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RELIABILITY ANALYSIS OF MASKED DATA
FOR EXPONENTIALLY DISTRIBUTED
COMPONENTS UNDER MULTIPLE
TYPE-II CENSORING

Ronghua Wang!, Beiqing Gu?' and Xiaoling Xu?

Abstract In the case of multiple type-II censoring, the maximum likelihood
estimations of the parameters are proposed for the masked data of the se-
ries system of two components with exponential life distribution (same and
different parameters), and the uniqueness of the likelihood equation root is
proved. The Bayes point estimations and interval estimations of the parame-
ters are also given under the assumption that the prior distribution is Gamma
distribution. Besides, the likelihood function is deduced theoretically for the
masked data of the parallel system with two components with exponential life
distribution (same parameters), and the uniqueness of maximum likelihood
estimation is proved. The Bayes point estimation and interval estimation of
the parameter is proposed under the assumption of Gamma distribution. The
application of the method is illustrated through simulation data in various
situations.

Keywords Multiple type-II censoring, exponential distribution, masked data,
series system, parallel system.
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1. Introduction

In reliability analysis, system lifetime data are often analyzed to estimate the un-
known parameters of the lifetime distributions of individual system components.
System lifetime test data generally consists of two aspects: failure times and failure
causes. Ideally, system lifetime data should include the exact failure time of the
system and the information on which specific component failure led to the overall
system failure. However, in most cases, the exact component responsible for the
system failure cannot be accurately identified. Instead, the cause of system failure
is attributed to a subset of components, leaving the true failure cause masked. In
real-world scenarios, the exact component failure information is often unavailable
due to high costs associated with fault diagnosis and failure detection, particu-
larly as modern systems increasingly adopt modular designs. This results in the
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inability to precisely determine the failed unit responsible for system failure. Sim-
ilar masking problems arise in system reliability studies of computers, integrated
circuits, and other complex systems. Various factors contribute to the occurrence
of masking, including financial constraints, time limitations, recording errors, lack
of diagnostic tools, and destructive consequences associated with certain compo-
nent failures. Consequently, the statistical analysis of masked data has become
a prominent research topic in recent years. Furthermore, as systems become more
functionally sophisticated, their structures also grow increasingly complex. Systems
such as aerospace power systems and radar systems are no longer simple series or
parallel configurations but rather intricate multi-unit mixed configurations, often
accompanied by the presence of masking phenomena.

Reliability lifetime test data samples can be classified into complete samples and
censored samples. In practice, censored tests are widely used because they signif-
icantly save time, labor, and financial resources, making them a more commonly
adopted testing method. The most frequently used censored data types include
type-1 censored samples, type-II censored samples, and multiple type-II censored
samples (also referred to as missing data). Multiple type-II censored lifetime tests
differ from conventional type-II censored lifetime tests. A standard type-II cen-
sored lifetime test involves subjecting n units to a lifetime test from time zero,
with the test terminating upon the failure of the k** unit (where k is a predeter-
mined positive integer). The ordered observed failure times of these k units are
recorded as t1,tq,- - ,tx. In contrast, a multiple (k -stage) type-II censored lifetime
test also begins with n units under the test from time zero, but due to certain
factors (e.g., lack of diligence by operators), some failure data are missing, leaving
only k failure data available. The corresponding observed failure times are sequen-
tially recorded as t,,,tr,, - ,tr,, where 1 < r; < ry < --- < 1 < n. Notably,
when ry = 1,75 = 2,--- .7, = k, the multiple type-II censored sample reduces to
a standard type-II censored sample. In other words, type-II censored samples are
a special case of multiple type-II censored samples. Since multiple type-II censor-
ing encompasses a broader range of real-world scenarios, research on this type of
censored sample holds greater practical significance.

The estimation problem for parameters under masked data was first introduced
by Usher and Hodgson in 1988 in [29]. They provided the maximum likelihood
estimation (MLE) of parameters for systems composed of two or three series- con-
nected units when masking occurs, assuming that the failure rate of each unit is
constant. Statistical analysis of masked data has remained an active research area
in recent years, with numerous scholars contributing valuable findings, resulting in a
rich body of literature. For a comprehensive review, see references [1-36]. This pa-
per presents a summary of research closely related to reliability statistical analysis
under multiple type-II censoring with masked data.

For the multiple type-II censoring case, Zhang Meng, Lu Shan, and others in [36]
studied the reliability estimation of components in series systems under masked
system lifetime data. They first derived the likelihood function of the sample using
a probabilistic element analysis approach and then provided approximate MLE
and Bayesian estimates of the parameters under the assumption that component
lifetimes follow an exponential distribution with possibly unequal parameters. It
is worth noting that they [36] did not prove the uniqueness of the MLE and only
provided an approximate MLE. Additionally, the study did not consider the case
where the parameters of the exponential distribution are equal.
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This paper first examines a system composed of two series-connected compo-
nents with exponentially distributed lifetimes (considering both equal and unequal
parameter cases). Under multiple type-II censoring with masking, we derive the
MLE of the parameters and prove its uniqueness. When the prior distribution
of the parameters follows a gamma distribution, Bayesian estimation and interval
estimation are also provided. Next, we consider a system composed of two parallel-
connected components with identical exponential distribution parameters. Under
multiple type-II censoring with masking, we derive the likelihood function and ob-
tain the MLE of the parameters, proving its uniqueness. Bayesian estimation and
interval estimation are also provided under the assumption that the prior distribu-
tion of the parameters follows a gamma distribution.

Let the lifetime of the system ¢ be denoted as T;, while the lifetimes of the
two components 1 and 2 forming the system ¢, denoted as T;1, T2, are indepen-
dent and follow exponential distributions Exp(A1), Exp(A2) with parameters A1, Ag,
respectively, where the parameters may be either equal or different. Denote the
cumulative distribution function (CDF) be Fj(t), the reliability function be F;(t),
and the hazard function be h;(t) of T;;, j = 1,2, which are given by:

Fi(t)y=1—e M F () =e M hi(t) =N\ =1,2.

Remark 1.1. The conclusions of this paper are fully applicable to the case where
the failure rate of lifetime T;; for components j = 1,2 passes through the origin.
In fact, suppose the hazard function h;(t) of the component’s lifetime T;; passes
through the origin, i.e., h;(t) = B;t. In this case, its distribution function is given by
Fi(t) = 1—e Bt/ If we set Y = Tfj, then Y;; follows an exponential distribution
with parameter §;/2.

Remark 1.2. The conclusions of this paper are also fully applicable to the case
where the component j = 1,2 lifetime Tj; follows an inverse exponential distribu-
tion. In fact, suppose the component lifetime T;; follows an inverse exponential
distribution with parameter 3;, whose distribution function is Fj(t) = e=%/t. If we

set Yi; = Tigl, then Y;; follows an exponential distribution with parameter ;.

2. System composed of two series-connected com-
ponents with exponentially distributed lifetimes
(identical parameters)

2.1. Maximum likelihood estimation of the parameter

First, consider a system composed of J components in series, where the system
i,1 = 1,2,--- ,n lifetime is denoted as T;, and the lifetime of the component [,] =
1,2,---,J forming the i** system is denoted as Tj. The cumulative distribution
function (CDF) and probability density function (PDF) of the component lifetimes
are denoted as Fj(t), fi(t), respectively. Under multiple type-II censored cases with
masked data, the likelihood function has been given in reference [36], as the following
theorem.

Theorem 2.1. Assume that a system consists of J components in series. A life-
time experiment starts at time 0, and by the end of the test, only the failure time
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trystrys ot ytr, Of the 1,79, 1y failed system is observed, where t,, < t,, <
s <ty . Additionally, the possible failure causes of these k systems are observed.
The censored sample with masked failure causes is given as (try, Sry ), (trgy Sry)y -+,
(try,s Sry), where Sp,,0 = 1,2,k represents the possible failure cause of the sys-
tem. Then, the likelihood function is given by (where CT is a positive constant):

J rm—1 k J

L=C* |:1_HFl(tr1):| : H[ Z hm(trj):| : |:H HFl(trj)]
=1 Jj=1 MES,; j=11=1

k—1r-J J rjq1—rj—1 J n—rg

X 1_[1 Ll_[lFl(tT‘j) - ;l_[lFl(tTﬂ-l)} : L]__‘[Fl(tm)} .

Consider a system ¢ composed of two series-connected components (i.e. J = 2),
where the lifetimes 731, T;2 of components 1 and 2 are independent and identically
distributed according to an exponential distribution with parameter A. That is:

Fl(t) = Fg(t) =1- eiAt, Fl(t) = Fz(t) = 67)\15, hl(t) = hg(t) =\.

At t = 0, a lifetime test is conducted on n systems. By the end of the test,
only k failure data points are retained from the failed systems. The corresponding

failure times of these k systems are denoted as t, ,tr,, - ,tr, (where 1 < r <
rg < --- < rp <n)and t, < t,, < --- <t , the possible failure causes of
these k failed systems are observed and denoted as s,,,4 = 1,2,---,k. Under

this scenario, the system failure sample data with masking can be represented as
(trys Sr1)s (Brgs Sra)s oo s (bryy Spyy ), Where S0 = 1,2, -+, k takes values in {1}, {2},
{1, 2}. Specifically, {1} indicates that the system failure is caused by component
1, and a total of k; system failures are attributed to component 1. {2} indicates
that the system failure is caused by component 2, and a total of ko system failures
are attributed to component 2. {1, 2} indicates that the specific cause of failure is
unknown, meaning a masking effect occurs, and a total of k3 system failures have
an uncertain cause of failure. It is easy to see that: k = ki + ko + k3.

According to Theorem 2.1, the likelihood function is given by (where C* > 0
is the multinomial coefficient due to ordering failure times and independent of the
parameters):

=1

— C+2k3 )\k(l _ e—2>\t1)’r’1—1€_

X (672/\“3' — e M )’"J‘Jrlﬂ“j*l7
J=1

ImLA) =InCt 4+ ksln2+ kln A

k
4 (r— 1) In(1 — e_2>\tr1) — 2\ |:Z tr, + (n— Tk)trk}

j=1
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k—1
+ Z(Tjﬂ —r;—1) In(e™*Mri — e Mris ),
j=1
dinL(\) k tr,e” 2N -
T() 3P DT S - 2[2 ey & (= Tty
=1
k—1 —2At,. =2t
—t,. e "t € Ti+1
2 - 1(7ﬂjJr1 I b J6_2)‘“.7‘ — 612)\tT-7+1
j=

Let ’“27];()‘) = 0, then the following equation is obtained

_ - —2Xt, —2At,.

1 4 ry—1 trle 2Atry 1 1) _tTje i+ t'r‘]+1€ i+t
- E Tiv1—Ti —

2\ k1 — e 2 k ~ it J o 2y _ o~ 2N

1Tk
= [Zt’"j +(n-— rk)t,,kl . (2.1)
j=1

The root of Equation (2.1) is the maximum likelihood estimate (MLE) \ of the
parameter .

Lemma 2.1. The equation (2.1) has a unique positive real root for A.

Proof. Define the function g(\) as

R A S

S | o= 2Mtry 5 y £ e 2 I tr
in im = lim = im im
ce o 2Ntr; 50 Ny +Oo7 Astoo 1—e 2Xtry Aostoo GZNEry
=0 ,
9L, 2t (¢, t,

: _t"'je J + tTj+le i+l . tTj+1 t'r'je ( Jj+1 J)

lim oY N = lim = 400,

A—0 e M — eT M i A0 Q2 —tey)

—2Xt,., —2Xt,., (b, —tr,
. —trje At —+ trj+1€ Atrjia . trj+1 — trje At +1 tT])
lim Y 2N = lim B3 —tr;
A—r+00 - j Tantry A—+00 e (tr_7‘+1_t7“_7') -1
1 k—1
we have lim g(\) = 400, lim g(A) = —¢ > (rjy1 — 75 — Dty ,
A—0 A—4o0 j=1 7
2 o—2Xty,
g/()\) _ 1 _ r — 1 t Z T]+1 1
2/\2 k (1 _2)‘tT1 k —2)\trj _ 2>\tT]+1 )2
22Xt 2 2y —2Xt,., —2Xt,.,
2(t; e I it1) - (e i—e i+1)

—2)t, —2Mr N2
—2(—t,e i+t it1) }

1 rp—1 e ?Ain

T 9)2 A (1- 672/\15,,.1)2
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k— 2
22 Z (e =75 = Dty — ) 2r eyt
k — ( —2\t,., —2\t,., )
= e i —e J+1
<0.
Therefore, the equation (2.1) has a unique positive real root. O

2.2. Bayesian point estimation and interval estimation of the
parameter

First,we expand the likelihood function as follows:

ri—1 NS e A (n—15)t,
L(/\) :C+2k3 /\k Z( 1)r1 1— Sle1_1672)\(T178171)tT1 e j;l j (n—rk) Kk
81_0

—17jp1—r;—1

T ri—1—1 =2ty H(rjp1—r;—1=1;)t ]
H E ( 1) J+1T T JCT]+1 rjfle rj J J Tit1
j=1  1,=0

_ oy — o — 1 —1 k—1
. ri—lrog—ri—1rz—ra—1 Th—Tk—1 re—k—si— 3 I
=1 9ks § E E E (1) =1
51:() l1:0 12:0 lk71:0
S1 l1 lz lk—l k 72>\U1
071—107"2 —ry— 107"3 ro—1" Ork—rk,l—l)‘ e .

k—2
Here uq = (7”1 + 1 — Sl)tn + Z (’I“j+1 - T — lj + lj+1)trj+1 + (’I’L —Tk—1 — lk—l)tr
j=1

Following the approach in reference [36], assume the prior distribution of parameter
A follows a Gamma distribution:

B ya-1,-px
A —\ 0 0.
g(A) T\ e B>
L(Ng(N)
Then, the posterior density function of A is given by h(A | data) = T L0V
Jo AL g(A)dA
From this, a Bayesian estimate, the posterior mean of \ is A= T .
fo L(N)g(M\)dA
To compute this for m = 0,1, evaluate the integral:
+o0
M = / A L(N)g(N)dA
0
ri—1lrog—ri—1rz3—ro—1 TE—Tk—1—1
o BN T S e
81—0 l1_0 lz 0 lk_1:0
x Co_ Ol C" O

T2—7T1— 1 r3—ro— 1 ’l‘kf’r“k,_lfl

+o00
% / )\a—l-‘rk-i-me—k(?ul-‘rﬂ)d)\ )
0
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Note the following integral: f0+oo Ne A\ = Fl()gj—_ll).

’1"171 ’1"277“171 T377‘271

M(m)zc+2k3F(a+k+m)ﬁaZ Z Z

F(a) s1=0 1,=0 12=0

Te—Tr—1—1 k=t
Tk7k7517 Z li

X Z (-1) =t Cff_lcii_n_l

lg—1=0

% Cl2 _Clk—l (2u1 + 6)—(a+k+m).

T3—T2—1.. Te—Tk—1—1 ’

Thus, the Bayesian estimate of A can be expressed as: A= %Eé; .

The Bayesian interval estimation for the parameter A is derived as follows.

Since the posterior density function of X is given by h(\|data)= T .
Jo T L(AN)g(N)dA

Then the Bayesian interval estimation of A at the confidence level 1 — o is given by
(A1, A2), where A1, Ao satisfy the following equations:

A o +o0o o

B\ | data)dr = & | / B\ | data)dr = & |
0 2 A 2
Example 2.1. Let n = 30, k = 24, r1,7r2,--- ,724 be given as 1, 3, 4, 6, 7, 8, 9,
10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, k1 = 8, ke = 8, k3 =
8, respectively. The failure data of a system consisting of two components,both
following the distribution Exp(0.8) generated by Monte-Carlo simulation, are as
follows.

The failure data belonging to {1} are 0.0219, 0.0412, 0.1097, 0.2199, 0.5936,
0.6716, 0.8847, 0.9609.

The failure data belonging to {2} are 0.0965, 0.1347, 0.1540, 0.3035, 0.6244,
0.8192, 1.0644, 1.9287.

The failure data belonging to {1,2} are 0.0882, 0.1256, 0.2192, 0.7332, 0.8715,
1.0229, 1.2131, 1.2701.

Under the k -multiple type-II censored life test, the maximum likelihood estimate
(MLE) of the parameter A is obtained as A = 0.8467. If the prior distribution is
assumed to follow a Gamma distribution with parameters a = 1, 8 = 2, the Bayes
point estimate of A is computed as A = 0.8282, and the 0.95 Bayesian confidence
interval is given by [0.4152,1.6818].

3. System composed of two series-connected com-
ponents with exponentially distributed lifetimes
(different parameters)

3.1. Maximum likelihood estimations of parameters

Consider the system ¢ composed of two series-connected components 1 and 2, where
the lifetimes T;1, T;o of components 1 and 2 are independent and follow exponential
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distributions with parameters A1, Ao, respectively. The test scheme is the same as
that in Section 2.1.

According to Theorem 2.1, the likelihood function is given by (where CT is a
positive constant):

L(A1, X2)
2 r—1 k ko2
o -] T[S o] [TTTT )
=1 j=1tmes,, j=11=1
k—1p 2 o 2 . rig1—rj—1 2 o n—rg
X |:H Fl(tTj) - HFZ (tTj+1):| |:H Fl(trk>:|
j=1Lli=1 =1 =1
i
ri—1 —(A1+/\2){Z tr. +(n—rk)t, ]
=CFAPAR? (g 4 20)'® [1 = e Orbitn | = '
k-1 T'+17T‘71
% [ef(AlJr)Q)t,ﬂj _67(,\1+,\2)%H} g i
j=1
In L(A1, A2)
=InC*t +kiInA + koln o + k3 111()\1 + /\2) + (Tl — 1) In |:1 — 6_(A1+)\2)t”:|
k—1
+ Z(Tjﬂ —rj—1)In [6_(A1+>‘2)t%’ - 6_(/\1+/\2)trj+1}
j=1
_ ()\1 =+ )\2) |:Z trj + (n — Tk)trk.:| ,
j=1
Oln L()\l, )\2)
O\
kl ]{33 t, 67()‘1+/\2)t"1
_n _qytme T
)\1 + /\1 T )\2 + (Tl )1 - e_(>\l+)\2)t7‘1
k—1

_tf”je_(A1+A2)tTj + trj+le—()\1+>\2)trj+1

+ Z(rjﬂ —rj—1) o~ rtAa)te, o=t Xe)te,

— Ztrj—l—(n—rk)trk s
j=1

Oln L()\l, )\2)

02
:@ k3 + (T - 1) trlei()\lJ’»)\Q)trl
A A1+ Ao ! 1 — e~ (MatA2)ty,
+ § ‘ B o 1) 7tT’J 6_()‘1+A2)t7~j + tr.j+16_(>‘l+>\2)trj+1
j:1(TH1 Tj o~ OrtXa)te; o —OatAa)te,
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Let 218 LB(/\AI“A{") =0, %(;\21’)‘2) =0, yield the following two equations:

i ks +(r1—1) tpe” M1 HA2)in
A AL A ! 1 — e~ atra)tn

k-1 - . -
+ Z(T —r;—1) —tr,e AatAa)tr, +lr, € AatAz)tr

J+1 J e_()\l_i_AQ)tTj
j=1

— 6_(A1 +)\2)t7‘j+1

Tk
Jj=1
k k t, e~ (ArtA2)tr
S (- )
A2 AL F A 1 — e~ (atA)tn
k-1

—()\1+A2)t .
rj41€ Tit+1

o e—(>\1+/\2)t,,~j+1

6_()\1+>\2)trj

Tk
=1
From § = {2, we obtain Ay = 2 ;. Substituting this into the first equation,

k k oM (ke k1)t

—1 73 + (7,,1 _ 1) T1

At A(1+ ka/kr) 1 — e (tka/kn)tn,
k—1 _tr.e*)\l(1+%)t7‘j n tr.+167/\1(1+%)trj+1

+ ripg1—7r;—1 J J
;( 1= =) MR,

kg
o e*/\1(1+ﬁ)t,,.j+1

The equation is then transformed into:

1 1 rp =1t e M0Fke/k)ty
[y VY S e Ve Y/
+ 1 ki:l(rjﬂ —r;—1) tp e MUk R0ty g etk k)t
P S VY R ) T W CRE Yy T
1 k
= jz:ltrj + (n — 1)t

(3.1)

The root of equation (3.1) is the maximum likelihood estimate (MLE) A; of the
parameter A1, leading to the MLE of A\ as follows: Ay = %/\1.

Proof. Define )]

Lemma 3.1. Equation (3.1) has a unique positive real root with respect to A;.

(1 + %) A1, then equation (3.1) can be rewritten as
1

’
ry—1 t. e Mitn

k—1 —Nty. —\it
1 —t, e Mt gt et
— it D) (rja—ri—1)— ’
A >

j+1

e Mtr _ gAMb
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lz tr, + (n—rp)t ] . (3.2)

From Lemma 2.1, it follows that equation (3.2) has a unique positive real root,
which implies that equation (3.1) also has a unique positive real root. O

It is worth noting that reference [36] does not provide proof of the uniqueness of
the maximum likelihood estimate (MLE) of the parameter A1, Ag; instead, it only
presents its approximate maximum likelihood estimate as follows.

Define ro =0,mp =r1 —1,m; =7j41 —7;, —1,7=0,1,--- k- 1.
Furthermore, for j = 1,2,--- |k, denote
"5 4q;j q4595+1 45
p; = 17q]_1_p]55]: __]_ - = 2111 _J )
. % =%+ (g —giv1)” G+t

—0;) Ingjq1.

gi+11lngj41 —gjlng; +6;Ing — (1
J

Y =
45 — qj+1

Thus, the approximate maximum likelihood estimates of the parameter A;, Ay are
given by:

/{3 k—1
M=—2 k- -

k—1 k -1
X {ij 5]t 175j)t7~j+1 +Ztrj Jr(nrk)trk} s

— =1

Ay =
2 = kl _|_ kQ ( Zm]’yj>

k 71
{ijldt + (L= 05)tr, —|—Zt,«j—|—(n—rk)tm} .

j=1

Assume that n = 25, k = 20, r1,7rg,- - , 9o takes the values 1, 2, 3,4, 6, 7, 8, 9,
11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, k1 = 5, ke = 10, k3 = 5. By conducting
1000 Monte Carlo simulations, failure data are generated for a system composed
of two components, each following distribution Exp(\;) and Exp(Az), respectively.
Under the k-multiple type-II censored life test, the mean and mean squared error
(MSE) of the maximum likelihood estimate (MLE) and the approximate maximum
likelihood estimates (AMLE) of parameters A1, A2 are computed. The results are
presented in Table 1, from which it can be observed that there is no significant
advantage or disadvantage between the MLE and AMLE for the two parameters.

3.2. Bayesian point estimations and interval estimations of
parameters

First, the likelihood function L(\1, \2) is expanded as follows:

k3 Tlfl
LA, A2) =CTAPIAS - Y " Coafiafe . Y " (—)n-lm=ese

51:() 8220
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Table 1. Simulation results of the MLE and AMLE of parameter A1, A\2.

MLE )\, MLE Mo AMLE )\ AMLE )\,
Mean | MSE Mean | MSE Mean | MSE Mean | MSE
0.5 | 0.8 | 0.4464 | 0.0124 | 0.8929 | 0.0468 | 0.3878 | 0.0198 | 0.7756 | 0.0294
05 |1 0.5205 | 0.0121 | 1.0411 | 0.0485 | 0.4522 | 0.0111 | 0.9044 | 0.0444
0.5 | 1.5 | 0.6991 | 0.0630 | 1.3981 | 0.1040 | 0.6073 | 0.0292 | 1.2146 | 0.1521
1 1.5 | 0.8697 | 0.0523 | 1.7394 | 0.1986 | 0.7555 | 0.0864 | 1.5110 | 0.1068
1 2 1.0504 | 0.0537 | 2.1009 | 0.2147 | 0.9125 | 0.0462 | 1.8250 | 0.1850
1 2.5 | 1.2210 | 0.1146 | 2.4419 | 0.2665 | 1.0607 | 0.0533 | 2.1213 | 0.3421
1.5 | 2.5 | 1.4146 | 0.0988 | 2.8292 | 0.4744 | 1.2289 | 0.1426 | 2.4577 | 0.2780
1.5 |3 1.5680 | 0.1234 | 3.1360 | 0.4935 | 1.3621 | 0.1086 | 2.7242 | 0.4344
1.5 | 35 | 1.7341 | 0.1829 | 3.4682 | 0.5133 | 1.5064 | 0.0967 | 3.0128 | 0.6240
2 3.5 | 1.9010 | 0.1600 | 3.8020 | 0.6918 | 1.6514 | 0.2348 | 3.3028 | 0.4920
2 4 2.1186 | 0.2071 | 4.2373 | 0.8282 | 1.8405 | 0.1711 | 3.6810 | 0.6844
2 4.5 | 2.2949 | 0.3416 | 4.5898 | 1.0267 | 1.9936 | 0.1922 | 3.9871 | 1.0316

A1 A2

&
—(A1+A tr. —rg)tr
" 67(A1+)‘2)(T171732)trle (A1+X2) ];1 (=),

k—17jp1—r;—1

_ T +177’-7171' lj
X H E ( 1) ’ ’ Jcrj+17rj71
j=1  1;=0

% 6—()\1+>\2)ljt7~j e—(A1+)\2)(Tj+1—Tj—l—lj)t7.j+1

ks r1—1rog—r1—1r3—1ra—1 TE—Tp—1—1 ks kill
—k—s2— i
:C+ E E E E A E (_1) i=1
81:082:0 l1:O lz:O lk71:O
S1 Y82 l1 lo
X Ckacrl—lcrg—rl—lcrg—?“z—l e

lk—1 ki+4s1 yka+ksz—s1 —(A1+A2)uz
X Q= bk e .

k—2
Here U = (T1 + ll - Sg)tﬁ + Z (Tj+1 —Tj— lj + lj+1)t7'j+1 + (n —Tk—1 — lk—l)trkn
j=1
Like reference [36], assume that the parameters \;,j = 1,2 are independent, with
their prior distributions following Gamma distributions:

5l’lj a;j—1 B\ 3
gj(/\j)zr(';,))‘j] e PN a; > 0,8, >0,j=1,2.
J

The joint prior distribution of parameters A1, Ay is then given by:

(o3} a2

A o) — 1 2 yoa—lyas=1,—pidi,—fars
A = pa gy T

Thus, the joint posterior distribution of A1, A is given by:

LA, 22)g(A1; A2)

fo+oo oJrOO LA, A2)g( A1, A2)dArddg

h()\17>\2 | data) =



Reliability analysis of masked data 3837

From this, the Bayesian estimates of parameters A1, Ay are obtained as:

A = f0+oo 0+OO A1L(A1,A2)g(A1, A2)dA1dAs
1= +o0o ptoo )
f 0 L()\l, )\2)9(/\1, )\Q)d/\ld)\g

0
S 52 [ Ao LAy A2)g (A, Az)dArdA
2= 400 400 I .
I (A1, A2)g(A1, A2)dA1dAg

The following integral is computed for m = 0, 1:

+oo —+o0
M =/ / AP L(AL, A2)g(Ar, Ag)dArdAs
0

ﬁ k3 roa—1ra—ri—1rz—ra—1 rr—rr—1—1 Tk,k,SQ,kil 1
=Ct ! > (-1 =
s1=0s2=0 [;=0 l2=0 lg—1=0

S1 /Y82 Iy lo le—1
Xckgch lcr2 —ry— 107"5 ro—1" Crk—rk,l—l

—+oo +oo
% / )\’1”+”1_1e’/\1(“2+61)d/\1 . / )\12)2—16*>\2(U2+52)d)\2
0 0

g —1 k—1
6 ks rmi—1lra—ri—1lrzs—ro—1 Tk—Tk—1 rr—k—sa— 3 I,
C+ L § (—1) =1
s1=0s2=0 [;=0 lo=0 l—1=0

s s 1 l le—
X Ok;, Crlz 1Cr12 ry— 107‘23 ro—1" Crzflrk_lfl
" Fm+wv)  T(vg)
(uz + Br)mtvr (up + Ba)v2

Here v = kl + 81 +Oél,"U2 = kQ +k‘3 — 81 + ao.
Similarly, following the same approach, we obtain:

(m) +oo  ptoo
M2m :/ /0 A (A1, A2)g(A1, A2)dAr1dAg

ks ro—1ro—ri—1rg—re—1 TE—Tp—1—1 k=1
ﬁ Tk7k7827 Z li
+ 1 E (_1) i=1
=0 So= =0 l1 0 l2 0 lk71:0
S1 So l1 l2 lk’—l
X C Cﬁ lcrz —r1— ICT3 rog—1""" Crk—rk,l—l

—+oo +oo
% / /\11)1716—>\1(u2+ﬁ1)d/\1 . / /\glJrvz716—>\2(u2—&-52)d)\2
0 0

N ﬁl ks ri—1ro—r;—1lrg—ro—1 TE—Tp—1—1 ks — i L
=C > (-1 =
S1 =0 So= 0 ll 0 l2 0 lk—1:0

s s l l U —
X Ck; Crf lcr; —r1— 107"3, ro—1" Crz —1rk,1—1
" L(v))  T(m+wvs)
(ug + 1)Ut (ug + Ba)m+v2

Finally, the Bayesian estimates of parameter A1, s can be expressed as:

MO MY

M= —g, =2
Ml(O) MQ(O)

3
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where M(O) M(O)

The Bayesmn confidence interval estimation for parameter Ai, Ay is derived as
follows.

The posterior density function of A is given by:

52 L, A)g(Ar, Aa)dAs

fo+oo 0Jroo L1, A2)g(Ar, A2)dAidAa

+oo
/ h(Ah )\2 | data)d)\g =
0

Thus, the Bayesian confidence interval estimate for parameter A\; at a confidence
level 1 — @’ of is given by (A1, A12), where A11, A1o satisfy the following equations:

/

A11 “+00 al “+o00
/ / h()\17>\2 | data)d)\gd)\l = 5, / )\17>\2 | data)d)\zd)\l
0 M2
Similarly, the posterior density function of \s is given by:

/ h(>\17 )\2 | data)d)\l = ‘[O ( 1 Q)g( 1 2) 1
0

Jo7 % JoT L, A2)g (A, Ag)dArds

Thus, the Bayesian confidence interval for parameter A2 at a confidence level
1 — o' is given by (21, Aaa), where a1, Aoo satisfy the following equations:

5\21 “+o0 CY/ “+o0 +o0 Oé/
/ / h,()\l, AQ ‘ data)d)\ld)\gz ? s / / h(Al, )\2 | data)d)\ld)\g = ?
0 A2z

Example 3.1. Let n =30, k = 25, r1,r2,--- ,r95 be given as 1, 2, 4, 5, 6, 7, 8, 10,
11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, ky = 5, ko = 10, k3 =
10. The failure data of a system composed of two components in series, where the
components following distributions Exp(1) and Exp(2), respectively, are generated
through Monte Carlo simulation as follows.

The failure data belonging to {1} are 0.0105, 0.0399, 0.0701, 0.1753, 0.7504.

The failure data belonging to {2} are 0.0391, 0.0897, 0.0948, 0.1873, 0.3256,
0.3344, 0.4234, 0.5307, 0.5692, 1.0179.

The failure data belonging to {1,2} are 0.0156, 0.0358, 0.0496, 0.1238, 0.1923,
0.2094, 0.3265, 0.5683, 0.7179, 0.8811.

Under the k-multiple type-II censored life test, the maximum likelihood esti-
mates (MLE) of parameters A, Ay are obtained as: A = 1.0712 and \y = 2.1423.
The approximate maximum likelihood estimates (AMLE) are given by: A1 = 0.9059
and ;\2 = 1.8118. If the prior distribution of \; follows a Gamma distribution with
parameters a; = 1, 81 = 2, and the prior distribution of Ay follows a Gamma dis-
tribution with parameters ap = 2, 32 = 3, then the Bayesian point estimates of the
parameters A1, Ao are calculated as )\1 =1.0148 and )\2 = 1.7423. The 0.95 Bayesian
credible intervals for the parameters are given by [0.4058,1.8937],[0.9904, 2.9108].

4. System composed of two parallel components
with identical exponential lifetime parameters

4.1. Maximum likelihood estimation of the parameter

First, consider a system composed of J components in parallel, where the system
i,i =1,2,--- ,n lifetime is denoted as T;, and the lifetime of the component [,] =
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1,2,---,.J forming the i** system is denoted as Tj. The cumulative distribution
function (CDF) and probability density function (PDF) of the component lifetimes
are denoted as Fj(t), fi(t), respectively. Under multiple type-II censored cases with
masked data, the likelihood function can be derived from the following theorem.

Theorem 4.1. Assume that a system consists of J components in parallel. A
lifetime experiment starts at time 0, and by the end of the test, only the failure time
trystrgs o ytr, Of theri,ra, - 1y failed system is observed, wheret,, <t,, <---<
tr,. Additionally, the possible failure causes of these k systems are observed. The
censored sample with masked failure causes is given as (tr,, Sry ), (trys Sry)y s s (Erys
Sr), where Sp.,i = 1,2,---  k represents the possible failure cause of the system.
Then, the likelihood functzon is given by (where CF is a positive constant):

et | [ ) (s

=1 j=1-mesr; j=11=1
k—1r J J rip1—r;—1 n—rg
X H[Hﬂ(trj+1)—Hﬂ(tTj)] .[1_HFl(tTk)} .
Jj=1%=1 =1 =1

Proof. The likelihood function is derived using the probability element method.
Given that

(0,+00) = (0,tr,) U[tn ey +dtyy) U[tn + diy,, try)
U e U[tﬂcatm + dtT}c) U[t"'k + dt"'k7+oo) )

we can decompose (0, +00) into the following four parts:

k
Part I: (0,¢,,), Part II: U [ty tr; +dtr;),
j=1
k—1
Part IIL: | J[t,, + dt, . tr,.,), Part IV:[t, + dt,,+00).
Jj=1

For Part I. Within the interval (0,¢,,), there are 7 — 1 system failures. The
probability that a particular system ¢ fails within (0, ¢,,) is given by:

P(Ti<tr1):P(Ti1<tr1aTi2<tr1u"' 2J<tr1 H—Fl 7"1

Thus, the probability that exactly 1 — 1 systems fail within the interval (0,¢,,) is
T1 1
given by (where C; is a positive constant): C; {H{_l Fl(th)} .

For Part II: The ri, i, ... riP system failure occurs within the interval [t,,, t,, +
dtry )y [trgs trg Fdbry)y o+ [ty t +dt .)- The failure time of the r]th j=1,2,--- .,k
failed system is recorded as tTj, thus

P(t,, <T,, <ty +dt))
= Z P(Trjl<trja"'7 rj(m71)<t7"7 STTJ < tr, +dt7‘35

mesrj
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Trj(m+1) <trj»"' TT~J <t )
= > fmlts) dtT]HFz (tr,)
mEer
J
fm tn
= 2wy A
meEsy, m T” =1

where J,, ={1,--- ,m—1,m+1,--- ,n}.
Therefore, the density function corresponding to the k failed systems in Part IT
is given by (where C3 is a positive constant):

k

I L £ M) e 5 254] [ITAe)

MES, =1

For Part III: The number of system failures occurring in each interval [t,., +
dtryytry), [trg + Atrgytrg)s oo o by + Aty tr,) 18 given by 19 — 1y — 1,73 — 79 —
1,--+ 1 —7rK—1—1. Thus, for a particular system ¢, the probability of failure within
the interval [t, + dt forj=1,2,---k—1is:

riotrisn)

P(ty, +dt,, <T; <tr,,,)
=P(T; <tr,,,) — P(T; < t,, +dt,;)

:P(Til < trj+1,'~' ST < tTj+1) —P(Tll <ty —l—dtn,"' Ty <t,. —l—dtrj)
J J
=[[E,.) - ] Filtr, +dtr)) .
=1 =1
Furthermore,
J J
dt{«ljrgo Ptr; +dtr; STy <try ) = dtlrl,.rgo Ll:[l triva) 1:[ b, - dtr,) }

[
':1k

J
TJ+1 H

The density function corresponding to the r;;1 —r; — 1 failed systems within the
interval [t,, + dt,, ,tr,,,),j = 1,2,--- ,k — 1 is given by (where C’;S- is a positive

. J J
integer): C’gg {Hl_l Fi(tr,,,) = I1j= Fi(tr,)
Thus, the density function corresponding to all failed systems in Part III is given
rit1—rj—1
k=1] J J
by (where Cy is a positive constant): C5 T | [] Fi(tr,.,) — 1 Fi(tr,)
j=1[l=1 ’ =1 '
For Part IV: There are n—r}, systems that fail within the interval [¢,, +dt,, , +00).
The probability that a given system ¢ fails within the interval [t,, + dt,, , +00) is:

~

1

ri+1—ri—1

P(Ti >ty +dtrk) = 1—P(TZ‘ < tp, —|—dt,«k)
:1—P(Ti1 <trk+dtrk7"' , g <trk+dtrk)
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J
:1—IIﬂmk+ﬁmL

=1

hmP@>%+mwﬁ—Hﬂm

dt,, —0

Therefore, the probability density function corresponding to the n—ry, failed systems
J n—rg
in Part IV is (where C} is a positive constant): C; [1— 11 Fi(tr, )} . Combining
I=1
all parts, the likelihood function is given by:

J k
fe] 0 ) e

=1 MmESy;

e

ri—1

L=C*

!
e

I—l
3
<
+
=
ﬁ
[,
|
—
| —
—
—
~+
N
E
—
|
3
|
<
=

Let system 4 be composed of component 1 and component 2 in a parallel config-
uration (i.e. J = 2), where the lifetimes T, T2 of component 1 and component 2
are independent and both follow an exponential distribution with parameter A. In
this case:

Fl(t) = Fg(t) =1- e”‘t s Fl(t) = Fg(t) = €7>\t s hl(t) = hQ(t) =A.

At time 0, n systems are subjected to a lifetime test. By the end of the test,
only k failure data points are retained from the failed systems. The corresponding
failure times of these k systems are denoted sequentially as ¢,,,¢.,, - ,t,,, where
1<r <rg<--- <rp <n. Additionally, ¢,, <t,, <---<t,. The potential fail-
ure causes of these k failed systems are observed and recorded as s,,,i =1,2,--- , k.
Under this scenario, the system failure sample data with censoring is given by
(trys Srp)s (Brgs Sra)s oo s (bryy Spyy)s Where s, = 1,2,--- |k represents the failure
cause for the corresponding system {1}, {2},{1,2} with the following interpreta-
tions: {1} indicates that the system failure is caused by component 1. {2} indicates
that the system failure is caused by component 2. {1,2} indicates that the exact
failure cause is unknown, implying that a censoring effect has occurred.

Without loss of generality, rearrange ¢,,,%,,, - ,t,, according to the failure
causes: yi1,¥2, - , Yk, correspond to system failures caused by component 1. yg, 41,
Yky+2," " > Yky+ky coOrrespond to system failures caused by component 2. yg, 4x,+1,
Yky+kot2, - , Yk correspond to censored failures. At this point, we have: k =
k1 + ka + k3.

From the above theorem, the likelihood function is given by (where CV is a
positive constant):

L)

e~ MVi ko oy o= Ak 4

k1
1 = Ab\2(r—1) :
=C"(l—e ) H 1— e 1_[1 1 — e~ AUki+i
j=

j=1

k3 Y . k
2he” Wi thats “At 2
<[5 [I e )
1 — e AYkithats 4

j=1 j=1
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n—"7rg

k—1 T —1
j=1

:C+2k3)\k(1 —)\t71 2(r1—1) H —Atr .e—)\];ltry
k—1 Tit1—r;—1 n—ri
j=1
In L()\)

=0T +ksIn2+kIn A4 2(rp — 1) In(1 — e M) + Zln(l — e M)

k k—1

- )‘th + Z(Tj+1 —r;—1)ln {(1 — e Mrr)? — (1 - e—AtT.j)z}
J=1 Jj=1
+(n—rk)In [1 —(1- e_)‘trk)Q} 7
a0y
dA
k by e M k trje_)‘tﬁ' k
=3 +2(r — 1)m +Zm — Ztm
Jj=1 J=1

k-1
Tj+1
+2) (g —ri—1)
j=1

—t, e Mk (1- e’”"k)
1— (1= e M)

= 0, and we obtain the following equation:

+2(n — 1)

dln L(\)
Let —ax

1 LoT —1 tp e M Z te e M 4T —tp e M (1 — e M)

A k 1—en % 1—e My k 1—(1—e Mm)2

+ 2 kil(r- —r— 1)257'1“67””+1 (1—eMisn) —t e (1 — e M)
k2 41T (1 )2 — (1—e M )2

1k

EZt : (4.1)

j=1
The root of Equation (4.1) provides the maximum likelihood estimate (MLE) A
of the parameter \.

Lemma 4.1. Equation (4.1) with respect to A has a unique positive real root.

Proof. Define the function

At - _
T n— 1 —te e Mk (1 — e M)

k 1—(1—e )2
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+ 2 kil( 1)tm’+1€7>\t7ﬂj+1 (1- 67””“) - trjei)\trj (1— ei/\tr")
z E Paq — e —
J+1 J Aty — Aty
g= (L= )2 — (1= M)2
Since
li tr e A li bry +
im —4———— = lim ——— = 400
A—0 1 — 6—2)\1%1 A—0 62/\137\1 -1 )
. tT’l 672Atr,~1 . t’l‘l
m o, i =0
A—+oo ] — e “Nr A—+oo M1 — 1
_ —tpe M (1= e M)
lim 5 =0,
A—0 1— (1 _ efktrk)
—tp, e e (1 — e M)
im —
A—+00 1—(1—e M)
I —tr, (N —1)
= lim '
A too @2ty (e)‘trk —1)2
At
~ gy (=D
Aotoo  2eMre — 1
tr,
-
— At At
and 1 —e it~ A 1—e¢ i~ At,. as A — 0, we have
J+1? J ’
—At., “Atr, “Atr, Aty
) tTj+1e Atrjia (1—@ T]+1)—t,r]_e ](1—6 A J)
Ay BVRE BVRY
(=) (-
“Atr, “Atr,
= lim brja€ " Ay — b e T - Ay
S ) - ()
Tit1 T
2 e_At"”j#»l _ t2 e_ktrj
= lim Ti+1 Tj
- 2 _ 42
A—0 )‘(tTj+1 trj)
= + o0 s
li 157“]‘+1€_>\trj+1 (1 - e_ktrj*'l) - trje_)\t” (1 - e_MTj)
)\_1>IJ’I_100 (1 — At 2 —Atr. N2
—e M2 —(1—e i)
1 li —t72‘;+167MTH1 (1_67MTH1)Hiﬁleizﬂrﬂ'“-Hﬁ.eﬂtri 1—e M7 —tzjeizktrj
=— lim - + - —
2 A54oo T e () Bl ()
i -2 . e M i) (T M )+t e NPtrjpg Tty )+t2j (1—e N7 )t e M
=— lim - - - 4
2 A5 +oo tri e Mrjpr =t (1 Mritl)—t, (1—e ')
2
_ tr,
2t,,
_
2
k—1
Thus, lim g(\) = +o0, lim A =-1 rivg —r; — Dt — 2=kg
) )\Hog( ) ’)\~>+oog( ) kal( j+1 j ) r; T Tk
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Denote z = e™?,

A

J
_2 3t 2 e At 2 2t +t,,
=ts it —|—2(t,4j+1 —tp ) T — (b, — 2t,) 2T i

Tj+1 Tj+1

+2t,. 2t +2t,. 3t,..
— (2, — b)) 2@ P 12t =ty )P T e 2 0
g'(\)

1 —1 tZeMn 1F t2 Ay _ M1\
__ 1 ,n ™ 72 2+2n Tktrk e k)\
A2 k (1 — e T1 k = k 2—e” Lry,

()

k—1 N
+ g (T" 1 r. — 1) t,. +1It R - trj+1x2t'g+1 - trjl't i+ trjx% J dj
g j=1 " ’ —2z'mi i g 2zt — g% md)\
- 3 — Aty _
1 T —1 tfle Aty 1 z": t?»je tr; 2n — tfke Mo,
= — _ o . 2
A2 k (1 — e_ktrl k vt (1 . e—/\t”) k (2 _ e_AtTk)
’ kil( 1) 4,
_Z T r
k = Jj+1 J ( thr3+1 + x7tritt 4 2t x2trj )2

n—rg t%ke A
k =AMt )2 -
(2 —e M) j=1

G it +2, ') (2 —a'Ti )2 2t

i1 —t,.j)%”ﬂﬁtw‘ (1—z"5 ) (1—z""i+1)

(—2&"73+1 42”4 420" )2

<0.

k
Thus, the equation has a unique positive real root g(\) = % >t O
Jj=1

4.2. Bayesian point estimation and interval estimation of the
parameter

First, the likelihood function L()\) is expanded as follows:

2(7"1—1)
L()\) :C+2k3 )\k Z ( 1) 2(r1—1)— klClﬂrl71)6—[2(7‘1—1)—191])\”1
k?1:0
1 s; —(1—=s;)At — T
X Je P e 97t
J=1 sJ—O

?T‘

—1 [rj+1—ri—1

% ( 1)7'J+1 rj—1— lJC

Ti4+1— 7‘]71
1;=0

ECH
I
—



Reliability analysis of masked data 3845

x (1— e~ M )2lj(1 e Ay )2(Tj+177"j717l]‘)

n—rg
X e—(n—’r‘k))\tTk Z (_1)71—7“k—k2ngcsirke—(n—rk—kg))\t,,‘k
ko=0
2(7‘171)
5 2(r1—1)—k k - 1—1)—k1]\t,
—Ctoks )k . Z (_1) (r1—1) 102(1r1_1)e [2(r1—1)—k1]Atr,
k‘1=0
k 1 . k v
% H Z (_1>1—sj 67(1fs_j)>\t,ﬂj e J;m

=1 Sj=

J
k=1 _rjp1—rj=1 2l 2(rjp—rj—1=1l;)

« [ (_1)3(Tj+1frj*1)*11*%‘*”]‘
j=1 1,=0  a;=0 b;=0
X C’f']]"+1_7‘j—1cgljj ;ZUH—T‘j—1—lj)ei>\{(2ljiaj)trj+lHﬂrﬁlirjililj)ibj]tj}
n—rg
> e_(n_rk))‘t% Z (—1)n_Tk_k22k2Cﬁzrke_(n_rk_kz))\trk
ko=0

2(r1—1) 1 1

=Ctaks \k NN

k1=0 51=0s2=0

ro—r1—1 217 2(ra—ri1—1-l1)

PSS

11=0 a1=0 b1=0
ra—ro—1 2ly 2(rg—ra—1—l2) re—Tp—1—1 2lg_1 2(rp—rr_1—1—lk_1) n—ry
D IED D DD DD > >
l2:0 a2=0 bg:O lk71:O ak71:O bk,1:0 }{)2:0

k k—1
5 2r1—2—ki+k— 37 s;+ 3 [B(rj41—7;—1)—lj—a;—bjl+n—rr—k2
X 2F2 (71) j=1 j=1
xCho g Ok

2(r1—1) “re—r1—1"rg—ro—1"""

lie— i ~bj X _
xCrt 0y C Cre e,

Te—Tk—1—1720 7 2(rj 1 —ry—1=15) T =Tk
Here
k
w=(2(r1 = 1) = k1)tr, + Y _ty,
j=1

k—1
+ ) {@ = aj)tr, + 2041 — 15— 1= 1;) = bj] 5}

J
+ (2(n —rg) — ka2)tr,-
Assume that the prior distribution of the parameter A is a Gamma distribution:

_ 50‘ a—1_—BA
g()\)fr(a))\ e "M a>0,8>0.

Then, the posterior density function of A is given by: h(\ | data) = % .
0

~ +oo
Thus, the Bayesian estimate of the parameter A is: A = %.
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Compute the integral for m = 0,1 :

1 1 1 ro—ri—1 20y 2(re—r1—1—11) rg—ry—1 2Iy
< 11=0 a1=0 b1=0 lo=0 a2=0

2(T3—T’2—1—l2) Te—Te_1—1 2lx_1 Q(Tk—’r‘kfl—l—lkfl) n—rg

k
™ Z ... Z Z ok
b2:0 lk71:0 ak,1:0 bk,1:0 kzZO
k k—1
2r1—2—ki+k— 37 s;+ 3 [B(rj41—r;—1)—lj—a; —bjl+n—ri—k2
X (—1) i=t i=1 C§(1r1 1) CT2 r1—1
X Cf"i —ra—1" Ci];;:l'rkfl_lcgl]jC;ETj+1—Tj—1 1) C:lk Tk

400
% / )\k-{-'m-l-a—le—)\(w-‘rﬂ)d)\
0

2(r1—1) ro—ri—1 213 2(re—r1—1—11) rg—ro—1
~crak L > Yyeyy oy Ty Y
k}l 0 S1= 082 0 Sp—= 0 l1_0 al=— 0 b]—O 12 0
2l 2(rg—ra—1—l2) rr—rg—1—1 2lg—1 2(rk—TKk-1—1=lk—1) n—ry
D INED DD DS > X
a2:0 bQ:O lk,1:0 ak_1:0 bk,1:O k2:0
k k—1
k 2ry—2—ki1+k— Z s+ Z [3(T‘j+177“j71)7l]‘7aj7bj]+’ﬂ77“k7k}2 k .
2(__ j=1 j=1 1 1
x 2 ( 1) ! ! C2(r1—1)CT2 —ri—1
x Cl2 oA o N ex e LlEtmta)
ra—ro—1" re—Tk—1—1720;2(r ri—1—1; n—rg k4+m+a "
( Jj+1— T ) (w + ﬁ)

Thus, the Bayesian estimate of the parameter A can be expressed as: A= %E;;

Next, we derive the Bayesian interval estimation for the parameter A\ as follows.
Since the posterior density function of A is given by:

L(Ng(N)

h(A | data) = f0+°° LA

The Bayesian interval estimation of A at the confidence level 1 — o' is given by
(A1, A2), where A1, Ao satisfy the following equations:

5\1 o +oo o
/ h(X | data)d\ = — | / h(X | data)dh = — .
0 2 A 2

2

Example 4.1. Let n =25, k =20, 71,79, -- ,799 be given as: 1, 2, 3,4,6,7, 8,9,
11,12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, k1 = 8, ko = 8, k3 = 4, respective. Using
Monte Carlo simulation, the failure data of a system composed of two components in
parallel, each following an exponential distribution Exp(2), are generated as follows.

The failure data belonging to {1} are 0.3222, 0.3839, 0.3950, 0.5075, 0.5077,
0.8455, 1.0428, 1.1193.
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The failure data belonging to {2} are 0.1327, 0.3670, 0.4689, 0.5017, 0.5767,
0.8140, 1.2409, 1.3270.

The failure data belonging to {1,2} are 0.1417, 0.3270, 0.8992, 0.9238.

Under a k-multiple Type-II censoring lifetime test, the maximum likelihood esti-
mate (MLE) of the parameter A is calculated as A = 2.1612. If the prior distribution
follows a Gamma distribution with parameters a = 2, § = 3, the Bayesian point
estimate of A is computed as A = 1.9740. The 0.95 Bayesian confidence interval
estimate for A is given by [1.4518, 2.5809].

5. Conclusion

In the case of multiple type-II censoring, the maximum likelihood estimations,
Bayesian point estimations and interval estimations of parameters are studied for
the masked data of the series system of two components with exponential life dis-
tribution (same and different parameters). For the masked data of parallel system
(J = 2), only the case with the same parameter is given. For the case with different
parameters, due to the complexity of the likelihood function, the likelihood equation
involves the solution of the two dimensional transcendental equation, which needs
further study.

As for the case of multiple type-II censoring J > 3, the expression of likelihood
function is more complicated due to the complexity of masked causes, which also
needs further study.

Moreover, this study assumes that masking and failure causes are independent,
and if this assumption is relaxed, it will also be one of the contents of future re-
searches.
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