
cos (αϵ)− αϵ sin (αϵ)

2

]
=

µ2θ3

(θ2 + µ2α2)2
.

4. Convergence analysis using ADJM
In this section, we demonstrate the convergence and uniqueness theorems, and we
will provide an estimate of the error determined using the ADJM. Consider the
nonlinear ODEs:

cDσ
τ φ(τ) +N (φ(τ)) + L(φ(τ)) = ψ(τ). (4.1)

Accompanied with its I.C:
φ(0) = φ0. (4.2)

Note that the non-linear part is N (φ(τ)), the linear term is L(φ(τ)), and ψ(η, τ) is
the source term. Next, we use the J -transformation and property 4 on Eq. (4.1):

Φ (r, u) =
φ0

r
−
(u
r

)
ג [L (φ(τ)) +N(φ(τ))− ψ(τ)] . (4.3)

Next, we use the inverse transform-ג to interpret Eq. (4.3) and obtain:

φ(τ) = Ψ (τ) + 1−ג
[(u
r

)
ג [L(φ(τ)) +N(φ(τ))]

]
. (4.4)

Ψ (τ) denotes the nonhomogeneous part as well as the I.C. Make the assumption
that there is an infinite series solution to the unknown function, φ(τ), as follows:

φ(τ) =

∞∑
k=0

φk(τ). (4.5)

The Adomian polynomials are Aj in the nonlinear term N(φ(τ)) =
∑∞

j=0Aj . We
rewrite Eq. (4.4) as follows using Eq. (4.5):

∞∑
j=0

φj(τ) = Ψ (τ) + 1−ג

(u
r

)
ג

 ∞∑
j=0

Aj +

∞∑
j=0

φj

 . (4.6)



3736 N. A. Obeidat, M. S. Rawashdeh & L. M. Khaleel

The result of comparing the two sides of Eq. (4.6) is φ0(τ) = Ψ(τ). The following
general relation can therefore be produced:

φj+1(τ) = 1−ג
[(u
r

)
ג [Aj + φj ]

]
, j ≥ 0. (4.7)

The following is the last assertion for the expected exact solution:

φ(τ) =

∞∑
j=0

φj(τ). (4.8)

Theorem 4.1. (Uniqueness theorem). If 0 < µ < 1, then there exists a unique
solution to Eq. (4.1), with µ = (C1 + C2) τ , ∀τ ∈ [0, β].

Proof. Consider the Banach space of every continuous function on ∆ = [0, β] is
K = (C[∆], ∥.∥) and consider the norm ∥.∥, then we define ζ : K → K by

φk+1(τ) = Ψ (τ) + 1−ג

[(u
r

)ξ
ג [N (φk (τ)) + L (φk (τ))]

]
.

Suppose that L [φ(τ)] = φ(τ) and N [φ(τ)] = N (φ (τ)). Further, let |N(φ)−N(φ̃)|
< C1 |φ− φ̃| and |L(φ)− L(φ̃)| < C2 |φ− φ̃|, where C1, C2 are the constants of
Lipschitz with 0 ≤ C1, C2 < 1 and φ, φ̃ are distinct solutions of Eq. (4.1). Then,

∥ζ(φ)− ζ(φ̃)∥ = max
τ∈∆

1−ג∣∣∣
[(u
r

)
ג [L(φ) +N(φ)]

]
− 1−ג

[(u
r

)
ג [L(φ̃) +N(φ̃)]

]∣∣∣
= max

τ∈∆

1−ג∣∣∣
[(u
r

)
ג [L(φ)− L(φ̃)]

]
+ 1−ג

[(u
r

)
ג [M(φ)−M(φ̃)]

]∣∣∣
≤ max

τ∈∆

[
C11−ג

[(u
r

)
ג [|φ− φ̃|]

]
+ C21−ג

[(u
r

)
ג [|φ− φ̃|]

]]
≤ max

τ∈∆
(C1 + C2)

[
1−ג

[(u
r

)
ג [|φ− φ̃|]

]]
≤ (C1 + C2)

[
1−ג

[(u
r

)
ג [∥φ(τ)− φ̃(τ)∥]

]]
= ∥φ− φ̃∥ (C1 + C2) τ.

Consequently, since 0 < µ < 1, then there exists a unique solution for Eq. (4.1).
The Banach fixed-point theorem for contraction suggests that ζ is a contraction map-
ping. This leads to the proof of Theorem 4.1.

Theorem 4.2. (Convergence theorem). Eq. (4.8) of Eq. (4.1) has a convergent
series solution for every |φ1| <∞ and 0 < µ < 1.

Proof. Consider qi =
∑i

k=0 φk(τ). We shall show that {qi} is a Cauchy sequence
in the Banach space ∆. Consider the Adomian polynomial in its most recent version
(see [1]). Let N (qi) = Ãi+

∑m−1
k=0 Ãk, i ≥ n and choose two partial sums qn and qi.

Then,

∥qi − qn∥
= max

τ∈∆
|qi − qn|

= max
τ∈∆

∣∣∣∣∣
i∑

k=n+1

φ̃k(τ)

∣∣∣∣∣ , i = 1, 2, ...
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≤ max
τ∈∆

1−ג∣∣∣∣∣

[(u
r

)
ג

[
C

(
i∑

k=n+1

φk−1(τ)

)]]
+ 1−ג

[(u
r

)
ג

[
i∑

k=n+1

Ai−1(τ)

]]∣∣∣∣∣
= max

τ∈∆

1−ג∣∣∣∣∣

[(u
r

)
ג

[
C

(
i−1∑
k=n

φk(τ)

)]]
+ 1−ג

[(u
r

)
ג

[
i−1∑
k=n

Ai(τ, τ)

]]∣∣∣∣∣
≤ max

τ∈∆

1−ג∣∣∣
[(u
r

)
ג [C(qi−1)− C(qn−1)]

]
+ 1−ג

[(u
r

)
ג [N(qi−1)−N(qn−1)]

]∣∣∣
≤ C1 max

τ∈∆
1−ג

[(u
r

)
ג [|qi−1 − qn−1|]

]
+ C2 max

τ∈∆
1−ג

[(u
r

)
ג [|qi−1 − qn−1|]

]
= (C1 + C2) τ ∥qi−1 − qn−1∥ .

Now, ∥qi − qn∥ ≤ µ ∥qi−1 − qn−1∥. Choose i = n+ 1, then

∥qn+1 − qn∥ ≤ µ ∥qn − qn−1∥ ≤ µ2 ∥qn−1 − qn−2∥ ≤ ... ≤ µn ∥q1 − q0∥ .

Additionally, the triangle inequality can be utilized to determine:

∥qi − qn∥ ≤ ∥qn+1 − qn∥+ ∥qn+2 − qn+1∥+ ...+ ∥qi − qi−1∥
≤
[
µn + µn+1 + ...+ µi−1

]
∥q1 − q0∥

≤ µn

[
1− µi−n

1− µ

]
∥φ1∥ .

But, 0 < µ < 1, then 1− µi−n < 1. So,

∥qi − qn∥ ≤ µn

1− µ
max
τ∈∆

|φ1| . (4.9)

Note |φ1| < ∞, since φ(τ) is bounded. Thus, ∥qi − qn∥ → 0 as n → ∞. Conse-
quently, in K, the sequence {qi} is a Cauchy sequence. Hence, φ(τ) =

∑∞
k=0 φk(τ)

converges as a result. We’ve established Theorem 4.2.

Theorem 4.3. (Error estimate). The series solution in equations (4.8) to (4.1)
should have the following maximum absolute error:

max
τ∈∆

∣∣∣∣∣φ(τ)−
n∑

i=0

φi(τ)

∣∣∣∣∣ ≤ µn

1− µ
max
τ∈∆

|φ1| .

Proof. Using Eq. (4.9) above, we can arrive at: ∥qi − qn∥ ≤ µn

1−µ max
τ∈∆

|φ1|. So as

i→ ∞, we have qi → φ(τ). So, ∥φ(τ)− qn∥ ≤ µn

1−µ max
τ∈∆

|φ1(τ)|. Based on this, the

maximum absolute truncation error for ∆ is:

max
τ∈∆

∣∣∣∣∣φ(τ)−
n∑

i=0

φi(τ)

∣∣∣∣∣ ≤ max
τ∈∆

µn

1− µ
|φ1(τ)| =

µn

1− µ
∥φ1(τ)∥ .

We’ve established Theorem 4.3.

5. Applications of ADJM
This section contains applications of the ADJM for a class of linear and nonlinear
ordinary differential equations. Let’s look at a general nonlinear ordinary differential
equation:

LΩ+R(Ω) + F (Ω) = g(ϵ), (5.1)
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with the initial condition:
Ω(0) = h(ϵ), (5.2)

where: L is the highest-order derivative operator, R is the rest of the differential
operator, g(ϵ) is a term that doesn’t depend on Ω, F (Ω) is the nonlinear term. If L
is a first-order differential operator, applying the transform-ג to this equation gives
us:

θ2Ψ(θ, µ)

µ
− µΩ(0) + [R(Ω)]ג + F]ג (Ω)] = .[g(ϵ)]ג (5.3)

Substitute Ω(0) into the above equation, to get:

Ψ(θ, µ) =
µ2h(ϵ)

θ2
+
µ

θ2
−[g(ϵ)]ג µ

θ2
R(Ω)]ג + F (Ω)]. (5.4)

Taking the inverse ,transform-ג we obtain:

Ω(ϵ) = G(ϵ)− 1−ג
[ µ
θ2

R(Ω)]ג + F (Ω)]
]
, (5.5)

where G(ϵ) is the source term. We assume that the solution Ω(ϵ) can be written as
an infinite series:

Ω(ϵ) =

∞∑
n=0

Ωn(ϵ). (5.6)

Substituting this series into the equation, we have:

∞∑
n=0

Ωn(ϵ) = G(ϵ)− 1−ג

[
µ

θ2
ג

[
R

∞∑
n=0

Ωn(ϵ) +

∞∑
n=0

An(ϵ)

]]
, (5.7)

where the nonlinear term is represented by the Adomian polynomials An(ϵ). To
find Ωn(ϵ), we use these recursive relations:

Ω0(ϵ) = G(ϵ),

Ω1(ϵ) = 1−ג−
[ µ
θ2

RΩ0(ϵ)]ג +A0(ϵ)]
]
,

Ω2(ϵ) = 1−ג−
[ µ
θ2

RΩ1(ϵ)]ג +A1(ϵ)]
]
,

Ω3(ϵ) = 1−ג−
[ µ
θ2

RΩ2(ϵ)]ג +A2(ϵ)]
]
.

In general, the recursive relation is:

Ωn+1(ϵ) = 1−ג−
[ µ
θ2

RΩn(ϵ)]ג +An(ϵ)]
]
, n ≥ 0. (5.8)

So, the solution (either exact or approximate) is:

Ω(ϵ) =

∞∑
n=0

Ωn(ϵ). (5.9)

Example 5.1. Consider the nonlinear differential equation of the first order [5]:

dΩ

dϵ
− eΩ = 0, (5.10)
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with the initial condition:
Ω(0) = 1. (5.11)

Solution. Applying the transform-ג to Eq. (5.10):

θ

µ
Ψ(θ, µ)− µΩ(0)− [eΩ]ג = 0. (5.12)

Using Ω(0) = 1, then Eq. (5.12) becomes:

Ψ(θ, µ) =
µ2

θ
+
µ

θ
ג
[
eΩ
]
. (5.13)

Applying the inverse transform-ג to Eq. (5.11), one conclude:

Ω(ϵ) = 1 + 1−ג
[µ
θ
ג
[
eΩ
]]
. (5.14)

We assume Ω(ϵ) can be written as an infinite series:

Ω(ϵ) =

∞∑
n=0

Ωn(ϵ). (5.15)

Substituting the above series into Eq. (5.14), we get:

∞∑
n=0

Ωn(ϵ) = 1 + 1−ג

[
µ

θ
ג

[ ∞∑
n=0

An(ϵ)

]]
. (5.16)

Here, An(ϵ) represents the nonlinear term eΩ.

Comparing both sides of Eq. (5.16), we get:

Ω0(ϵ) = 1,

Ω1(ϵ) = 1−ג
[µ
θ
[[A0(ϵ)]ג]

]
,

Ω2(ϵ) = 1−ג
[µ
θ
[[A1(ϵ)]ג]

]
,

Ω3(ϵ) = 1−ג
[µ
θ
[[A2(ϵ)]ג]

]
.

(5.17)

The general relation is

Ωn+1(ϵ) = 1−ג
[µ
θ
[[An(ϵ)]ג]

]
, ∀n ≥ 0. (5.18)

Now, we compute the components:

Ω1(ϵ) = 1−ג
[µ
θ
[[e]ג]

]
= eϵ,

Ω2(ϵ) = 1−ג
[µ
θ
[[e2ϵ]ג]

]
=
e2ϵ2

2
,

Ω3(ϵ) = 1−ג
[µ
θ
[[e3ϵ2]ג]

]
=
e3ϵ3

3
.

(5.19)
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So, the approximate solution is

Ω(ϵ) = 1 + eϵ+
(eϵ)2

2
+

(eϵ)3

3
+ · · · , −1 ≤ eϵ < 1. (5.20)

Since we cannot solve for Ω explicitly in terms of ϵ, the implicit solution is

Ω(ϵ) = 1− ln(1− eϵ), −1 ≤ eϵ < 1. (5.21)

This result is the same as the exact solution obtained using ADM, see [5].

Figure 1. Exact solution of Ω(ϵ) for Example 5.1.

Example 5.2. Consider the nonlinear second order Bratu differential equation [5]:

d2Ω

dϵ2
− 2eΩ = 0, (5.22)

with initial conditions:
Ω(0) = 0, Ω′(0) = 0. (5.23)

Solution. Apply the transform-ג to Eq. (5.22), to obtain:

θ2Ψ(θ, µ)

µ2
− θΩ(0)− µΩ′(0)− ג

[
2eΩ

]
= 0. (5.24)

Substituting Eq. (5.23) into the above equation, to arrive:

Ψ(θ, µ) =
µ2

θ2
ג
[
2eΩ

]
. (5.25)

Next, we take the inverse transform-ג of this result:

Ω(ϵ) = 1−ג

[
µ2

θ2
ג
[
2eΩ

]]
. (5.26)

Assume that the solution Ω(ϵ) can be expressed as an infinite series:

Ω(ϵ) =

∞∑
n=0

Ωn(ϵ). (5.27)
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Using the above Eq. (5.27) along with Eq. (5.26), we get:

∞∑
n=0

Ωn(ϵ) = 1−ג

[
µ2

θ2
ג

[ ∞∑
n=0

An

]]
. (5.28)

The Adomian polynomials for the nonlinear term 2ΩdΩ
dϵ are denoted by An. The

recursive relation can be obtained by comparing the two sides of Eq. (5.28):

Ωn+1(ϵ) = 1−ג

[
µ2

θ2
ג [An]

]
, ∀n ≥ 0. (5.29)

Using this relation in Eq. (5.29), we can find the components of Ω(ϵ):

Ω0(ϵ) = 0, (5.30)

Ω1(ϵ) = 1−ג

[
µ2

θ2
ג [A0]

]
, (5.31)

Ω2(ϵ) = 1−ג

[
µ2

θ2
ג [A1]

]
. (5.32)

The general recursive relation is:

Ωn+1(ϵ) = 1−ג

[
µ2

θ2
ג [An]

]
, ∀n ≥ 0. (5.33)

Using Eq. (5.33), we can find more components of Ω(ϵ):

Ω1(ϵ) = 1−ג

[
µ2

θ2
ג [A0]

]
= 1−ג

[
µ2

θ2
ג
[
2eΩ0

]]
= 1−ג2

[
µ4

θ3

]
= 2

ϵ2

2!
,

Ω2(ϵ) = 1−ג

[
µ2

θ2
ג [A1]

]
= 1−ג

[
µ2

θ2
ג
[
2Ω1e

Ω0
]]

= 1−ג4

[
µ6

θ5

]
= 4

ϵ4

4!
.

Therefore, the approximate series solution is:

Ω(ϵ) =

∞∑
n=0

Ωn(ϵ)

= 0 + 2
ϵ2

2!
+ 4

ϵ4

4!
+ · · ·
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= −2

(
−ϵ

2

2
− ϵ4

12
− · · ·

)
.

Thus, the exact solution is:

Ω(ϵ) = −2 ln (cos (ϵ)). (5.34)

This is the exact solution that matches the result obtained by the ADM in [5].

Figure 2. Exact solution of Ω(ϵ) for Example 5.2.

Example 5.3. Consider the nonlinear second order differential equation [5]:

d2Ω

dϵ2
− 2Ω

dΩ

dϵ
= 0, (5.35)

with initial conditions:
Ω(0) = 0, Ω′(0) = 1. (5.36)

Solution. Apply transform-ג to Eq. (5.35), to obtain:

θ2Ψ(θ, µ)

µ2
− θΩ(ω, 0)− µΩ′(ω, 0)− ג

[
2Ω

dΩ

dϵ

]
= 0. (5.37)

Substituting Eq. (5.36) into the above equation, to arrive:

Ψ(θ, µ) =
µ3

θ2
+
µ2

θ2
ג
[
2Ω

dΩ

dϵ

]
. (5.38)

Next, we take the inverse transform-ג of this result:

Ω(ϵ) = ϵ+ 1−ג

[
µ2

θ2
ג
[
2Ω

dΩ

dϵ

]]
. (5.39)

Assume that the solution Ω(ϵ) can be expressed as an infinite series:

Ω(ϵ) =

∞∑
n=0

Ωn(ϵ). (5.40)
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Using the above Eq. (5.40) along with Eq. (5.39), we get:

∞∑
n=0

Ωn(ϵ) = ϵ+ 1−ג

[
µ2

θ2
ג

[ ∞∑
n=0

An

]]
. (5.41)

The Adomian polynomials for the nonlinear term 2ΩdΩ
dϵ are denoted by An. The

recursive relation can be obtained by comparing the two sides of Eq. (5.41):

Ωn+1(ϵ) = 1−ג−

[
µ2

θ2
ג [An]

]
, ∀n ≥ 0. (5.42)

Using Eq. (5.42), we can find the components of Ω(ϵ):

Ω0(ϵ) =
ϵ

1!
,

Ω1(ϵ) = 1−ג−

[
µ2

θ2
ג [A0]

]
,

Ω2(ϵ) = 1−ג−

[
µ2

θ2
ג [A1]

]
,

Ω3(ϵ) = 1−ג−

[
µ2

θ2
ג [A2]

]
.

The general recursive relation is:

Ωn+1(ϵ) = 1−ג−

[
µ2

θ2
ג [An]

]
, ∀n ≥ 0. (5.43)

Using Eq. (5.43), we can find more components of Ω(ϵ):

Ω1(ϵ) = 1−ג

[
µ2

θ2
ג [A0]

]
= 1−ג

[
µ2

θ2
ג [2Ω0Ω

′
0]

]
= 2

ϵ3

3!
+ · · · .

Canceling the noise terms between Ω0(ϵ) and Ω1(ϵ), we find that the remaining
term satisfies Eq. (5.35), leading to the exact solution:

Ω(ϵ) = tan(ϵ). (5.44)

This is the exact solution that matches the result obtained by the ADM in [5].
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Figure 3. Exact solution of Ω(ϵ) for Example 5.2.

6. Using the J−transform for solving linear PDEs

In this section, we explain the transform−ג methodology for solving linear PDEs.

Methodology: Consider the following PDE:

Ω′(ω, ϵ) +RΩ(ω, ϵ) + LΩ(ω, ϵ) = g(ω, ϵ), (6.1)

with the initial condition
Ω(ω, 0) = f(ω), (6.2)

where R is a lower-order derivative that is always invertible, L is a linear differential
operator, and g is the source term.

Applying the transform−ג to both sides of Eq. (6.1), we get:

θ

µ
Ψ(ω, θ, µ)− µΨ(ω, 0) + ג [LΩ] = ג [g] . (6.3)

Substituting Eq. (6.2) into Eq. (6.3), to get:

Ψ(ω, θ, µ) =
µ2

θ
f(ω) +

µ

θ
ג [g]− µ

θ
ג [LΩ] . (6.4)

Taking the inverse transform-ג of Eq. (6.4), we obtain:

Ω(ω, ϵ) = G(ω, ϵ)− 1−ג
[µ
θ
ג [LΩ]

]
, (6.5)

where G(ω, ϵ) comes from the source term. Assuming a series solution for the
unknown function Ω(ω, ϵ):

Ω(ω, ϵ) =

∞∑
n=0

Ωn(ω, ϵ). (6.6)

Combining Eq. (6.6) and Eq. (6.5), one conclude:

∞∑
n=0

Ωn(ω, ϵ) = G(ω, ϵ)− 1−ג

[
µ

θ
ג

[
L

∞∑
n=0

Ωn

]]
. (6.7)
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From Eq. (6.7), we derive the general recursive relation:

Ω0(ω, ϵ) = G(ω, ϵ),

Ω1(ω, ϵ) = 1−ג−
[µ
θ
ג [LΩ0]

]
,

Ω2(ω, ϵ) = 1−ג−
[µ
θ
ג [LΩ1]

]
,

Ω3(ω, ϵ) = 1−ג−
[µ
θ
ג [LΩ2]

]
.

Thus, the general recursive formula is:

Ωn+1(ω, ϵ) = 1−ג−
[µ
θ
ג [LΩn]

]
, ∀n ≥ 0. (6.8)

So, the approximate solution to the given nonhomogeneous PDE is:

Ω(ω, ϵ) =
∞∑

n=0

Ωn(ω, ϵ). (6.9)

Example 6.1. Consider the second order linear partial telegraph equation [5]:

Ωωω = Ωϵϵ +Ωϵ − Ω, (6.10)

with initial and boundary conditions:

Ω(0, ϵ) = e−2ϵ, Ωω(0, ϵ) = e−2ϵ, Ω(ω, 0) = eω, Ωϵ(ω, 0) = −2eω. (6.11)

Solution. Apply transform-ג to Eq. (6.10), we conclude:

θ2

µ2
Ψ(ω, ϵ)− θΩ(0, ϵ)− µΩω(0, ϵ) = Ωϵϵ]ג +Ωϵ − Ω]. (6.12)

Substituting Eq. (6.11) into Eq. (6.12), we get:

Ψ(ω, ϵ) =
µ2

θ
e−2ϵ +

µ3

θ2
e−2ϵ +

µ2

θ2
Ωϵϵ]ג +Ωϵ − Ω]. (6.13)

Taking the inverse transform-ג of Eq. (6.13), we obtain:

Ω(ω, ϵ) = e−2ϵ + ωe−2ϵ + 1−ג

[
µ2

θ2
Ωϵϵ]ג +Ωϵ − Ω]

]
. (6.14)

Assume a series solution for Ω(ω, ϵ):

Ω(ω, ϵ) =

∞∑
n=0

Ωn(ω, ϵ). (6.15)

Combining Eq. (6.15) and Eq. (6.14), we conclude:

∞∑
n=0

Ωn(ω, ϵ) = e−2ϵ + ωe−2ϵ + 1−ג

[
µ2

θ2
ג

[ ∞∑
n=0

((Ωn)ϵϵ + (Ωn)ϵ − Ωn)

]]
. (6.16)
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We determine the recursive relation by comparing the two sides:

Ωn+1(ω, ϵ) = 1−ג

[
µ2

θ2
ג [(Ωn)ϵϵ + (Ωn)ϵ − (Ωn)]

]
, ∀n ≥ 0. (6.17)

Compute the components:

Ω0(ω, ϵ) = e−2ϵ + ωe−2ϵ,

Ω1(ω, ϵ) = 1−ג

[
µ2

θ2
ϵϵ(Ω0)]ג + (Ω0)ϵ − (Ω0)]

]
= e−2ϵ

(
ω2

2!
+
ω3

3!

)
,

Ω2(ω, ϵ) = 1−ג

[
µ2

θ2
ϵϵ(Ω1)]ג + (Ω1)ϵ − (Ω1)]

]
= e−2ϵ

(
ω4

4!
+
ω5

5!

)
.

Therefore, the approximate series solution is:

Ω(ω, ϵ) =

∞∑
n=0

Ωn(ω, ϵ)

= e−2ϵ

(
1 + ω +

ω2

2!
+
ω3

3!
+
ω4

4!
+
ω5

5!
+ · · ·

)
.

Hence, the exact solution is:
Ω(ω, ϵ) = eω−2ϵ. (6.18)

This matches the result obtained by the ADM in [5].
The exact solution in Eq. (6.18) is in closed form. The numerical results for

different values of ω, ϵ are shown in Figures 4 and 5 below. It is evident that the
curves are affected differently by the values of ω, ϵ, and all of these curves have no
cusps, which indicates the effectiveness of the ADJM.

Figure 4. Exact solution of Ω(ω, ϵ) for Example 6.1.
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Figure 5. Numerical solutions of Ω(ω) for Example 6.1 for multiple values of ϵ.

7. Conclusion

In this work, we employed the Adomian decomposition J -transform method for
solving linear and nonlinear differential equations. The ADJM consistently pro-
vides exact solutions in many cases with elegant computational terms. It can be
concluded that the ADJM demonstrates a high level of improvement over existing
methods due to its flexibility, accuracy, and simplicity. Using ADJM, we success-
fully found exact solutions for several linear and nonlinear differential equations,
such as the Bratu equations and second order linear partial telegraph equation. The
results obtained through ADJM were compared with those from existing meth-
ods. The applicability of ADJM has proven its significance in the fields of applied
science and engineering. Therefore, it is reasonable to think of the J -transform as
a modification of both the Sumudu and natural transforms. It is relatively easy to
extend the J -transform to investigate a wide range of physical research and engi-
neering applications. We intend to investigate the extended properties and applica-
tions of the suggested integral transform in the near future. Therefore, the Adomian
decomposition J -transform method is a viable alternative to existing methods.
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