
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 15, Number 6, December 2025, 3769–3781 DOI:10.11948/20250061

POSITIVE RADIAL SOLUTIONS FOR A
SEMIPOSITONE PROBLEM OF ELLIPTIC

KIRCHHOFF EQUATIONS WITH SUBLINEAR
NONLINEARITIES∗

Tingting Zhang1, Ruyun Ma1,2,† and Meng Yan1

Abstract We study the semipositone problem of the elliptic Kirchhoff type
equation 

−
(
b

∫
Ωe

|∇u|2dx
)
∆u = λK(|x|)f(u), x ∈ Be,

u(x) = 0, |x| = r0,

u(x) → 0, |x| → ∞,

(0.1)

where b is a positive constant, λ is a positive parameter, Be = {x ∈ RN : |x| >
r0}, N > 2, K : [r0,+∞) → (0,+∞) is continuous with rN+ηK(r) bounded

for some η > 0, f : [0,+∞) → R is continuous, f(0) < 0 and lim
u→∞

f(u)
uq = β for

some q ∈ (0, 1]. We show that there exists λ∗ > 0, such that (0.1) has at least
one positive radial solution if λ > λ∗. The proof of the main result is based
upon bifurcation theory.

Keywords Kirchhoff equation, semipositone problem, positive radial solu-
tion, bifurcation.
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1. Introduction

In this paper, we are concerned with the existence of positive radial solutions to the
Kirchhoff type problem

−
(
b

∫
Ωe

|∇u|2dx
)
∆u = λK(|x|)f(u), x ∈ Be,

u(x) = 0, |x| = r0,

u(x) → 0, |x| → ∞,

(1.1)
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where b is a positive constant, λ is a positive parameter, Be = {x ∈ RN : |x| > r0},
N > 2, K : [r0,+∞) → (0,+∞) is continuous with rN+ηK(r) bounded for some
η > 0, f : [0,+∞) → R is a continuous function.

Equation in (1.1) is the stationary case of a nonlinear wave equation

utt −
(
a+ b

∫
Ω

|∇u|2dx
)
∆u = λf̂(x, u), x ∈ Ω,

which was first proposed by Kirchhoff in 1883 to describe the transversal oscillations
of a stretched string, where u denotes the displacement, f̂ is the external force, b
represents the initial tension, and a is related to the intrinsic properties of the string.

Existence and multiplicity of positive solutions of the Kirchhoff type equation
(
a+ b

∫
Ω

|∇u|2dx
)
∆u = λf̂(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.2)

and its more general problems with f̂(x, s) ≥ 0 for (x, s) ∈ Ω × [0,∞), have been
extensively studied. When Ω is a bounded domain in RN , we refer to Perera and
Zhang [20], Figueiredo etc [11], Liang, Li and Shi [15], Ambrosetti and Arcoya [3],
Silva et al. [22], Shibata [21], Cao and Dai [6] and the references therein. When Ω
is an exterior domain in R3, see Dai, Ou and Tang [8], Figueiredo and de Morais
Filho [10], Wang, Yuan and Zhang [23], Ye, Yu and Tang [24] for references along
this line.

For example, Figueiredo etc [11] considered the Kirchhoff type equation −
(
ã(x) + b̃(x)

∫
Ω

|∇u|2dx
)
∆u = λuq, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.3)

where 0 < q < 1, ã, b̃ ∈ Cγ(Ω̄), γ ∈ (0, 1) and ã(x) ≥ a0 > 0, b̃ ≥ 0. They obtained

Theorem A. (Theorem 5.1, [11]) The value λ = 0 is the only bifurcation point
from the trivial solution for (1.3). Moreover, there exists a continuum C0 of positive
solutions of (1.3) unbounded in R× C(Ω̄) emanating from (0, 0).

All the results mentioned above are dependent on the nonlinearities are nonneg-
ative. However, Lions [16] proposed that it is challenging to study the existence

of solutions for semipositone problems (i.e., f̂(x, 0) < 0 for x ∈ Ω). In the case of
b = 0 in (1.2), that is, (1.2) is a local problem, for which the local semipositone
problem has been studied by serval authors, see Lions [16], Ali, Castro and Shiv-
aji [1], Ambrosetti and Arcoya [4], Hai and Shivaji [14], Ma [18]. However, to our
best knowledge, few results on the existence of solutions of nonlocal semipositone
problems (i.e., b > 0 and f̂(x, 0) < 0 for x ∈ Ω in (1.2)).

Recently, Graef etc [12] dealt with the nonlocal semipositone problems −
(
a+ b

∫
Be

|∇u|2dx
)
∆u = λg(|x|, u), x ∈ Be,

u(x) = 0, x ∈ ∂Be.

(1.4)

They used variational method to prove that
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Theorem B. (Theorem 1.5, [12]) Assume the following

(F1) there exist continuous functions A,B : [r0,∞) → (0,∞) with q > 3 and
µ ∈ (0, N − 2) such that

A(ξ)(tq − 1) ≤ g(ξ, t) ≤ B(ξ)(tq + 1) for all (ξ, t) ∈ [r0,+∞)× [0,+∞),

where A(ξ), B(ξ) ≤ 1
ξN+µ for ξ ≫ 1.

(F2) for all ξ ∈ [r0,+∞), g(ξ, 0) < 0.

(F3) there exists θ > 4 such that, for all sufficiently large t,

tg(ξ, t) > θG(ξ, t) for all ξ ≥ r0,

where G(ξ, t) =
∫ t

0
g(ξ, σ)dσ.

Then there is λ∗, such that problem (1.4) has a positive weak solution for λ ∈
(0, λ∗).

However, no any information about the global behavior of positive solutions of
(1.4). Motivated by the above papers, we consider the existence of positive solutions
when the nonnegative nonlinearity in Figueiredo etc [11] becomes semipositone and
q > 3 in Graef etc [12, (F1)] is replaced by 0 < q ≤ 1.

It is the purpose to study the existence of positive radial solutions of (1.1) in
semipositone case with sublinear growth nonlinearities (i.e., 0 < q ≤ 1) on exterior
domains via bifurcation theory.

Assume that K : [r0,+∞) → (0,+∞) and f : [0,+∞) → R are continuous and
satisfy

(K) rN+ηK(r) bounded for some η ∈ (0,+∞) satisfying 2−N+η
N−2 ∈ (−1, 0).

(f1) f(0) < 0, ∀ x ∈ B̄e.

(f2) ∃ β ∈ (0,+∞), such that

lim
u→∞

f(u)

uq
= β uniformly in x ∈ B̄e,

with 0 < q ≤ 1.
The main result of this paper is as follows.

Theorem 1.1. Let (K), (f1) and (f2). Then there exists λ∗ > 0 such that (1.1)
has at least one positive radial solution for all λ ≥ λ∗. More precisely, there exists
a connected set of positive radial solutions of (1.1) bifurcating from infinity for
λ∞ = +∞.

Let I = (0, 1). We denote by Y the Sobolev space H1
0 (I) with the inner product

(u, v) =
∫ 1

0
u′ · v′ and norm ||u||2 =

∫ 1

0
|u′|2, by Y ∗ the duality space of Y , by

⇀ the weak convergence in Y , and by ⟨·, ·⟩ the duality pairing between Y ∗ and
Y . Let P = {u ∈ Y : u(x) ≥ 0, a.e. x ∈ I} be the positive cone in Y and let
P ∗ = {h ∈ Y ∗ : ⟨h, u⟩ ≥ 0, u ∈ P} be its dual cone.

The rest of the paper is arranged as follows: In Section 2, we transfer (1.1) into
a singular two-point boundary value problem by a radial transformation. Section
3 is devoted to study a nonlocal eigenvalue problem with singular weight which
will be using in computing the fixed point index in Section 4. Finally in Section 4,
we will prove our main results on the existence of positive radial solutions for the
semipositone problems (1.1) with sublinear nonlinearity.
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2. Changes (1.1) to a singular two-point boundary
value problem

Let r = |x|, we have ∫
Ωe

|∇u|2dx = NωN

∫ ∞

r0

sN−1|u′(s)|2ds, (2.1)

where ωN = 2π
N
2

NΓ(N
2 )

is the valume of unit ball in RN . And then (1.1) becomes
−
(
bNωN

∫ ∞

r0

sN−1|u′(s)|2ds
)
(u′′ +

N − 1

r
u′) = λK(r)f(u(r), r ∈ (r0,∞),

u(r0) = u(∞) = 0.

(2.2)

Let t =
(

r
r0

)2−N

and v(t) = u(r(t)), that is r = r0t
1

2−N , we have

u′(r) = v′(t)
dt

dr
=

2−N

r0
(
r

r0
)1−Nv′(t),

u′′(r) = (
2−N

r0
)2(

r

r0
)2(1−N)v′′(t) +

(2−N)(1−N)

r20
(
r

r0
)−Nv′(t).

Then

u′′(r) +
N − 1

r
u′(r) = (

2−N

r0
)2(

r

r0
)2(1−N)v′′(t),

and ∫ ∞

r0

rN−1|u′(r)|2dr

=

∫ 0

1

(r0t
1

2−N )N−1|2−N

r0
(
r

r0
)1−Nv′(t)|2d(r0t

1
2−N )

=

∫ 0

1

rN−1
0 t

N−1
2−N

(2−N)2

r20
(
r

r0
)2(1−N)|v′(t)|2 · r0

2−N
t
N−1
2−N dt

=

∫ 1

0

rN−1
0 t

N−1
2−N

(2−N)2

r20
t
2−2N
2−N |v′(t)|2 · r0

N − 2
t
N−1
2−N dt

=rN−2
0 (N − 2)

∫ 1

0

|v′(t)|2dt.

Thus, (2.2) can be rewritten as
−
(
α

∫ 1

0

|v′(t)|2dt
)
(
2−N

r0
)2t

2−2N
2−N v′′ = λK(r0t

1
2−N )f(v(t)), t ∈ (0, 1),

v(0) = v(1) = 0,

(2.3)

i.e.,
−
(
α

∫ 1

0

|v′(t)|2dt
)
v′′ = λ(

r0
N − 2

)2t
−2(N−1)

N−2 K(r0t
1

2−N )f(v(t)), t ∈ (0, 1),

v(0) = v(1) = 0,

(2.4)
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where α = bNωNr
N−2
0 (N − 2). Taking h(t) = ( r0

N−2 )
2t

−2(N−1)
N−2 K(r0t

1
2−N ), it follows

from (2.4) that
−
(
α

∫ 1

0

|v′(t)|2dt
)
v′′ = λh(t)f(v(t)), t ∈ (0, 1),

v(0) = v(1) = 0.

(2.5)

Note that h : (0, 1) → (0,∞) is continuous and could be singular at 0 if η ∈
(0, N − 2). In addition, condition (K) guarantees h ∈ L1

loc(0, 1).

Remark 2.1. If N = 3, then

NωN = 3 · 2π
3
2

3Γ(N2 )
= 3 · 2π

3
2

3π
1
2

2

= 4π.

Specifically, let r0 = 1 and K(r) = 1
rN+η , then we have

h(t) = (
1

N − 2
)2t

−2(N−1)
N−2 K(t

1
2−N ) = (

1

N − 2
)2t

2−N+η
N−2 . (2.6)

Obviously,
2−N + η

N − 2
∈ (−1, 0) ⇐⇒ η ∈ (0, N − 2). (2.7)

(2.7) is coincident with Graef etc [12, (F1)], which implies that there exists p ∈
(1,∞) such that

2−N + η

N − 2
p ∈ (−1, 0)

as

η ∈ (0, 1).

3. Nonlocal eigenvalue problem

3.1. Asakawa theory

Throughout this paper, X denotes the Banach space defined by

X =
{
ϕ ∈ L1

loc(0, 1)
∣∣∣ ∫ 1

0

t(1− t)|ϕ(t)|dt < +∞
}

(3.1)

equipped with the norm

||ϕ||X =

∫ 1

0

t(1− t)|ϕ(t)|dt. (3.2)

We will also denote by X+ the subset {ϕ ∈ X| ϕ(t) ≥ 0 for a.e. t ∈ (0, 1)}.
For ϕ ∈ X, define the function L[ϕ](·) by

L[ϕ](t) = (1− t)

∫ t

0

sϕ(s)ds+ t

∫ 1

t

(1− s)ϕ(s)ds, t ∈ [0, 1].
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By Asakawa [5, Lemma 2.1(ii)], L[ϕ] ∈ C[0, 1], so that L is a linear operator from
X to C[0, 1]. It is clear that

||L[ϕ]||∞ ≤ ||ϕ||X , ∀ ϕ ∈ X. (3.3)

Thus the operator L is bounded. Set

u = L[ϕ].

Then u is a solution of the boundary value problem{
u′′(t) + ϕ(t) = 0 a.e. t ∈ (0, 1),

u(0) = u(1) = 0.
(3.4)

Lemma 3.1 (Lemma 2.2, [5]). Suppose that ϕ ∈ X and that u = L[ϕ]. Then
u ∈ AC[0, 1] ∩ C1(0, 1), u′ ∈ ACloc(0, 1) and u is a solution of the boundary value
problem (3.4). In addition if ϕ ∈ L1(0, 1), then u ∈ C1[0, 1] and u′ ∈ AC[0, 1].

Lemma 3.2 (Lemma 2.3, [5]). For every ψ ∈ X+, the subset K defined by

K = L({ϕ ∈ X
∣∣ |ϕ(t)| ≤ ψ(t) a.e. t ∈ (0, 1)})

is precompact in C[0, 1].

For b ∈ X and µ > 0, define r(·; b, µ) and θ(·; b, µ) by

r(t; b, µ) =
√
µ2y0(t; b)2 + y′0(t; b)

2, 0 ≤ t ≤ 1,

θ(t; b, µ) =

∫ 1

0

µ(y′0(s; b)
2 + b(s)y0(s; b)

2)

r(s; b, µ)2
ds, 0 ≤ t ≤ 1.

(3.5)

Lemma 3.3 (Lemma 4.2, [5]). Suppose that µ > 0 and b ∈ X. Then

(i) r(t; b, µ), θ(t; b, µ) ∈ ACloc[0, 1) and r(t; b, µ) > 0 for every t ∈ [0, 1) and

µy0(t; b) = r(t; b, µ) sin(θ(t; b, µ)),

y′0(t; b) = r(t; b, µ) cos(θ(t; b, µ)),
(3.6)

for every t ∈ [0, 1). In addition if b ∈ X+, then r(t; b, µ) is a nondecreasing
function on [0, 1).

(ii) If
∫ 1

0
t|b(t)|dt < ∞, then r(t; b, µ), θ(t; b, µ) ∈ ACloc[0, 1], r(t; b, µ) > 0 for

every t ∈ [0, 1] and equalities (3.6) hold for every t ∈ [0, 1]. In addition if
b ∈ X+, then r(t; b, µ) is a nondecreasing function on [0, 1].

Lemma 3.4 (Lemma 4.3, [5]). Let µ > 0 and let {qn}n∈N ⊂ X. Suppose that
qn → q in X as n→ +∞. Then

y0(·; qn) → y0(·; q) in C[0, 1] as n→ +∞,

y′0(·; qn) → y′0(·; q) in C[0, α] as n→ +∞,

θ(·; qn, µ) → θ(·; q, µ) in C[0, α] as n→ +∞,

for every α ∈ (0, 1). In addition; if
∫ 1

0
t|qn(t)|dt < +∞ for every n ∈ N and if∫ 1

0
t|qn(t)− q(t)|dt→ 0 as n→ ∞, then

y′0(·; qn) → y′0(·; q) in C[0, 1] as n→ +∞,

θ(·; qn, µ) → θ(·; q, µ) in C[0, 1] as n→ +∞.
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3.2. Nonlocal eigenvalue problem with singular weight

Let us consider the nonlocal eigenvalue problem{
− α||u||2u′′(x) = λh(x)u(x), x ∈ (0, 1),

u(0) = u(1) = 0.
(3.7)

In order to show our results, we need to introduce some notation. Given a subin-
terval D = [a1, b1] ⊂ (0, 1) and a positive constant A > 0, we denote by λ1(−A;D)
the principal eigenvalue of the problem{

−Aφ′′ = λh(x)φ, x ∈ (a1, b1),

φ(a1) = φ(b1) = 0,
(3.8)

where h ∈ X.

Proposition 3.1. Let B be a positive constant, consider the map

λ1(µ) = λ1(−µB,D), µ ≥ 0.

Then, λ1(µ) is a continuous and increasing function and

lim
µ→+∞

λ1(µ) = ∞.

Proof. According to Figueiredo etc [11], it follows that for any positive constants
B1, B2 > 0 that satisfy B1 ≤ B2, then

λ1(−B1;D) ≤ λ1(−B2;D).

So λ1(µ) is increasing with respect to µ.
Next, we show that λ1(−µB) is continuous in µ.
For qn, q ∈ X with qn → q in X, and for fixed m ∈ N, let

q[m]
n (t) = min{qn(t),m}, q[m](t) = min{q(t),m}, t ∈ [0, 1].

Then
q[m]
n , q ∈ L1(0, 1) and q[m]

n → q[m] in L1(0, 1), (3.9)

and
λ1(q

[m]
n ) → λ1(q

[m]) as n→ ∞, (3.10)

see Meng, Yan and Zhang [19, Theorem 1.1].
According to the same argument in Asakawa [5, proof of Lemma 4.4], the exists

a unique λ1(qn) and a unique λ1(q), such that

g(λ1(qn)) = θ(1;λ1(qn) qn, µ) = π, (3.11)

g(λ1(q)) = θ(1;λ1(q) q, µ) = π, (3.12)

λ1(qn) = inf
m∈N

λ1(q
[m]
n ), (3.13)

λ1(q) = inf
m∈N

λ1(q
[m]). (3.14)

Combining (3.11)-(3.14) with the continuity of g and using the fact that λ1(q)
is the isolated zero of

g(s) = θ(1; sq, µ) = π,
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it may concludes that

λ1(qn) → λ1(q) as n→ ∞. (3.15)

Therefore, λ1(−µB) is continuous in µ. Then we conclude that λ1(µ) → ∞ as
µ→ ∞.

4. Existence of positive solutions for sublinear semi-
positone problems

In this section we deal with sublinear f , namely, f : (0,∞) → R is continuous that
satisfy (f1) and (f2).

First, we prove the following theorem, which will lead directly to Theorem 1.1.

Theorem 4.1. Let (K), (f1) and (f2). Then there exists λ∗ > 0 such that (2.5)
has at least one positive solution for all λ ≥ λ∗. More precisely, there exists a
connected set of positive solutions of (2.5) bifurcating from infinity for λ∞ = +∞.

As before we set

F (v) = f(|v|), (4.1)

and let

G(v) = F (v)− β|v|q. (4.2)

We may use the rescaling

w = γv, λ = γq−3, γ > 0.

A direct calculation shows that v is a solution of (2.5) if and only if{
− α||w||2w′′ = F̃ (γ,w), t ∈ (0, 1),

w(0) = w(1) = 0,
(4.3)

where

F̃ (γ,w) := βh|w|q + γqhG(γ−1w). (4.4)

We can extend F̃ to γ = 0 by setting

F̃ (0, w) = βh|w|q (4.5)

and, by (f2), such an extension is continuous.

Define nonlinear operators A,L,K : Y → Y ∗ by

⟨Au, v⟩ = α||u||2
∫ 1

0

u′ · v′, ⟨LF̃ (γ, u), v⟩ =
∫ 1

0

F̃ (γ, u)v, ⟨Ku, v⟩ =
∫ 1

0

uv,

for any γ > 0 and u, v ∈ Y . Let

⟨L0u, v⟩ := ⟨LF̃ (0, u), v⟩ =
∫ 1

0

F̃ (0, u)v, u, v ∈ Y.
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Lemma 4.1 (Lemma 4.1, [7]). For any given f ∈ X∗, the following auxiliary
problem  − α

(∫ 1

0

|v′|2dx
)
v′′ = f(t), t ∈ (0, 1),

v(0) = v(1) = 0

has a unique weak solution.

It follows Liu, Luo and Dai [17] that the operator A−1 : Y ∗ → Y is completely
continous. In addition, by Liang, Li, and Shi [15], we know that L0 : Y → Y ∗

is compact. Furthermore, we can easily see that L0 maps P into P ∗. Similarly,
K : Y → Y ∗ is also compact and K maps P into P ∗.

Next we show that λ∞ = +∞ is a bifurcation from infinity for

Av = λL(hF (v)). (4.6)

It is clear that v is a solution of (4.6) if and only if

Aw = LF̃ (γ,w). (4.7)

We set
S(γ,w) := w −A−1LF̃ (γ,w). (4.8)

For γ = 0, solutions of

S0(w) := S(0, w) = w −A−1F̃ (0, w) = w −A−1L0w = 0 (4.9)

are nothing but solutions of − α
(∫ 1

0

|w′|2dx
)
w′′ = βh|w|q, t ∈ (0, 1),

w(0) = w(1) = 0.

(4.10)

Denote by Pr for r > 0 the bounded open subset {u ∈ P : ||u|| < r} of P . If
(4.9) has no solution on ∂Pr, that is, the completely continuous operator A−1L0 :
P̄r ⊂ P → P has no fixed point on ∂Pr, then by Amann [2] the index of fixed point
i(A−1L0, Pr, P ) is well defined. Hence, we can use the fixed point index theory to
complete the proof of Theorem 4.1.

Proposition 4.1. i(A−1L0, Pr, P ) = 0 for small r.

Proof. Given 0 ≤ ĥ ∈ C∞
0 (Ω) with ĥ ̸= 0, define a completely continuous homo-

topy function H : [0, 1]× Y → Y ∗ by

H(t, w) = L0w + tKĥ, (t, w) ∈ [0, 1]× P.

We show that there exists r1 > 0 such that the operator equation

Aw = H(t, w)

has no solutions on [0, 1]× ∂Pr for r ∈ (0, r1). Suppose this is not true. Then there
exist t1 ∈ [0, 1] and w1 ∈ P with 0 < ||w1|| < r1 such that

Aw1 = H(t1, w1).
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Thus for any v̄ ∈ Y , we have

α||w1||2
∫ 1

0

w′
1 · v̄′ =

∫ 1

0

h|w1|q v̄ + t1

∫ 1

0

ĥv̄.

That is, w1 is a weak solution of the following problem −
(
α

∫ 1

0

|w′|2
)
w′′ = h|w|q + tĥ, t ∈ (0, 1),

w(0) = w(1) = 0.

(4.11)

By the elliptic regularity theory and the strong maximum principle, we know that
w1 ∈ C2(I) ∩ C1

0 (Ī) and w1 > 0 in Ω. Hence, w1 satisfies the following equation

−w′′ = λ1w +
[h|w|q/w
b||w||2

− λ1

]
w +

t1
b||w||2

ĥ, t ∈ (0, 1). (4.12)

For sufficiently small r1, since ||w1|| = r < r1 and 0 < q ≤ 1, then we have[h|w1|q/w1

b||w1||2
− λ1

]
w1 +

t1
b||w1||2

ĥ > 0, t ∈ (0, 1).

This is impossible since (4.12) has no positive solution. Notice that this fact holds
for the problem  −

(
α

∫ 1

0

|w′|2
)
w′′ = h|w|q + ĥ, t ∈ (0, 1),

w(0) = w(1) = 0.

(4.13)

Indeed, the above problem has no solutions in Pr for r ∈ (0, r1). Consequently,

i(A−1L0, Pr, P ) = i(A−1H(0, ·), Pr, P ) = i(A−1H(1, ·), Pr, P ) = 0, r ∈ (0, r1).

Proposition 4.2. i(A−1L0, PR, P ) = 1 for large R.

Proof. We define a completely continuous homotopy function H : [0, 1]×Y → Y ∗

by
H(t, w) = tL0w, (t, w) ∈ [0, 1]× P.

We claim that there exists R1 > 0 such that the operator equation

Aw = H(t, w) (4.14)

has no solutions on [0, 1] × ∂PR for R > R1. We prove by contradiction. Suppose
that there exists a sequence {(tn, wn)} ⊂ [0, 1]× P such that

tn → t0 ∈ [0, 1], ||wn|| → ∞,

and (tn, wn) satisfies (4.14), that is,

α||wn||2
∫ 1

0

w′
n · v̄′ = tn

∫ 1

0

h|wn|q v̄, v̄ ∈ Y.
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Let w̄n = wn

||wn|| for any n. Then we have, for any v̄ ∈ Y ,

α||wn||2

||wn||2

∫ 1

0

w̄′
n · v̄′ = tn

∫ 1

0

h|wn|q

||wn||3
v̄ = tn

∫ 1

0

h|w̄n|q

||wn||3−q
v̄. (4.15)

Since w̄n is bounded in P , taking v̄ = w̄n in (4.15) and letting n→ ∞, we have

α = 0.

This is impossible since α > 0. Taking R > R1, we have

i(A−1L0, PR, P ) = i(A−1H(1, ·), PR, P ) = i(A−1H(0, ·), PR, P ) = 1, R > R1.

We can use Proposition 4.1 and Proposition 4.2 to infer the existence of R >
r > 0 such that

S0(w) ̸= 0, ∀ ||w|| ∈ {r,R} (4.16)

and

deg(S0, PR\P̄r, 0) = deg(I−A−1L0, PR\P̄r, 0) = i(A−1L0, PR\P̄r, P ) = 1. (4.17)

Remark 4.1. In the case that PR \ P̄r has an empty interior, it is not possible to
define deg(S0, PR \ P̄r, 0) directly. Therefore, the retraction σ : PR → PR \ P̄r is
used in Deimling [9], Guo and Lakshmikantham [13]. The degree is then defined as

deg(I −A−1L0 ◦ σ, σ−1(PR \ P̄r), 0) = i(A−1L0, PR \ P̄r, P ).

The definition of the retraction is as follows.

Definition 4.1. Let X be a topological space, A ⊂ B ⊂ X. If there is a continuous
mapping σ : B → A such that when x ∈ A there is σ(x) = x, then A is the retract
of B, and σ is called the retraction.

Next we show

Lemma 4.2. There exists γ0 > 0 such that

(i) deg(Sγ , PR \ P̄r, 0) = 1, ∀ 0 ≤ γ ≤ γ0;

(ii) if S(γ,w) = 0, γ ∈ [0, γ0], r ≤ ||w|| ≤ R, then w > 0 in (0, 1).

Proof. Obviously, (i) follows if we show that S(γ,w) ̸= 0 for all ||w|| ∈ {r,R}
and all 0 ≤ γ ≤ γ0. Suppose, to the contrary, that there exists a sequence (γn, wn)
such that γn → 0, ||wn|| ∈ {r,R} and

wn = A−1Lwn.

Since A−1L is compact, then, by passing to a subsequence if necessary, we have
wn → w. Consequently,

S0(w) = 0, ||w|| ∈ {r,R},

which contradicts (4.10).
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In order to prove (ii), we once again argue by contradiction. As in the previous
argument, we find a sequence wn ∈ Y , with {x ∈ I : wn(x) ≤ 0} ≠ ∅, such that

wn → w, ||w|| ∈ [r,R]

and S0(w) = 0; namely, w solves (4.7). By the maximum principle w > 0 on (0, 1)
and w′(0) > 0, w′(1) < 0. Moreover, the fact wn is concave down on I implies
that, without relabeling, wn → w in C1(I). Therefore wn > 0 on (0, 1) for n large,
a contradiction.

Proof of Theorem 4.1. By Lemma 4.2, problem (4.7) has a positive solution wγ

for all 0 ≤ γ ≤ γ0. As remarked before, for γ > 0, the rescaling λ = γq−3, v = w
γ

gives a solution (λ, vλ) of (4.6) for all λ ≥ λ∗ with

λ∗ := γq−3
0 .

Since wγ > 0, (λ, vλ) is a positive solution of (2.5). Finally ||vλ|| ≥ r for all
γ ∈ [0, γ0] implies that

||vλ|| =
||wγ ||
γ

→ ∞ as γ → 0.

This completes the proof.
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