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LONG-TIME BEHAVIOR OF AVIAN INFLUENZA MODEL WITH

NONLOCAL DIFFUSION∗
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Abstract The aim of this study is to investigate the long-time behavior of a model of
avian influenza incorporating nonlocal diffusion. We establish the existence, uniqueness,
positivity and boundedness of the solution by constructing a Lyapunov function and utilizing
the eigenvalue problem of the nonlocal diffusion term. The basic reproduction number is
determined through the generation matrix method. By constructing Lyapunov function and
using the comparison principle, we demonstrate the global stability and uniform persistence
of the system. Numerical simulations are performed to validate our theoretical findings,
indicating that diffusion has a pronounced impact on the disease. Our findings reveal that
slight changes in the diffusion coefficient lead to significant changes in both susceptible and
infected groups. Therefore, to control the development and spread of the disease, it is
essential to cull avian populations and limit human movement during outbreaks.
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stability, uniform persistence.
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1. Introduction

Avian influenza is an acute respiratory infectious disease caused by certain subtypes of avian
influenza A virus, which can have a severe impact on public health. Since 2023, highly pathogenic
avian influenza cases have been reported in several South American countries, including Chile,
Argentina, Uruguay, Bolivia, and Japan. Bolivia has reported 22 confirmed cases of the disease
as of 14 March, resulting in the culling of more than 270,000 poultry nationwide. Argentina has
identified 59 confirmed cases and more than 300 suspected cases in 11 provinces as of 18 March,
with over 700,000 poultry culled in six affected breeding grounds. On March 28, about 560,000
chickens were culled at a farm in Hokkaido, Japan, due to an outbreak of avian influenza. which
had significant impacts on human health and the economy. As evident from the above data,
avian influenza outbreaks cause substantial losses to the local economy. Thus, it is crucial to
study avian influenza.
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Mathematical modeling is considered an effective tool for analyzing the transmission dynam-
ics of avian influenza. For instance, Tang et al. [21] studied an avian-human influenza epidemic
model with diffusion and non-local delay, which describes the transmission of avian influenza
between birds and humans, including the infectivity of asymptomatic persons during the incu-
bation period. Tadmon et al. [20] researched an avian-human influenza epidemic model with
diffusion, non-local delay, and a spatially homogeneous environment, which describes the spread
of avian influenza among birds, humans, and the environment. The best strategy to prevent the
outbreak is to eliminate asymptomatic birds, and to reduce the contact rate between susceptible
populations and poultry environments. Zheng et al. [27] proposed a time-periodic reaction-
diffusion model for avian influenza with spatial heterogeneity, and considered the impact of
temperature and bird-poultry diffusion on the spread of the avian influenza virus, suggesting
that preventing virus-carrying birds from contacting poultry and enhancing environmental dis-
infection are effective control measures. A study [18] presented near-optimal control of avian
influenza models with complex networks and spatial diffusion, and obtained necessary and suf-
ficient conditions for approximate optimality. More avian influenza models can be found in the
literature [1, 2, 5, 8, 12,14,17,24].

We noted that some researchers assume local diffusion for avian and human populations as
measured by the classical Laplacian operator [18,20,21,27]. However, in reference [15], Murray
pointed out that local diffusion flux proportional to gradients is not sufficient to accurately
describe certain biological phenomena, while emphasizing the importance and intuitive necessity
of long-term effects in biology. Therefore, the classical Laplacian operator cannot simulate
diffusion accurately. To better describe the disease spread, in this paper, the diffusion process
is described by integral operators(

∫
Ω J(x − y)φ(y)dy − φ(x)) [13] to represent the movement

between non-adjacent locations in space. Meanwhile, non-local diffusion equations are used in
different fields, such as epidemiology [4, 10, 23], population ecology [7, 9], etc. Of which, Yang
et al. [23] considered the impact of disease persistence and extinction through the relationship
between transmission rate and recovery rate. Kao and Lou [9] compared the strengths and
weaknesses of random diffusion and nonlocal diffusion. For other recent studies on the nonlocal
diffusion equation, see [3, 6]. Due to the strong coupling of the avian influenza model and the
difficulty of calculation, there is no work in this field at present. Through the research of this
paper, it provides a reference for the research of related models. The main work of this paper is
as follows: (1) we build a nonlocal diffusion avian influenza model. (2) We prove the existence,
uniqueness, positivity and boundedness of the solution, and demonstrated the global stability
and uniform persistence of the system. (3) The results of the theorem are verified by numerical
simulations.

The article is arranged as follows. In Section 2, the existence, uniqueness, positivity and
boundedness of the solution are proved by constructing Lyapunov function and applying the
eigenvalue problem of nonlocal diffusion term. In Section 3, using Lyapunov function and
comparison principle, we proved the global stability and uniform persistence of the system. Nu-
merical simulations are shown in Section 4. The article ends in Section 5 with some conclusions.

2. Model and well-posedness of the solution

In reference [11], Liu et al. built the following model:

dSa
dt

= g(Sa)− µaSa − βaSaIa,
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dIa
dt

= βaSaIa − (µa + δa)Ia,

dSh
dt

= Λh − µhSh − βhShIa,

dIh
dt

= βhShIa − (µh + δh + γ)Ih,

dRh
dt

= γIh − µhRh. (2.1)

By virtue of the model (2.1), based on the previous analysis, and consider the long distance
transport and migration of avian and the ease of human movement across regions, hence, in
order to better reflect the dynamic behavior of avian influenza disease, this paper will construct
a nonlocal diffusion model of avian influenza. In equation (2.1), the fifth equation and other
equations without coupling, in this case, we don’t consider the effect of Rh for the system.
Where, g(Sa) denotes net growth rate of the susceptible avian, let g(Sa) = Λa. Other parameter
meanings are shown in Table 1.

∂Sa
∂t

= d1

∫
Ω
J(x− y)Sa(y, t)dy − d1Sa(x, t) + Λa(x)− µa(x)Sa(x, t)

−βa(x)Sa(x, t)Ia(x, t),
∂Ia
∂t

= d1

∫
Ω
J(x− y)Ia(y, t)dy − d1Ia(x, t) + βa(x)Sa(x, t)Ia(x, t)

− (µa(x) + δa(x))Ia(x, t),
∂Sh
∂t

= d2

∫
Ω
J(x− y)Sh(y, t)dy − d2Sh(x, t) + Λh(x)− µh(x)Sh(x, t)

− βh(x)Sh(x, t)Ia(x, t),
∂Ih
∂t

= d2

∫
Ω
J(x− y)Ih(y, t)dy − d2Ih(x, t) + βh(x)Sh(x, t)Ia(x, t)

− (µh(x) + δh(x) + γ(x))Ih(x, t),

Sa(x, 0) = Sa,0(x), Ia(x, 0) = Ia,0(x), Sh(x, 0) = Sh,0(x)Ih(x, 0) = Ih,0(x),

x ∈ Ω, t > 0,

(2.2)

with boundary condition

∂Sa
∂ν

=
∂Ia
∂ν

=
∂Sh
∂ν

=
∂Ih
∂ν

= 0, x ∈ ∂Ω, t > 0, (2.3)

and initial condition

Sa(x, 0) = Sa,0(x), Ia(x, 0) = Ia,0(x), Sh(x, 0) = Sh,0(x), Ih(x, 0) = Ih,0(x), x ∈ Ω. (2.4)

d1 > 0, d2 > 0. Λa(x), Λh(x), µa(x), µh(x), βa(x), b(x), βh(x), δa(x), δh(x) and γ(x) are positive
continuous bounded functions on Ω. The dispersal kernel function J is continuous and satisfies
the following properties:

J(0) > 0,

∫
R
J(x)dx = 1, J(x) > 0 on Ω, J(x) = J(−x) ≥ 0 on R. (2.5)

Let us consider the following function spaces and positive cones,

X := C(Ω), X+ := C+(Ω).
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Table 1. Description of parameter.

Parameter Description

βa the transmission rate from infective avian to susceptible avian

δa the disease-related death rate of the infected avian

δh the disease-related death rate of the infected human

µa the natural death rate of the avian

µh the natural death rate of the human

γ the recovery rate of the infective human

βh the transmission rate from infective avian to susceptible human

Λh the net growth rate of the susceptible human

d1 the diffusion rate of avian

d2 the diffusion rate of human

The norms in X be defined as follows:

∥ℏ∥X := sup
x∈Ω

|ℏ(x)|, ℏ ∈ X.

Next, we define the linear operators on X,

Ξ1ℏ1(x) := d1

∫
Ω
J(x− y)ℏ1(y)dy − d1ℏ1(x)− µa(x)ℏ1(x),

Ξ2ℏ2(x) := d1

∫
Ω
J(x− y)ℏ2(y)dy − d1ℏ2(x)− (µa(x) + δa(x))ℏ2(x),

Ξ3ℏ3(x) := d2

∫
Ω
J(x− y)ℏ3(y)dy − d2ℏ3(x)− µh(x)ℏ3(x),

Ξ4ℏ4(x) := d2

∫
Ω
J(x− y)ℏ4(y)dy − d2ℏ4(x)− (µh(x) + δh(x) + γ(x))ℏ4(x).

(2.6)

By virtue of [16, Theorem 1.2], we obtain that Ξ1(t)t≥0, Ξ2(t)t≥0, Ξ3(t)t≥0 and Ξ4(t)t≥0 are uni-
formly continuous semigroups onX. Furthermore, according to [9, Section 2.1.1], the semigroups
Ξ1(t)t≥0, Ξ2(t)t≥0, Ξ3(t)t≥0 and Ξ4(t)t≥0 are positive.

Notation

g = sup
t→∞

g(t), g = inf
t→∞

g(t),

here, g(t)is a continuous bounded function. Next, we will prove the existence and uniqueness of
the solution for system (2.2).

Lemma 2.1. The solution (Sa(x, t), Ia(x, t), Sh(x, t), Ih(x, t)) of system (2.2) satisfy that

lim
t→∞

∫
Ω
[Sa(x, t) + Ia(x, t)]dx ≤ Λ̄a|Ω|

µ
a

, lim
t→∞

∫
Ω
[Sh(x, t) + Ih(x, t)]dx ≤ Λ̄h|Ω|

µ
h

,

where |Ω| denotes the volume of Ω.
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Proof. By (2.2), we have

d

dt

∫
Ω
[Sa(x, t) + Ia(x, t)]dx

= d1

∫
Ω

∫
Ω
J(x− y)Sa(y, t)dydx−

∫
Ω
d1Sa(x, t)dx+

∫
Ω
Λa(x)dx−

∫
Ω
µa(x)Sa(x, t)dx

−
∫
Ω
βa(x)Sa(x, t)Ia(x, t)dx+ d1

∫
Ω

∫
Ω
J(x− y)Ia(y, t)dydx−

∫
Ω
d1Ia(x, t)dx

+

∫
Ω
βa(x)Sa(x, t)Ia(x, t)dx−

∫
Ω
(µa(x) + δa(x))Ia(x, t)dx

= d1

∫
Ω

∫
Ω
J(x− y)Sa(y, t)dydx−

∫
Ω
d1Sa(x, t)dx+

∫
Ω
Λa(x)dx−

∫
Ω
µa(x)Sa(x, t)dx

+ d1

∫
Ω

∫
Ω
J(x− y)Ia(y, t)dydx−

∫
Ω
d1Ia(x, t)dx−

∫
Ω
(µa(x) + δa(x))Ia(x, t)dx,

d

dt

∫
Ω
[Sh(x, t) + Ih(x, t)]dx

= d2

∫
Ω

∫
Ω
J(x− y)Sh(y, t)dydx−

∫
Ω
d2Sh(x, t)dx+

∫
Ω
Λh(x)dx−

∫
Ω
µh(x)Sh(x, t)dx

−
∫
Ω
βh(x)Sh(x, t)Ia(x, t)dx+ d2

∫
Ω

∫
Ω
J(x− y)Ih(y, t)dydx−

∫
Ω
d2Ih(x, t)dx

+

∫
Ω
βh(x)Sh(x, t)Ia(x, t)dx−

∫
Ω
(µh(x) + δh(x) + γ(x))Ih(x, t)dx

= d2

∫
Ω

∫
Ω
J(x− y)Sh(y, t)dydx−

∫
Ω
d2Sh(x, t)dx+

∫
Ω
Λh(x)dx−

∫
Ω
µh(x)Sh(x, t)dx

+ d2

∫
Ω

∫
Ω
J(x− y)Ih(y, t)dydx−

∫
Ω
d2Ih(x, t)dx−

∫
Ω
(µh(x) + δh(x) + γ(x))Ih(x, t)dx.

Moreover, according to (2.5), we obtain

d

dt

∫
Ω
[Sa(x, t) + Ia(x, t)]dx

≤ d1

∫
Ω

∫
Ω
J(x− y)dySa(y, t)dx+ d1

∫
Ω

∫
Ω
J(x− y)dyIa(y, t)dx

−
∫
Ω
d1(Sa(x, t) + Ia(x, t))dx−

∫
Ω
µ
a
(Sa(x, t) + Ia(x, t))dx+

∫
Ω
Λa(x)dx

≤ Λ̄a|Ω| − µ
a

∫
Ω
(Sa(x, t) + Ia(x, t))dx,

d

dt

∫
Ω
[Sh(x, t) + Ih(x, t)]dx

≤ d2

∫
Ω

∫
Ω
J(x− y)dySh(y, t)dx+ d2

∫
Ω

∫
Ω
J(x− y)dyIh(y, t)dx

−
∫
Ω
d2(Sh(x, t) + Ih(x, t))dx− µ

h

∫
Ω
(Sh(x, t) + Ih(x, t))dx+

∫
Ω
Λh(x)dx

≤ Λ̄h|Ω| − µ
h

∫
Ω
(Sh(x, t) + Ih(x, t))dx.
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By calculating, we have

lim
t→∞

∫
Ω
[Sa(x, t) + Ia(x, t)]dx ≤ Λ̄a|Ω|

µ
a

, lim
t→∞

∫
Ω
[Sh(x, t) + Ih(x, t)]dx ≤ Λ̄h|Ω|

µ
h

.

Hence, the result holds.
To prove the following theorem, we introduce the following eigenvalue problem [13],

∫
RN

J(x− y)(φ(y)− φ(x))dy = −λeφ(x), in Ω,

φ(x) = 0, on RN \ Ω.
(2.7)

Lemma 2.2. For system (2.7), there exists a unique principal eigenvalue λ1 correspond to
eigenfunction φ(x). Furthermore, 0 < λ1 < 1 and

λ1 = inf
ψ∈L2(Ω),ψ ̸=0

∫
Ω φ

2(x)dx−
∫
Ω

∫
Ω J(x− y)φ(y)φ(x)dydx∫
Ω φ

2(x)
.

Theorem 2.1. For any initial data (Sa,0, Ia,0, Sh,0, Ih,0) > 0, there exists a unique positive
solution (Sa(x, t), Ia(x, t), Sh(x, t), Ih(x, t)) of system (2.2) for t > 0 on Ω.

Proof. For the proof of positivity of the solution, refer to [10, Proposition 2.2], which we do
not prove again here. Next, the uniqueness of the solution will be proved. We know that the
exist a unique local solution for system (2.2) on t ∈ [0, τe)(Due to the coefficients of system (2.2)
satisfy the local Lipschitz condition), where τe is the explosion time. Let k0 > 1 be sufficiently
large for

1

k0
≤ min

0<t<τe
|N (x, t)| ≤ max

0<t<τe
|N (x, t)| ≤ k0,

where N (x, t) = Sa(x, t) + Ia(x, t) + Sh(x, t) + Ih(x, t). For each integer k > k0, define the
stopping time

τk = inf{t ∈ [0, τe] : min(Sa(x, t), Ia(x, t), Sh(x, t), Ih(x, t)) ≤
1

k
or max(Sa(x, t), Ia(x, t), Sh(x, t), Ih(x, t)) ≥ k}.

For k → ∞, τk is increasing and τ∞ = limk→∞ τk , then τ∞ < τe a.s.. Next, we need to show
τ∞ = ∞ a.s..

d

dt
(∥Sa(x, t)∥2 + ∥Ia(x, t)∥2 + ∥Sh(x, t)∥2 + ∥Ih(x, t)∥2)

= 2⟨Sa(x, t), d1
∫
Ω
J(x− y)Sa(y, t)dy − d1Sa(x, t) + Λa(x)− µa(x)Sa(x, t)

− βa(x)Sa(x, t)Ia(x, t)⟩

+ 2⟨Ia(x, t), d1
∫
Ω
J(x− y)Ia(y, t)dy − d1Ia(x, t) + βa(x)Sa(x, t)Ia(x, t)

− (µa(x) + δa(x))Ia(x, t)⟩

+ 2⟨Sh(x, t), d2
∫
Ω
J(x− y)Sh(y, t)dy − d2Sh(x, t) + Λh(x)− µh(x)Sh(x, t)

− βh(x)Sh(x, t)Ia(x, t)⟩
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+ 2⟨Ih(x, t), d2
∫
Ω
J(x− y)Ih(y, t)dy − d2Ih(x, t) + βh(x)Sh(x, t)Ia(x, t)

− (µh(x) + δh(x) + γ(x))Ih(x, t)⟩

≤ 2{d1
∫
Ω

∫
Ω
J(x− y)Sa(y, t)Sa(x, t)dydx− d1

∫
Ω
S2
a(x, t)dx+

∫
Ω
Λa(x)Sa(x, t)dx

+ d1

∫
Ω

∫
Ω
J(x− y)Ia(y, t)Ia(x, t)dydx− d1

∫
Ω
I2a(x, t)dx+

∫
Ω
βa(x)Sa(x, t)I

2
a(x, t)dx

+ d2

∫
Ω

∫
Ω
J(x− y)Sh(y, t)Sh(x, t)dydx− d2

∫
Ω
S2
h(x, t)dx+

∫
Ω
Λh(x)Sh(x, t)dx

+ d2

∫
Ω

∫
Ω
J(x− y)Ih(y, t)Ih(x, t)dydx− d2

∫
Ω
I2h(x, t)dx

+

∫
Ω
βh(x)Sh(x, t)Ia(x, t)Ih(x, t)dx}

:= f1 + f2. (2.8)

Further, we calculate

f1 =2{d1
∫
Ω

∫
Ω
J(x− y)Sa(y, t)Sa(x, t)dydx− d1

∫
Ω
S2
a(x, t)dx

+ d1

∫
Ω

∫
Ω
J(x− y)Ia(y, t)Ia(x, t)dydx− d1

∫
Ω
I2a(x, t)dx

+ d2

∫
Ω

∫
Ω
J(x− y)Sh(y, t)Sh(x, t)dydx− d2

∫
Ω
S2
h(x, t)dx

+ d2

∫
Ω

∫
Ω
J(x− y)Ih(y, t)Ih(x, t)dydx− d2

∫
Ω
I2h(x, t)dx},

and

f2 =2{
∫
Ω
Λa(x)Sa(x, t)dx+

∫
Ω
βa(x)Sa(x, t)I

2
a(x, t)dx

+

∫
Ω
Λh(x)Sh(x, t)dx+

∫
Ω
βh(x)Sh(x, t)Ia(x, t)Ih(x, t)dx}.

According to Lemma 2.2, we have

f1 ≤ −2d1λ1(

∫
Ω
S2
a(x, t) +

∫
Ω
I2a(x, t)dx+

∫
Ω
S2
h(x, t)dx+

∫
Ω
I2h(x, t)dx)

≤ −2d1λ1(∥Sa(x, t)∥2 + ∥Ia(x, t)∥2 + ∥Sh(x, t)∥2 + ∥Ih(x, t)∥2).

For f2, by virtue of Lemma 2.1 and fundamental inequality, we can obtain

f2 ≤Λ
2
a + ∥Sa(x, t)∥2 + β

2
aK

2∥Sa(x, t)∥2 + ∥I2a(x, t)∥2

+ Λ
2
h + ∥Sh(x, t)∥2 + β

2
hK

2∥Sh(x, t)∥2 + ∥Ih(x, t)∥2.

Hence, equation (2.8) be equal to

d(∥Sa(x, t)∥2 + ∥Ia(x, t)∥2 + ∥Sh(x, t)∥2 + ∥Ih(x, t)∥2)

≤{M1(∥Sa(x, t)∥2 + ∥Ia(x, t)∥2 + Λ
2
a + ∥Sh(x, t)∥2 + ∥Ih(x, t)∥2) + Λ

2
a + Λ

2
h}dt, (2.9)
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where M1 = max{1 + β
2
aK

2 − 2d1λ1, 1 + β
2
hK

2 − 2d1λ1, 1− 2d1λ1}.
Moreover, we can integrate both sides of (2.8) from 0 to τk ∧ T , T > 0

(∥Sa(x, t)∥2 + ∥Ia(x, t)∥2 + ∥Sh(x, t)∥2 + ∥Ih(x, t)∥2)
− (∥Sa,0∥2 + ∥Ia,0∥2 + ∥Sh,0)∥2 + ∥Ih,0∥2)

≤
∫ τk∧T

0
{M1(∥Sa(x, t)∥2 + ∥Ia(x, t)∥2 + Λ

2
a + ∥Sh(x, t)∥2 + ∥Ih(x, t)∥2) + Λ

2
h}dt. (2.10)

Using the Gronwall inequality

∥Sa(x, t)∥2 + ∥Ia(x, t)∥2 + ∥Sh(x, t)∥2 + ∥Ih(x, t)∥2

≤(∥Sa,0∥2 + ∥Ia,0∥2 + ∥Sh,0)∥2 + ∥Ih,0∥2 + (Λ
2
a + Λ

2
h) · (τk ∧ T ))eM1·(τk∧T ).

(2.11)

As k → ∞, equation (2.11) be equal to

∥Sa(x, t)∥2 + ∥Ia(x, t)∥2 + ∥Sh(x, t)∥2 + ∥Ih(x, t)∥2

≤(∥Sa,0∥2 + ∥Ia,0∥2 + ∥Sh,0)∥2 + ∥Ih,0∥2 + (Λ
2
a + Λ

2
h)T )e

M1T .
(2.12)

Define

ζk = inf
∥N (x,t)∥>k,0<t<∞

(∥Sa(x, t)∥2 + ∥Ia(x, t)∥2 + ∥Sh(x, t)∥2 + ∥Ih(x, t)∥2), for any k > k0.

(2.13)
Combine (2.12) and (2.13) to get

ζkP (τk ≤ T ) ≤ (∥Sa,0∥2 + ∥Ia,0∥2 + ∥Sh,0)∥2 + ∥Ih,0∥2 + (Λ
2
a + Λ

2
h)T )e

M1T .

When k → ∞, we can get P (τ∞ ≤ T ) = 0, therefore, τ∞ = ∞. The theorem is proved.

Remark 2.1. As t → ∞, from Lemma 2.1 and Theorem 2.1, we can obtain that there exists
an invariant set,

D1 := {(Sa,0, Ia,0) ∈ X+,

∫
O
(Sa(x, t) + Ia(x, t))dx <

Λ̄a|Ω|
µ
a

},

D2 := (Sh,0, Ih,0) ∈ X+,

∫
O
(Sh(x, t) + Ih(x, t))dx <

Λ̄h|Ω|
µ
h

}.

3. Global stability and uniform persistence of the system

3.1. Basic reproduction number

To obtain that the basic reproduction number, we consider the following linearize equations
around the disease-free equilibrium E0 = (S0

a(x), 0, S
0
h(x), 0),

∂Ia
∂t

= d1

∫
Ω
J(x− y)Ia(y, t)dy − d1Ia(x, t) + βa(x)S

0
a(x)Ia(x, t)− (µa(x) + δa(x))Ia(x, t). (3.1)

Next, we define the linear operators on X,

Bυ(x) := βa(x)S
0
a(x)υ(x),
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Gυ(x) := d1

∫
Ω
J(x− y)υ(x)dy,

Hυ(x) := −d1υ(x)− (µa(x) + δa(x))υ(x).

Then, we can obtain that the following abstract form for (3.1)

dIa
dt

= BIa(t) + (G−H)Ia(t).

By virtue of [22, Theorem 3.12], T (t) denotes that the uniformly continuous semigroups of G−H,
we have

(G−H)−1υ(x) =

∫ ∞

0
T (t)υ(x).

The next generation operator K = B(G−H)−1 = βa(x)S
0
a(x)

∫∞
0 T (t)υ(x) is defined as

R0 := βa(x)S
0
a(x)/(d1

∫
Ω
J(x− y)dy + d1 + µa(x) + δa(x)).

Meanwhile, by virtue of [7], for system (3.1), there exists a principal eigenvalue λ0 with respect
to the following equaiton

λς(x) = d1

∫
Ω
J(x− y)ς(y)dy − d1ς(x) + βa(x)S

0
a(x)ς(x)− (µa(x) + δa(x))ς(x). (3.2)

Hence, we can obtain that the following lemma.

Lemma 3.1. sign(R0 − 1) = signλ0.

3.2. Global stability and uniform persistence

Now, we have the following global stability result.

Theorem 3.1. If R0 < 1, for the disease-free equilibrium (S0
a(x), 0, S

0
h(x), 0) of system (2.2),

we have

lim
t→∞

Sa(x, t) = S0
a(x), lim

t→∞
Ia(x, t) = 0, lim

t→∞
Sh(x, t) = S0

h(x), limt→∞
Ih(x, t) = 0.

Proof. Let u1(x, t) = Sa(x, t)− S0
a(x), we have

∂u1(x, t)

∂t
= d1

∫
Ω
J(x− y)u1(y, t)dy − d1u1(x, t)− µa(x)u1(x, t)− βa(x)Sa(x, t)Ia(x, t). (3.3)

Let U1(t) =
∫
Ω u

2
1(x, t)dx, we can obtain

dU1(t)

dt

=2

∫
Ω
u1(x, t)

∂u1(x, t)

∂t
dx

=2

∫
Ω
u1(x, t){d1

∫
Ω
J(x− y)u1(y, t)dy − d1u1(x, t)− µa(x)u1(x, t)− βa(x)Sa(x, t)Ia(x, t)}dx

=2{d1
∫
Ω

∫
Ω
J(x− y)u1(y, t)u1(x, t)dydx−

∫
Ω
u21(x, t)dx} − 2

∫
Ω
µa(x)u

2
1(x, t)dx

− 2

∫
Ω
{βa(x)SH(x, t)IV (x, t)}u1(x, t)dx.

(3.4)
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On account of βH(x), b(x), SH(x, t) and IV (x, t) are bounded, we know that there is a sufficiently
small positive number k such that

βH(x)b(x)

NH +m
SH(x, t)IV (x, t) ≥ k. (3.5)

By virtue of Lemma 2.2 and equation (3.5), we have

dU1(t)

dt
≤ −2(d1λ1 + µ

a
)U1(t) + 2kU

1
2
1 (t).

By calculating, we have

U
1
2
1 (t) ≤ ce(−d1λ1−µa)t − k

d1λ1 + µ
a

.

Moreover

∥u1(t)∥
1
2 ≤ ce(−d1λ1−µa)t − k

d1λ1 + µ
a

.

Owing to k is a sufficiently small positive number, hence, as t → ∞, u1(x, t) → 0 uniformly on
x ∈ Ω. Furthermore, we obtain that Sa(x, t) → S0

a(x).
Next, let U2(t) =

∫
Ω ς0(x)Ia(x, t)dx, where ς0(x) denotes the strictly positive eigenfunction

with respect to λ0 for system (3.2), then

dU2(t)

dt
=

∫
Ω
ς0(x)

∂

∂t
Ia(x, t)dx

=

∫
Ω
ς0(x){d1

∫
Ω
J(x− y)Ia(y, t)dy − d1Ia(x, t)

+ βa(x)Sa(x, t)Ia(x, t)− (µa(x) + δa(x))Ia(x, t)}dx.

(3.6)

By virtue of (2.5) and (3.2), we have∫
Ω
ς0(x)d1

∫
Ω
J(x− y)Ia(y, t)dydx =

∫
Ω
Ia(y, t)

∫
Ω
J(y − x)ς0(x)dxdy

=

∫
Ω
Ia(x, t)

∫
Ω
J(x− y)ς0(y)dydx

=

∫
Ω
Ia(x, t){λ0ς0(x) + d1ς0(x)− βa(x)S

0
a(x)ς0(x)

− (µa(x) + δa(x))ς0(x)}dx.

(3.7)

Furthermore, substituting (3.7) into (3.6), we have

dU2(t)

dt
=

∫
Ω
ς0(x){λ0Ia(x, t)− βa(x){S0

a(x)− Sa(x, t)}Ia(x, t)}dx ≤
∫
Ω
ς0(x)λ0Ia(x, t)dx.

As R0 < 1, we know that λ0 < 0, hence, U2(t) = eλ0t → 0 for t → ∞, then Ia(x, t) → 0. Using
a similar approach, we can obtain that Sh(x, t) → S0

h(x) and Ih(x, t) → 0.
Next, we consider the uniform persistence of system (2.2).

Theorem 3.2. As R0 > 1, then there exists a function Γ(x) satisfy that

lim
t→∞

inf(Sa(x, t) + Ia(x, t) + Sh(x, t) + Ih(x, t)) ≥ Γ(x),

hence, the disease uniform persistence.
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Proof. As R0 > 1, there exists a κ > 0 such that λ0(S
0
a−κ) > 0 . Hence, there exists a t1 > 0

satisfy that Sa(x, t) > Sa,0 − κ for t ≥ t1 and x ∈ Ω. For the second equation of system (2.2),
we have

∂Ia
∂t

≥ d1

∫
Ω
J(x− y)Ia(y, t)dy − d1Ia(x, t) + βa(x)(Sa,0 − k)Ia(x, t)− (µa(x) + δa(x))Ia(x, t).

Define Ĩa(x, t) =Meλ̃tψ̃(x), Ĩa(x, t) satisfy that the following equation

∂Ĩa
∂t

= d1

∫
Ω
J(x− y)Ĩa(y, t)dy − d1Ĩa(x, t) + βa(x)(Sa,0 − k)Ĩa(x, t)− (µa(x) + δa(x))Ĩa(x, t),

where ψ̃(x) is the eigenfunction with respect to λ̃ < 0. By virtue of the comparison principle,

we know Ia(x, t) ≥ Ĩa(x, t). Furthermore, Ia(x, t) ≥Meλ̃tψ̃(x) and

lim
t→∞

Ia(x, t) ≥Mψ̃(x).

For the first and third equations of system (2.2), by virtue of equation (2.7), we can obtain

∂Sa
∂t

= −d1λeSa(x, t) + Λa(x)− µa(x)Sa(x, t)− βa(x)Sa(x, t)Ia(x, t),

∂Sh
∂t

= −d2λeSh(x, t) + Λh(x)− µh(x)Sh(x, t)− βh(x)Sh(x, t)Ia(x, t).

Furthermore

∂Sa
∂t

≥ −d1λeSa(x, t) + Λa(x)− µa(x)Sa(x, t),

∂Sh
∂t

≥ −d2λeSh(x, t) + Λh(x)− µh(x)Sh(x, t).

By calculating, we have

lim
t→∞

Sa(x, t) ≥
Λa(x)

d1λe + µa(x)
, lim

t→∞
Sh(x, t) ≥

Λh(x)

d2λe + µh(x)
.

For the last equation of the system (2.2), we have

∂Ih
∂t

≥ −d2λeIh(x, t) + βh(x)
Λh(x)

d2λe + µh(x)
Mψ̃(x)− (µh(x) + δh(x) + γ(x))Ih(x, t),

moreover

lim
t→∞

Ih(x, t) ≥
βh(x)Λh(x)Mψ̃(x)

d2λe + µh(x) + δh(x) + γ(x)
.

Hence

Γ(x) := min{ Λa(x)

d1λe + µa(x)
,Mψ̃(x),

Λh(x)

d2λe + µh(x)
,

βh(x)Λh(x)Mψ̃(x)

d2λe + µh(x) + δh(x) + γ(x)
}.

The theorem is proved.
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4. Numerical simulations

This section presents numerical simulations to support the theoretical findings. The system
(2.2) discrete form is as follows:

dSa,j
dt

= d1

n∑
k=1

J(xj − xk)Sa(t, xk)∆x− d1Sa,j(t) + Λa − µaSa,j(t)− βaSa,j(t)Ia,j(t),

dIa, j

dt
= d1

n∑
k=1

J(xj − xk)Ia(t, xk)∆x− d1Ia,j(t+ βaSa,j(t)Ia,j(t)− (µa + δa)Ia,j(t),

dSh,j
dt

= d2

n∑
k=1

J(xj − xk)Sh(t, xk)∆x− d1Sh,j(t) + Λh − µhSh,j(t)− βhSh,j(t)Ia,j(t),

dIh,j
dt

= d2

n∑
k=1

J(xj − xk)Ih(t, xk)∆x− d1Ih,j(t) + βhSh,j(t)Ia,j(t)− (µh + δh + γ)Ih,j(t).

We set the parameter values and initial conditions as follows:

Table 2. Value of parameter.

Parameter Value Parameter Value

Λh 100 [19,25] δa 0.0005 per day [26]

δh 0.001 per day [11,26] µa 0.01 [19,25]

µh 0.0015 γ 0.1 per day [11,26]

βh 0.000078 d1 = d2 0.1

initial value:

(Sa,0(x), Ia,0(x), Sh,0(x), Ih,0(x)) = (0.03 sinx+ 0.05 cosx, 0.01 cosx, 0.01 sinx+ 0.03 cosx, 0).

Moreover, the nonlocal kernel function [9] is selected as follows:

Jx =

A exp(
1

x2 − 1
), −1 < x < 1,

0, otherwise.

Here, A = 2.6423, x ∈ [−1, 1] ⊂ R and
∫
R J(x)dx =

∫ 1
−1 J(x)dx ≈ 1.

In this section, we choose to change βH to illustrate the result of the theorem. In Figure 1,
Let Λa = 350, βa = 0.0000058, then R0 = 0.977348693499753 < 1, illustrates that the density of
infected avian and human populations approaches zero as the time approaches infinity, indicating
the extinction of the disease. Figure 2 shows that the solution of system (2.2) converges to a
steady state, implying the persistence of the disease, where Λa = 1500, βa = 0.0000088.

To examine the effect of the diffusion coefficient on the system. Other parameters are shown
in Table 2, let Λa = 1500, βa = 0.0000088, d1 = 0.075, and the results are presented in Figure
3. In Figure 4, let d1 = 0.05. When the disease is persistent, the disease will be more stable if
the spread rate is small, but if the spread rate becomes large, the number of infected persons
will decrease sharply, that is, the nonlocal spread of infected will reduce the number of infected
persons. In other words, As the diffusion coefficient increases, the number of infected individuals
decreases.
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(a) (b)

(c) (d)

Figure 1. The evolution paths of Sa, Ia, Sh, Ih for system (2.2) with R0 = 0.977348693499753 < 1.

(a) (b)

(c) (d)

Figure 2. The evolution paths of Sa, Ia, Sh, Ih for system (2.2) with R0 = 6.355173770540262 > 1.

5. Conclusions

From the previous analysis, we note that in the existing studies of avian influenza models,
ordinary differential equation models, diffusion equations with Laplace transform or non-local
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(a) (b)

(c) (d)

Figure 3. The evolution paths of Sa, Ia, Sh, Ih for system (2.2) with R0 = 8.333144545757014 > 1.

(a) (b)

(c) (d)

Figure 4. The evolution paths of Sa, Ia, Sh, Ih for system (2.2) with R0 = 12.098726446978853 > 1.

diffusion of transmission rates are considered. However, the above models cannot well model the
spatial spread of avian influenza. To better describe the disease spread, the diffusion process is
described by integral operators.

In this research, we investigated the long-term behavior of an avian influenza model incorpo-
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rating nonlocal diffusion. We established the existence, uniqueness, positivity and boundedness
of the solution by constructing a Lyapunov function and employing the eigenvalue problem of
the nonlocal diffusion term. The basic reproduction number was determined using the next
generation matrix method. By utilizing the Lyapunov function and comparison principle, we
demonstrated the global stability and uniform persistence of the system. Finally, we conducted
numerical simulations to explore the disease’s dynamic behavior and the impact of the diffusion
coefficient. Our findings reveal that the diffusion rate of infection becomes large, even if the
R0 > 1, the infected may also disappear. This means that nonlocal diffusion of infected may
suppress the spread of the disease. In addition, in order to just consider the influence of diffusion
coefficient on the disease, next, we will try to introduce white noise, Lévy noise, etc. At the
same time, the effects of the convolution operator and the Laplacian operator on the disease are
compared.
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