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Abstract This study investigates the application of the Elzaki Residual
Power Series Method (ERPSM) and the New Iteration Transform Method
(NITM) for solving fractional-order Whitham-Broer-Kaup system. These non-
linear fractional differential equations are fundamental models for describing
complex wave dynamics and fluid mechanics phenomena. Using the fractional
derivative by the proposed methods provides robust and efficient approaches
for deriving analytical solutions regarding power series and other functional
forms. The convergence and reliability of the methods are thoroughly ana-
lyzed, highlighting their ability to handle the intricate dynamics of fractional-
order systems. Numerical simulations and illustrative examples validate the
accuracy and effectiveness of ERPSM and NITM in solving fractional-order
Whitham-Broer-Kaup system. The findings demonstrate the potential of these
methods to address a wide range of problems in mathematical physics, fluid dy-
namics, and nonlinear wave theory, offering new insights into fractional-order
modeling.
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1. Introduction

Fractional calculus is the study of classical derivatives and integrals extended or
generalized to non-integer order instances, and it has received a great deal of schol-
arly interest in the past several decades. The study of Fractional derivatives can be
found in various technical and physical systems, including viscoelasticity, ground-
water, the propagation of waves, finances, and fluid mechanics [6,7,14,62]. Several
researchers have examined theoretical outcomes derived from fractional differen-
tial equation solutions and their uniqueness in different formats; some examples of
these investigations are [12,16,17,19,32,43,55]. Many fractional differential prob-
lems are either without closed form solutions or have too complex an analytical
solution to be useful. Because of this, numerous authors have developed various
numerical approximation techniques. These include the Fourier spectral methods,
Finite difference schemes, the homotopy analysis approach, He’s variational itera-
tion method, Adomian’s decomposition, and many others categorized in [7]. For
comprehensive research on the solution of fractional differential equations, we di-
rect our readers to the classic books and papers [6,7]. Wang et al. [53] also offer a
novel physical-constrained decomposition of thermography infrared with the better
analysis of heat flux. Yang et al. [56] consider the subspace of the biquaternion
windowed linear canonical transform, which has important implication in signal
processing. Shi et al. [49] suggest the use of hypergraphs based model to improve
the study of multi-agent Q-learning dynamics under the conditions of the public
goods games. In the meantime Shi, Wang, and Yang [50] explore the small param-
eters analysis of Maxwell-Schrodinger systems providing an insight on advanced
differential equations. Additionally, the review was conducted to explain Huang et
al. [30] developments of an unconditionally stable Chebyshev finite-difference time-
domain approach and Liu et al. [34] studies of the image transformation methods
to identify partial discharge sources in high-speed trains. Also, Chen and Jing [18§]
introduce a super resolution method to video enhancement through deformable 3D
convolution, and Guo et al. [27] augment RotaBaxter theory of algebra, which helps
build non-abelian algebra structures.

The Broer-Kaup equation system is one of the key mathematical frameworks
used to comprehend and interpret nonlinear mathematical phenomena in applied
mathematics and physics. This system has a collection of quite challenging and so-
phisticated terminology and a community of nonlinear partial differential equations.
This method is also beneficial and essential for deciphering and comprehending wave
interactions and other challenging and intricate fundamental scientific processes.
The primary characteristics of the Broer-Kaup system of equations are its thorough
comprehension and its capacity for solution analysis and interpretation. This system
offers a valuable method for grasping and interpreting intricate physical phenom-
ena. Additionally, it has numerous applications in various domains, including fluid
motion, engineering, plasma physics, and multidisciplinary fields. Learning and
comprehending the Broer-Kaup system of equations presents a challenging intellec-
tual exercise. Scholars, since it necessitates a profound comprehension of nonlinear
interactions and their diverse applications [9,40,48,54].

An analytical technique called the RPS approach was put out by [4] to ascer-
tain the coefficients of a class of DEs’ power series solutions. The basic idea lies in
solving several linear and nonlinear equations using power series methods without
linearity or perturbation. Additionally, the method calls for computing a derivative
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for the residual function at each step of the coeflicient-finding process. Addition-
ally, the method calls for finding the residual function’s derivative at each step of
the coefficient-finding process [8,20,39,45,52]. The technique in question was first
introduced by Eriqat et al. [22], and its benefits stem from the fact that it requires
fewer computing resources to extract the form of solutions in a power series of val-
ues defined by a series of algebraic procedures [33,35,61]. The proposed method
leverages the idea of limits at infinity to accomplish its primary objective, even
though the RPS technique does not require the idea of the derivative to be used to
determine the parameters of the series’s solution. Actual Accurate have been pro-
duced for several types of nonlinear and linear DEs using the LRPS technique. The
suggested method is unique in that it can handle nonlinear equations, which is not
possible with typical LT-based methods. The LRPS approach has recently been
modified to address a variety of fractional DE problems, such as hyperbolic sys-
tems of Caputo-time-fractional PDEs with changing coefficients [5], nonlinear time-
fractional dispersive PDEs [2], fuzzy Quadratic Riccati DEs [37], time-fractional
nonlinear water wave PDEs [2], time-fractional Navier-Stokes equations [63], and
Lane-Emden equations [36], the logistic system and Fisher’s models [23], as well
as nonlinear fractional reaction-diffusion for bacteria growth models [41] and so
on [58-60].

Daftardar-Gejji and Jafari [26] introduced the novel iterative technique (NIM)
in 2006, and it has since become an efficient mathematical tool for solving both
linear and nonlinear functional equations. NIM’s effectiveness is demonstrated by
the numerous nonlinear problems it has been used to solve, including algebraic
equations, integral equations, and ordinary or partial differential equations of both
fractional and integer order. The unique features of NIM include its ease of use and
comprehension, which make it available to a broad range of scholars and practition-
ers [10,11,38,47,57]. Compared to established techniques such as the homotopy
perturbation method [28], the ADM [1], and the VIM [29], NIM has shown im-
proved performance and better efficiency. That’s why people dealing with complex
nonlinear situations find it popular [24].

2. Basic definitions
This section briefly introduces the Elzaki transform and the Caputo fractional con-
cept.

Definition 2.1. [13] The fractional operator of order ¢ > 0, the Reimann-Lioville
is described as

17 f(s) 1
G () = F(é)/o (ﬁ_s)l_édS—F((S)Téfl*f(’r), §>0,7 >0,

f(o), §=0.

(2.1)

The convolution product of 79~! and f(7) is denoted as 70~ % f(7).
The fractional integral of Riemann-Liouville can be found here.

~ Tx+1)
LG = I(x+d+1)
2. GOONf(T) + pg(r)) = MG f(7) + nGg(7).

75+X,X > —1,



3808 A. S. Alshehry, S. Noor, A. Saeced, A. Shafee & R. Shah

The real constants A and p are used.

Definition 2.2. [31,44] Given a function f(7) : [0,400) — R, and m represent
the §(6 > 0) represent the upper positive integer. The definition of the derivative
of Caputo fractional is given as

o pim (s
D f(r) = F(ml_ T)/O - _fs)((s(“)—m) ds, m—1<é6<m, meN. (22

Regarding the derivative of Caputo, we obtain

L. DG f(r) = f(7),

m—1 i
. T
2.GDf(7) = f(r) = > v (0) 5
Pix+1) 5
—r >0
3. D070 ={T(x+1-0) = X=%
0, x < 6,

4. D°c =0,
5. D°(\f(7) + ng(r)) = AD f(7) + uD%(7),
with ¢, §, and p being real constants.

Definition 2.3. [3] The form of the power series is given as

oo

S AT — 10" =fo(®) + HO) T — )’ + folr — 70 4+

k=0
O<m—-1l<a<m, 7>, (2.3)

regarding T = 79, is referred to as multiple fractional power series. When fj are
functions of ¥ and 7 is a variable are known as the series coefficients.

Theorem 2.1. Assume that the series of numerous fractional powers represents
o(9,7) at T = 19 is of the following form

@(?9’ T) = Z Pn(9,7) = Z fn(ﬁ)(T - TO)m57
n=0 n=0

(2.4)
O<m—-1<d<m, de€l, 7,<7<79+R,
if D™ (9, 7) are continuous on I x (19,70 + R),m = 0,1,2,---, then coefficients
fn(9) of Eq. (2.4) are of the form as
DmS 9 A
f) = 2reWimo) g (2.5)

F(nd+1) "’
mao o S5 S5
where D" = gt,ﬁ = 57.%...% (n-times), and R = min.crR., where the frac-
tional power series’ radius of convergence is indicated R. by > oo fu(c)(T — 10)™.
The standard residual power series method’s convergence indicates that there
exists a real number X € (0,1), such that

I en(@, ) IS A n-a(9,7) ||, 7 € (70,70 + R).
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Definition 2.4. [21,51] We examine functions in the set B defined by using a
novel transform termed the ELzaki transform, designed for functions of exponential
order:

B=f(r):3M, ki, ks >0, | f(r)|< Mexp®, ifre(—1)7 x[0,00).  (2.6)

The constant must havebe a finite number for each function in the set, where kq, ko
may be infinite or finite. The integral equation defines the Elzaki transform

B =T0) v [ f@e™ dr. 720, hisv<h, @D

The definition and simple calculations get the following results

1. E[r™] = mly"+2,
2. B(f'1) = 2L — u(f(0)),

14

3. B(f'7) = T— —vf'(0) - (0)
E(f™7) (Z vt "*2> (19).
5. B[] = / e~ dt = yOFUT(S 1 1), R(8) > 0.
0

Theorem 2.2. [46] The following Elzaki transform of the derivative of Riemann-
Liouwille can be considered if T(v) is the Elzaki transform of (7)

B [DS(7(r)] = v [T0) = S5 D ()], 1 <m—1<5<m.
- (2.8)

Definition 2.5. [46] Using Theorem 2.2, an Elzaki transform associated with the
Caputo fractional can be expressed as below.

n—1

E[D°(f(7)] = v E[f(7)] = Y v*°**f9(0), (2.9)

k=1

where n — 1 < § < n.

This section provides stages and definitions for a nonlinear inhomogeneous par-
tial differential equation and establishes its general form. The template is given
as

DYp(9,p,7) = L(2(D, p, 7)) + N (29, p,7)) + 7(0(¥, p, 7)) (2.10)
with
@i(ﬂ7p77-) |0':0: gk,k:O,---m—l, (211)

where the general nonlinear fraction differential operator is A, the known function
is 7, and the linear fraction differential operator is L.
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For the ERPSM, we recommend the following procedures:

Step 1. When both sides of the equation are transformed using the Elzaki method,
the form is

E[D2¢(9, p,7)] = E[L(¢(9, p, 7)) + N(p(9, p, 7)) + v(2(9, p,7))]. (2.12)

With the above initial conditions and the differentiation property of the Elzaki
transform, we can get

E[Dy¢(9, p,7)] = g(0, p, 7)1V E[L(p(9, p, 7))+ N (9, p, ) +0(0(3, p, )] (2.13)
Step 2. Utilizing the inverse of Elzaki on both sides of the equation
p(0,p,7) = G, p,7) + ET W E[L(p(0, p, 7)) + Np(9, p,7)) + T((0, p,7))]]-

(2.14)
G(V; p; T) denotes the initial condition in this case.

Step 3. Our preferred method is the classic RPSM, which can be suggested by

mé
o9 (0 2.1
YA Zf Yl vt (2.15)
To derive the approximate value of (2.15), pi(d, p, 7) can be expressed as
i m5
i = m (7, p, m( T 2.1
S W;Ow( .7 Zf N (2.16)
Step 4. When Steps 2 and 3 are combined, we can achieve
Resi(9, p,7) =¢i(0, p,7) = [G(0, p.7) + E7 [0 EILpi-1 (0, p, 7)) o1
2.1
+ N(pima(8,p,7)) + vlpii = (@, p, 7]
Then
Resy (9, p,T) |r=0=0, 7€ N*. (2.18)

Respm (9; p; 7) is the residual function of Eq. (2.11) and is used to determine the
result of f,(J; p)(m € N*).
In this case, ERPSM will provide the approximate i*"-order solutions with

Si=wo+e1+@3+--+ @i, (2.19)
where
Yo = fO(ﬁvp)v
= f(® )776
901_ 1 7p F(1+25)7
726
P2 = f2(19,/>)m7 (2.20)
b
wi = fi(V,p)

I'(1+1i6)
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Remark R™es(¥; p;7) |exact generally equals zero for all 7 € (0;1].| R™es;(¢; p;7) |
can represent the difference between the precise and approximate solutions. One
way to define | R™es;(%; p; T) | is as follows:

| R™es;(0; p;7) |=| D2pi(9; p37) — (03(05 p57))ww — (079, p, 7)) pp — vipi (V5 p57) | -
(2.21)

New itrartive method. See [15,25] for further information on the NIM concept.
To solve the following differential equation with an unknown function ¢ satisfying

o= N(p)+f, (2.22)

where N is a nonlinear operator and f is a given function. The functions (¢;);
are found in a series such that ¢ = Zi]\iO ;. The nonlinear operator N can be
decomposed using NIM in the following way

N(i%):N(<ﬂo)+§: N(i%)—N(S%)]- (2.23)

By Eq. (2.22) we obtain

9]
=1

N(i%) =f+N(po)+ Y
i=0

i

i i—1
NODE N(Z%)] S e
§=0 §=0
In light of the recurrence relation that follows,

o = f,
¢1 = N(v0),
Ynt1=N(po+-+@n) = N(po+-+pm—1)), neN-O.
Then
(n 4+ ni1) = Nlpr 4+ ¢n).
Consequently, the following can be used to represent the solution to Eq. (2.22):

SDZfJFZSDi-
i=0

Novel Elzaki iterative method. We consider the following equation to demon-

strate the fundamental concept of the NEIM

DTQD(ﬂ,T) + R<p(ﬂﬂ T) = 9(19’7_)7 m € N, (225>
% (9,0
o0,0) = 1°w), PO _pry ke mo. (@20
A general nonlinear operator R, a continuous function g, and the equation D}* =
8877":” are used.

Elzaki transform step. When we apply the Elzaki transform to (2.25), on both
sides, we obtain

m—1
ik 070(0,0)
m 2—m-+k 9 T o
E(o(¥,7)) — s kzzo g2—mt 5t E(Ru(9,7) — g(9,7)) = 0.
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Applying the initial conditions (2.26) results in

0(9,7) { mt_: s2=mrkpk (g ] — ! {smE(Rgo(q?,T) - g(ﬁ,T))].

As a result, we get the usual form shown below
e(0,7) = f(9,7) + Nlp(d, 7)], (2.27)

with f(9,7) = E~1[s™ ZZ:OI s2=mFEpE(9)] and N[p(9,7)] = —E~smE(Rp(9, )
— ¢(9,7))]. The nonlinear portion of the equation is represented by N, and the
function f is dependent on the initial conditions.

Remark 4.1. Nothing at all about the duality of the Laplace transform £ and
Elzaki transform F.

B(7)(s) = SL(F)(2) and L(f)(s) = sE(f) -

The following inversion formula is so easily obtained

d—100
f(r)= i/(; sE(f)(l)exp(ST)ds. (2.28)

21 Js5_ 100 s

Iterative method step. We get at the resulting algorithm using the iterative

approach described in Section ‘New iterative method’ on the problem (2.27).

@0:.}07
QOIZN(QOO%
@n+1=N(po+ -+ ¢n) = N(po+ -+ pn_1), n€N-O,

therefore ¢ = >~ °_, ¢; is obtained.

2.1. Problem 1
2.1.1. Implementation of ERPSM

In this section, we apply ERPSM to understand the anomalous behavior of the
fractional-order Broer-Kaup (BK) system, which is given by

ngp(ﬁv T) + @(19’ 7')(,0(19, 7—)19 + ¢(19a 7)19 = 07
D?¢(197 T) + 30(197 7)19 + 90(197 T)¢(197 7)19 + ¢(ﬂa T)QO(’&7 T)19 (229)
+ (9, T)g99 =0, where >0, p,p €R, 0<J<1.

The following ICs are applicable:
p(¥,7) = 2tanh(¥) + 1

5 (2.30)
oY, 7) =1 — 2tanh”(¥).
The exact solution is given as:
9, 7) =1 —2tanh(r — 9),
oV, 7) (r—9) (2.31)

$(9,7) =1 — 2tanh?(T — 09).
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Using Eq. (2.30) and applying ET to Eq. (2.29) we obtain:

(0, 5) — (2tanh(V) + 1)s> + " B [E; ' o(0, s)(E; (9, 5))] = 0,
P(V,5) — (1 — 2tanh®(0))s? + s° B [E; (9, s)(E; (0, 5),)] (2.32)
+ SéET[E;ld)(ﬂﬂ 5)(E;1§0(197 5)19)] + 56 [90(197 5)19] =+ 55[90(19’ 5)191919 = 0

Thus, the term series that are k*"-truncated are:

k
fr(
(9, s) = s?(2tanh(9) + 1) +Z(r5+1)) r=1,2,34---,
. (2.33)
B9, s) = s*(1 — 2tanh?(0) —|—Z r=1,2,3,4---.

(sr6+1

The Elzaki residual functions (ERFs) are provided as follows:

B, Resg(i,5) = 9(0, 5) — (2tanh(9) + 1) + £ E, B (0, 5) (B7 p(9, 8),)] = 0,
E,Resp(V,s) = ¢(9,5) — (1 — 2tanh®(9))s* + s B, [E; L o(0, ) (B p(9, 5))]
+ 8 B [ES (0, 8) (B (9, 5))]
[ (9, 5)9) + 8° [0 (9, 8) g9

=0.
(2.34)
Along with the k'"-ERFs as:
E,Res(or(V,5)) = ¢(0,5) — (2tanh(9) + 1)s?
t+ 8" B (B on (0, 5) (B (0, 5),)]
= 07
E.Res¢p(9,s) = ¢p(9,s) — (1 — 2tanh?(0)))s> (2.35)
+ SSEL[EZor(9, 5) (B Lo (0, 5)y)] .
+ 8" B B on (9, 9) (B M on (9, 5))]
+s [‘Pk(ﬁv s$)g) +8 [9%(197 8) 999
=0.
To find f,.(9,s) now, r = 1,2,3,---. We multiply the resulting equation by s"0+1,

substitute the r7"-truncated series Eq. (2.34) into the r™"-Elzaki residual function
Eq. (2.35) and solve the relation

lims 00 (8" L Resy (7, 8)) = 0 and lims_,00 (s™ 1L, Res,, (7, 8)) = 0 recur-
sively. 1,2,3,---. Here are the first few terms:

f1(9,5) = —2sech?(¥9),

g1(¥,s) = 4tanh(19)sech2(19)’ (2.36)

f2(19, 5) = —4 tanh(¥9)sech? (1),

] (2.37)
92(9, 8) = 4(cosh(2¢9) — 2)sech”(¥9),
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and so on.
Using f-(¥,s) and g,(9,s) r =1,2,3,-- -, as the values in Eq. (2.33) we obtain:

14 2tanh(d) 2sech? (1)) B 4 tanh(19)sech? (1)

ensT o O (2.39)
9. = 1 —2tanh?(9)  4(cosh(29) — 2)sech*(¥) 4 tanh(d))sech?(z)
d)( ,T) = s + §20+1 + $0+1 :
With the inverse Elzaki transform, we obtain
4720 tanh(9)sech®(¥)  27%sech? ()
9.7) = 1 + 2 tanh(d) — _ -
#(0,7) = 1+ 2tanh(v) T(26 + 1) To+1)
8720sech® () 4720 cosh(209)sech? ()
9,7) =1 —2tanh®(9) — 2.39
o9, 7) anh™ (V) = o511 T(26 + 1) (2:39)
479 tanh(19)sech? (1)

T(5+1)

Table 1. Using ERPSM solution to find the various values for 7 = 0.3 of ¢(9, 7).

¥ | ERPSMs—o¢ | ERPSMs—oys | ERPSMs—1 | Exacts—1 | AbsoluteErrors—1
0. 0.85877 0.946061 0.98 0.980001 6.66640x 1077
0.1 1.05808 1.14576 1.17951 1.17952 6.41645x 1077
0.2 1.25628 1.34258 1.37549 1.37549 5.68179x10~7
0.3 1.44953 1.53279 1.56427 1.56427 4.57860x10~7
0.4 1.63436 1.71317 1.74272 1.74272 3.26777x1077
0.5 1.80791 1.88117 1.90843 1.90843 1.91701x10~7
0.6 1.96808 2.03504 2.05979 2.05979 6.68165x10~7
0.7 2.11355 2.17382 2.19596 2.19596 3.82057x10~7
0.8 2.24375 2.29726 2.31682 2.31682 1.18632x10~7
0.9 2.35879 2.40572 2.42279 2.42279 1.73963x10~7

1. 2.45925 2.49997 2.51472 2.51472 2.06645x 1077

Table 2. Using ERPSM solution to find the various values for 7 = 0.2 of ¢(9, 7).

¥ | ERPSMs—o¢ | ERPSMs—ys | ERPSMs—1 | Exacts—1 | AbsoluteErrors—q
0.1 0.994122 0.989082 0.983888 0.983887 5.06170x10~7
0.2 0.963398 0.941051 0.929504 0.929503 9.43252x10~7
0.3 0.895716 0.857829 0.840801 0.8408 1.23564x107°
0.4 0.796095 0.745492 0.724185 0.724183 1.35748x107°
0.5 0.671466 0.611603 0.587376 0.587375 1.32006x 10~°
0.6 0.529713 0.464212 0.438422 0.438421 1.16145x10~°
0.7 0.378714 0.31097 0.284836 0.284835 9.31235x 1077
0.8 0.225578 0.158477 0.132996 0.132995 6.76697x10~7
0.9 0.0761456 0.0119236 -0.0121616 | -0.0121621 4.34223x1077
1. -0.0652141 -0.124998 -0.147195 -0.147195 2.26350x 1077
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Figure 1. In Figure 1, ERPSM solution for (a), (b), (c) and (d) shows that fractional order at § = 1,
6=0.8,8 =0.6, and § = 0.4 for 7 = 0.3 of p(I, 7).

B 6=04
" 6-06
= 6-08
© exact

Figure 2. In Figure 2, Comparison between ERPSM solution and exact for 3D plot of (9, 7) for
7 = 0.3 for various fractional order values of § =1, § = 0.8, § = 0.6, and é = 0.4.

2.1.2. Implementation of NITM
We derive the corresponding form given below by applying the RL integral on Eq.
(2.29):
@(?97 T) = Qtanh('&) +1- mi [—(p(’l?, 7-)90(197 7-)19 - ¢(19’ 7-)19] ’
$(9,7) =1 — 2tanh?(¥) — R [—p(V, 7)g (2.40)
—@(0,7)0(9,7)9 — (0, 7)p(, 7))y — o(I, T)gs] -
We obtain the following several terms based on the NITM procedure:
fo(9,7) = 2tanh(9) + 1,
27%sech?(z)
f1(1977)——51ﬂ7@7 (2.41)

B 4723 tanh(d)sech® () (D(5 + 1) — 27%sech’(¢))
fQ(ﬂaT)__ F(5+1)3 )
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Figure 3. In Figure 3, ERPSM solution for (a), (b), (c) and (d) shows that fractional order at § = 1,
6§ =0.8,8 =0.6, and § = 0.4 for 7 = 0.3 of ¢(V, 7).
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© exact

Figure 4. In Figure 4, comparison between ERPSM solution and exact for 3D plot of ¢(¢, 7) for 7 = 0.3
for various fractional order values of § =1, 6 = 0.8, § = 0.6, and § = 0.4.

go(9,7) =1 — 2tanh?(¥9),

477 tanh(19)sech? (1)
g1 (7977') = ST(6) ’ (2.42)
9. 7) — 47%0sech* (1) (2r° (539‘3}12(19) —4) + 0T (9)(cosh(29) — 2))
92(9,7) = L@+1)3 '

The final NITM algorithm solution is as follows:

@(197 T) = 4100(29’ T) + 1 (197 T) + 302(197 T) +eee (243)
o9, 7) = ¢o(9,7) + p1(9,7) + p2(I, 7) + - - -, (2.44)
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m9sech?
(¥, 7) = 14 2tanh(2)) — W
4729 tanh(9)sech?(9) (0(8 + 1) — 27%sech? (¢
i (Oes0) (06 1) D),
79 tanh(19)sech?
$(9,7) =1 — 2tanh?(¥) + At ?Sﬁ?&) b7(9)
47%sech? (0) (270 (5sech2(19) —4) + 6I'(6)(cosh(29) — 2))
* T +1)° +
(2.46)

Table 3. Using NITM solution to find the various values for 7 = 0.3 of ¢(9, 7).

9 | NITMs—o¢ | NITMs—og | NITMs—, | Exacts—1o | AbsoluteErrors—1g.
0. 0.85877 0.946061 0.98 0.980001 6.66640x 107
0.1 1.05782 1.14566 1.1795 1.17952 1.95956x 107>
0.2 1.25575 1.34239 1.37546 1.37549 3.7047x107°
0.3 1.44875 1.53253 1.56422 1.56427 5.18243 x10~5
0.4 1.63335 1.71284 1.74266 1.74272 6.31213x107°
0.5 1.80672 1.8808 1.90836 1.90843 7.05913x107°
0.6 1.96675 2.03465 2.05972 2.05979 7.43219x107°
0.7 2.11213 2.17342 2.19589 2.19596 7.47371x107°
0.8 2.2423 2.29687 2.31675 2.31682 7.24677x107°
0.9 2.35735 2.40534 2.42272 2.42279 6.8223x107°
1. 2.45787 2.49963 2.51466 2.51472 6.26887x107°

Table 4. Using NITM solution to find the various values for 7 = 0.3 of ¢(¥, 7).

¢ | NITMs—o¢ | NITMs—og | NITMs—, | Exacts—19 | AbsoluteErrors—i.o.
0. 0.982871 0.997248 0.999608 0.9998 1.92013x10~4
0.1 0.99147 0.988129 0.983703 0.983887 1.84154x10~4
0.2 0.960831 0.940196 0.92934 0.929503 1.62852x10~4
0.3 0.893327 0.857124 0.840669 0.8408 1.31338x10~4
0.4 0.794004 0.744969 0.724089 0.724183 9.40283x107°
0.5 0.669796 0.611273 0.587319 0.587375 5.55361x 107>
0.6 0.528556 0.464067 0.438401 0.438421 1.98041x10~°
0.7 0.37811 0.310987 0.284845 0.284835 1.04272x10~°
0.8 0.225508 0.158624 0.133029 0.132995 3.37609x 107>
0.9 0.0765425 0.0121657 -0.0121121 | -0.0121621 4.99789x10~°
1. -0.0644509 -0.124695 -0.147136 -0.147195 5.97079x 107>
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Figure 5. In Figure 5, NITM solution for (a), (b), (c) and (d) shows that fractional order at § = 1,
6=20.8,8 =0.6, and § = 0.4 for 7 = 0.3 of (I, 7).

w6=04 s 1
" 6=06
= 6-08
© exact

Figure 6. In Figure 6, comparison between NITM solution and exact for 3D plot of ¢ (9, ) for 7 = 0.3
for various fractional order values of § =1, § = 0.8, § = 0.6, and § = 0.4.

3. Graphical and tables discussion

The graphical representations and tables presented in this study provide a compre-
hensive analysis of the solutions obtained for the fractional-order Whitham-Broer-
Kaup (WBK) system using the Elzaki Residual Power Series Method (ERPSM)
and the New Iteration Transform Method (NITM). These visualizations and data
tables offer valuable insights into the behavior of the system under various fractional
orders and facilitate a comparative evaluation of the two methods.

Figure 1: This figure illustrates the ERPSM solutions for the variable ¢(1, 7)
at 7 = 0.3 across different fractional orders: (a) 6 = 1, (b) § = 0.8, (¢) 6 = 0.6,
and (d) 6 = 0.4. The plots reveal that as the fractional order ¢ decreases, the
amplitude and wave profiles of (1, 7) undergo significant changes, indicating the
influence of fractional differentiation on the system’s dynamics. Figure 2: This
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Figure 7. In Figure 7, NITM solution for (a), (b), (c) and (d) shows that fractional order at § = 1,
6=0.8,6 =0.6, and § = 0.4 for 7 = 0.3 of ¢(V, 7).
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Figure 8. In Figure 8, comparison between NITM solution and exact for 3D plot of ¢(¢, 7) for 7 = 0.3
for various fractional order values of § =1, 6 = 0.8, § = 0.6, and § = 0.4.

figure presents a comparison between the ERPSM solutions and the exact solutions
for (¥, 7) at 7 = 0.3 for various fractional orders 6 = 1, § = 0.8, § = 0.6, and
0 = 0.4. The close alignment between the ERPSM and exact solutions across all
cases demonstrates the accuracy and reliability of the ERPSM in approximating
the behavior of the fractional WBK system. Figure 3: Similar to Figure 1, this
figure depicts the ERPSM solutions for ¢(d,7) at 7 = 0.3 for fractional orders: (a)
=1, () J =038, (c) § =0.6, and (d) 06 = 0.4. The observed variations in wave
structures with changing § values further emphasize the role of fractional order
in shaping the system’s responses. Figure 4: This figure compares the ERPSM
solutions with exact solutions for ¢(¥,7) at 7 = 0.3 across the specified fractional
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orders. The high degree of correlation between the two sets of solutions reaffirms the
effectiveness of ERPSM in capturing the essential dynamics of the fractional WBK
system. Figure 5: This figure showcases the NITM solutions for ¢(d,7) at 7 = 0.3
for fractional orders: (a) § = 1, (b) 6 = 0.8, (¢c) 6 = 0.6, and (d) § = 0.4. The
results indicate that NITM effectively models the system’s behavior, with noticeable
changes in wave patterns corresponding to different § values. Figure 6: This figure
provides a comparative analysis between the NITM solutions and exact solutions for
©(9,7) at T = 0.3 for various fractional orders. The agreement between the NITM
and exact solutions underscores the precision of NITM in solving the fractional
WBK equations. Figure 7: Depicting the NITM solutions for ¢(¢,7) at 7 = 0.3
for fractional orders: (a) d = 1, (b) § = 0.8, (c) 6 = 0.6, and (d) § = 0.4, this
figure highlights the method’s capability to adapt to varying fractional orders and
accurately represent the system’s dynamics. Figure 8: This figure compares the
NITM solutions with exact solutions for ¢(¢, 7) at 7 = 0.3 across different fractional
orders. The close match between the solutions validates the robustness of NI'TM in
addressing the complexities of the fractional WBK system.

Table 1: This table presents the computed values of ¢(d,7) using ERPSM at
7 = 0.3 for various values. The data demonstrate the method’s consistency and ac-
curacy across different fractional orders. Table 2: Displaying the ERPSM-derived
values for (1, 7) at 7 = 0.2, this table further confirms the reliability of ERPSM
in producing precise solutions for the fractional WBK system. Table 3: This ta-
ble shows the NITM solutions for ¢(¢,7) at 7 = 0.3, highlighting the method’s
effectiveness in handling fractional-order computations. Table 4: Providing the
NITM-derived values for o(d, 7) at 7 = 0.2, this table corroborates the accuracy of
NITM in solving the fractional WBK equations.

In summary, the figures and tables collectively demonstrate that both ERPSM
and NITM are potent analytical tools for solving the fractional-order WBK system.
The visual and numerical data highlight how varying the fractional order ¢ influences
the system’s behavior, offering deeper insights into the dynamics of nonlinear wave
models. The comparative analyses with exact solutions affirm the accuracy and
applicability of these methods in the realm of fractional calculus and its applications
in mathematical physics and engineering.

4. Conclusion

In this paper, the Elzaki residual power series method (ERPSM) and New iteration
transform method (NITM) to the investigate fractional-order Whitham-Broer-Kaup
system. Some of the most important nonlinear fractional differential equations in
wave movements and fluid mechanics were transformed and simplified efficiently to
extract accurate analytical solutions. It was clear from the analysis that the pro-
posed methods are robust, efficient and to some extent, very simple for solutions
to complex fractional-order systems. For these methods, both convergence analysis
and numerical simulations were conducted. The results showcased intricate wave
behaviors and highly precise nonlinear dynamics, validating the claims made regard-
ing the effectiveness of ERPSM and NITM. Both methods characteristically solved
problems regarding fractional-order systems, establishing a standard for mathe-
maticians and engineers of mathematical physics and applied sciences making them
adaptable and reliable. The results optimize the study of fractional-order models,
suggesting that both methods could be used for further research. Expansion of this
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research could include multi-dimensional system with coupled equations and other
nonlinear models to explore more phenomena in fractional calculus and nonlinear
dynamics.
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