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THE METHOD OF LOWER AND UPPER SOLUTIONS FOR
FRACTIONAL DIFFERENTIAL SYSTEM WITH
P-LAPLACIAN OPERATORS*

Lina Guo!, Chengmin Hou? and Mingzhe Sun®t

Abstract This paper focuses on the multi-point boundary value problem for a nonlinear
fractional differential system, involving p-Laplacian operator and integral boundary condi-
tions, which arises from many complex processes such as the nonlinear phenomena in non-
Newtonian fluids and mathematical modeling. Based on the monotone iterative technique, a
new method of lower and upper solutions are proposed. Some new results on the existence of
positive solutions for multi-point boundary value problem with integral boundary conditions
are established. Finally, an example is presented to illustrate the wide range of potential
applications of our main results.
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1. Introduction

Differential equations are useful in modern physics, engineering, and in various fields of science.
In these days, the theory on existence and uniqueness of boundary value problems of linear and
nonlinear fractional equations has attracted the attention of many authors, see [4,7]. There are
comprehensive studies in this area. At the same time, it is known that the p-Laplacian operator
is also used in analyzing mechanics, physics and dynamic systems, and the related fields of
mathematical modeling.

Fractional differential equation with p-Laplacian operator can describe the nonlinear phe-
nomena in non-Newtonian fluids and establishes complex process models, see [2,5,6,8,10,20,24].
Many important results related to the boundary value problems of fractional differential equa-
tions with p-Laplacian operator have also been obtained, see [1,3,9,11,13,16,17,19,21,22] and
references therein.

Fractional differential system with p-Laplacian operators have also attracted tremendous
attention [12,14,15,18,23,25,26], Among them, applying the monotone iterative approach, the
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authors in [14] got the extremal solutions of the following system:

D51 (en (D1 u(t))) = At o(2)),
gz (e (Dg20(t))) = falt u(t),0 <t < 1,
u(0) = Dtu(0) =0, Dgtu(1) = 3" "ay; D3t uln;) =0,

m—2
0(0) = D2u(0) =0, Dize(1) = 3" “as; Die(ny) = 0,

where 0 < «a;,7; < 1,0 < 3; < 2,D8“i,Dgi,Dgi are the Riemann-Liouville fractional derivatives.

Based on system [14], considering the boundary value conditions of the differential equa-
tion,this paper establishes the following multi-point boundary value problem of fractional dif-
ferential system with integral boundary conditions and p-Laplacian operators.

DGt (ep (D un(9)) = St un (1), ua(t), Dyiua(t), Dyt ua(®)),
DG (9 (Dt ua(®) ) = falts ur (), ua(t), Dytun(t), Dy ua(),0 < t < 1,
D ui(0) = w1 (0) = wy'(0) = - = w1 "2 (0) = 0,

DgiuQ(O) =u(0) = u'(0) = -+ = uz(m_Q)(O) =0, (1.1)

m 1
ul(l):al/ uQ(s)ds—l—bl/ us(s)ds, DPuy(1) = e D%y (),
0 1

2 1
ug(l) = ag/ ui(s)ds + b2/ ui(s)ds, Dgfruz(l) = 52D§iu2(72),
0 &2

\

where 1 < o; < 2,1 <n—-1<pB<n,1<m—-1< By <m, mn > 2, Dg‘}'r,Dgi are
the Riemann-Liouville derivative operators. a;,b;,&; > 0 are constants, 1;,&,7y € (0,1) and
satisfes 0 < m; < & < 1, 1— By Yagny + ba(1 — €51)) > 0, 1 — 85 H(ain® + b1 (1 — €2)) > 0,
¢p; is the p-Laplacian operator defined by ¢, (s) = |s|Pi~2s, go;il = Qg p%, + i =1, p > 1,
fi :[0,1] x [0, +00)? x (—00,0]? — [0, +00) is continuous function, i = 1,2.

The upper and lower solution method provides an effective tool for the existence of solutions
in fractional differential systems by constructing appropriate comparison functions, combining
the fixed point theorem and monotonic iteration.The purpose of this paper is to establish a
method of lower and upper solutions which is used to study the existence of positive solutions
of boundary value problem (1.1).

2. Preliminary results

We say a vector function (u1(t),us(t)) is a positive solution of boundary value problem (1.1) if
it satisfies boundary value problem (1.1) and w;(t) > 0, for ¢t € [0,1],7 =1, 2.

Lemma 2.1. For any given function h; € C0,1] and real numbers d; € R,i = 1,2, the following
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boundary value problem

D51 (e (Dghn
D32 (s (Da())) = ha(0),0 < t < 1,

Dt ur(0) = w1 (0) = wy'(0) = -+ = w " (0) = 0,
D us(0) = u(0) = ug'(0) = -+ = uz™2)(0) = 0,

m 1
ui(1) = al/ uz(s)ds + b1/ ua(s)ds, Dg}rul(l) =dy,
0 13

1
12 1

ug(1) = ag/ ui(s)ds + bg/ ul(s)ds,Dgfruz(l) = do,
0 &2

\

has a unique solution, which is given by

w () = /O Gt )0, <¢pl (dy)s™ 1 — /O 1 Hl(s,T)hl(T)dT> ds

th1-1

1 72 1
—_—— [k‘l/ <a2 G1(7,8)dT + by G1(T, 8)d7’> Oq
1— k1ko 0 0 €

X (gpm (dp)s*™ 1 / Hy(s,7)hi (7 )d7'> ds

1
—I-/ < Gg (1,8)dT + by GQ(T, s)dr) Pgo
0 &

y (%(dQ g0l /O 1H2(s,7)h2(7)d7> ds] ,

)
us(t) = — /0 Gt )00, <¢p2(d1)sa2—1 _ /0 1 HQ(S,T)hQ(r)dT> ds

tha—1

1 m 1
—_—— [k:z/ <a1 Gao(1,8)dT + by Go(T, s)dr) Pgo
1— Kk1ks 0 0 &

« (%(@)sw—l - /O 1 HQ(S,T)hQ(T)dT> ds

1
G1(T, s)dr) Oq
&2

« (%(dl)sal—l - /0 1 Hl(s,T)hl(T)dT> ds] ,

1 2
+ / <a2 Gl(T, S)dT + by
0 0

and

1

Dt () = o (@ = [ in(e s (s)as).
1

Dt uat) = s ()i = [ Halt ool

where

Cult ) = (t1—s)" T —(t—s5)% 0<s<t <1,
i\ly§) =
(t(1—s)" ", 0<t<s<l,

(2.1)

(2.4)

(2.5)
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1 | sa-m)¥ Tt —(s—m)* 0<7r<s<1,
Hi(s, 7 2.6
) Plai) | (s(1 = 7)), 0<s<7<1, 20
= By (an)® + b1(1 = €1%)), ko = By (azns" + ba(1 — €51)). (2.7)

Proof. Let gppi(Dgiui(t)) = u;(t), we can easily show that boundary value problem (2.1) can
be decomposed into the following two coupled boundary value problems:

Daj—ai(t) = hi(t)a te (07 1)7 (28)
u;(0) = 0,u;(1) = ¢p,(d;), i = 1,2,
and
[ D uilt) = o, (m(1)).1 = 1.2,
1 1
ul(O) _ ul’(O) - .= ul(n*Q) (()) =0,u1(1) = a1 /On ug(s)ds + b1/ ug(s)ds, (2.9)

UQ(O) — ’LLQ/(O) — ... = uQ(m*Q)(O) = O,ZLQ(I) = a /On2 ul(s)ds + bz /: u1(8)d8.

By the standard way, we can get that boundary value problem (2.8) has a unique solution,
which is given by

1 t , 1
wi(t) = =—— </ (t — )% 1hi(s)ds — / ti(1 — S)ailhi(s)d8> + pp; (di)
I'(ai) \Jo ) 0
= o (A} / Hi(t, )hi(s)ds (2.10)
0
= p (DJui(t)), i=1,2.
Next, we consider the system (2.9).
By the equation and boundary conditions of zero point, we have
ui(t) = I g (1)) + st 7,
() = i on (@ (1) oy

ua(t) = I pq, (Ua(t)) + 5t

Using the boundary conditions of integral,we may obtain

m
¢ kg=a /0 1% 0y (@a(3))ds + by / 1% o (12())ds — I gy (a1 (1),

31
72 1
S /0 1%Ly (11(s))ds + by /5 féﬁsoql (a1 (5))ds — I% gy (3(1),
2
1 n B2 — B2
S= T 3 \l@ 152 qs (U2(s))ds + by I g, (U2(s))ds — I o+ Par (U1 (1))
1— kiks 0 ‘

Ty ( / L2y, (i01(5))ds + b / I8y, (i (s ))ds—fgisoqg(ug(l)))},

&2
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= { (o [ R @ b [ o @i - om0

Ty ( / " 12 o (n(5))ds + by /§ I enma(s)is = Lk, <u1<1>>) } ,
wn(t) = I oy (i (1))

+1’5_51kllk2 [(al /Om Igfgoqz(ﬂg(s))ds—i-h/ 1)2 0g, (un(5))ds I+‘10q1(ul(1)))

31

Ty ( /0 183, (1 (5))ds + by /é I8y, (s >>ds—f+soq2<u2<1>>>]

1 ~ th1—1 - m
- [ rtesentmenas + 1 | hbhten @) + o [ o)

+b /11 102 g, (11 (5)) ds
oy ( / " 1 o (1 (5))ds + by / 184 g, (a1 (s))ds — 1 +goq2<uQ<1>>)}

&2

t51*1

(k-1
1_k1k2( ki, — 1),

1
- /0 G1(t, 5)pq, (a1 (5))ds +

I = ks TP oy, (11 (1)) — a3 / 1% g, (11 (5))ds — by /5 I8 g, (1 (5))ds

51 / @2 /772 h- 1 ﬁl 1<qu(ﬁ1(8))d7'ds
- / ’ / (5=7)" g, (@i (7)) drds

/ bg/& (1 — ) g, (T (s ))des—bQ/&/ (s — 7)oy, (1 (7)) drds]

n2
:ag/ /Gl(T,s)goql(ﬂl(s))dsdT—|—b2/ / G1(7, 8)pq, (u1(s))dsdr,
0 0 & JO
8 s Lo
b= kI (() —ar [ I pp(ua()ds b [ 1o ()i
1

m 1l 1 pl
:al/o /0 Ga(T, 5) g, (u2(s))dsdT + by /51/0 Go(T, 5) g, (U2(s))dsdr.

Therefore,

th1—1

1 1 2
ul(t) = —/(; Gl(t,s)goql (ﬂ1<8))d8 — m |:k1 <a2/0 ( On GI(T’ s)dT)(pql (al(s))ds
1 1 1 1
+bg/0 (| Gi(r, s)dT)goql(al(s))ds) —I-al/o ( 077 Gao(T, 8)dT) g, (2(s))ds

&2

1l
—|—b1/0 ( . Ga(r, s)dr)goqQ(ug(s))ds}, (2.12)
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similarly,
Ug(t)
1
-~ | Gattgnlmao)is
tB2—1 1 Ul B 1 1 B
T 1 ks [kQ (al/o ( ; Go(T, S)dT)QOqQ(UQ(S))dS—Fh/O ( . Ga(, S)dT)quz(’U,Q(S))dS>
1 n2 1 1
+a2/0 ( ; G1(T, s)d¢)¢q1(a1(s))ds+b2/0 ( 5 G1(T, s)dr)goql(ﬂl(s))ds} (2.13)

Therefore, boundary value problem (2.1) has a unique solution which is given by (2.2), (2.3)
and we can easily get that Dgiui(t),i = 1,2 is given by (2.4). From Lemma 2.1, it is obvious

that boundary value problem (1.1) is equivalent to the integral system composed of (2.12) and
(2.13).
Where

1
1 (s) = om (elDﬁiulwsall - /O Hi(s,7) fu(, mm,m(r»D§iu1<r>7D§iu2<r>>dr) :
(2.14)

1
U2(s) = ¢y <52D§zu2<w>sa2-1 - /O Hy(s,7) f2(r, ur (7), ua(7), Dt ua (1), Dgiw))ch) :
(2.15)

O
From (2.5) and (2.6), we can easily prove that G;(t,s) and H;(t,s) satisfy the following
Lemma.

Lemma 2.2. Suppose the functions G;(t,s) and H;(t,s) are defined by (2.5) and (2.6), then
Gi(t,s) and Hi(t, s) are continuous and G;(t,s) > 0, H;(t,s) > 0, for (t,s) € [0,1]x[0,1],i =1, 2.

3. The method of lower and upper solutions

In this section, we present the method of lower and upper solutions and existence theorems of
positive solutions for boundary problem (1.1) based on the monotone iterative technique.

Definition 3.1. Let (z1,22) € AC™|0, 1] x AC™]0, 1], we say that (z1,z2) is a lower solution of
boundary value problem (1.1) if

)= = xl(”_z)(O) =0,
)= = xz(m—2)(0) =0,
b

3.1)
un 1 (
z1(1) < al/ xa(s)ds + 1/ zo(s)ds, Dgixl(l) > nggixl(rl),

0 3

1
2 1
x9(1) < ag/ x1(s)ds + bg/ z1(s)ds, Dgixg(l) > Engixg(rl).
0 &
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Let (y1,y2) € AC™[0,1] x AC™]0, 1], we say that (z1,z2) is a upper solution of boundary value
problem (1.1) if

D5 (o (DFiwi(8)) = filty1(0),32(0), DYyn (1), D ya(8)).t € (0,1), = 1,2
Dty (0) = 41(0) = y1'(0) = -+ = 51" 72(0) = 0,
Dgiyz(o) =12(0) = 12'(0) = - - = 1u™2)(0) = 0, (3.2)
m 1 .
yi(1) > a1/ ya(s)ds + bl/ ya(s)ds, Dgim(l) < €1Dgiy1(7°1),
0 1
N2 1 5
() 20 [Cn(s)ds b [ (s, Du(1) < 22D mln).
\ 0 &2
Denote that £ = {(u1,us) : (u1,u2) € C[0,1] x C[0,1], Dt ur, D2uy € C[0,1],u1(0) =
u'(0) = -+ = w1 "2 (0) = 0,u2(0) = ux/(0) = - = uQ(m*Q)( ) = 0} and endowed with the
norm || (ur,u2) = | wi oo + || 42 oo + || Dytun [lo + || DyZus [|oc, where || u; [|loo= Joax |
u;(t) | and || DgiuZ |lco= max | D0+uz(t) |,i = 1,2. Then (E,| - ||) is a Banach space. We

0<t<l1
denote that P = {(uy,u2) : (u1,u2) € E,u;(t) > 0, Dgiui(t) <0,t €[0,1],4 = 1,2}. Then P
is a normal cone on E. We denote (x1,x2) < (y1,y2) if and only if (y1 — x1,y2 — x2) € P, for
(z1,22), (y1,y2) € E.
In this section, we assume the following condition holds:
(H1) f; € C([0,1] x [0,400) x [0,400) X (—00,0] x (—00,0],[0,+00)), fi(t, u1,v1, w1, 21) <
fi(t,ug, va, wa, z9), for 0 < uy < wug,0 < vy <wg,wy > wg > 0,21 > 29 >0 and any ¢ € [0, 1].

Theorem 3.1. Assume that (H1) holds, boundary value problem (1.1) has a nonnegative lower
solution (xg,y0) € P and an upper solution (ug,vo) € P such that (xo,y0) < (uo,y0). The
boundary value problem (1.1) has the mazimal lower solution (x*,y*) and the mininal upper
solution (u*,v*) on [xg,uo] X [yo,v0] C P, both (z*,y*) and (u*,v*) are positive solutons of
boundary valne problems (1.1). Furthermore,

(0,0) < (z0,50) < (z",y") < (u”,0") < (uo, vo),
(Dguo, Dgzvo) < (Dgtu®, Dgio®) < (Dyta®, Dgiy®) < (Dgtwo, Dyt yo) < (0,0).
Proof. The proof is divided into the following three steps.

Step 1. We will obtain the lower solution sequence {(zy,yx)} and the upper solutiom sequence
{(ug,vx)}. According to Lemma 2.1, for the given(zg,yo) € P, the following boundary value
problem

Dyt <@p1(D€ix1(t) ) fi(t, x0<t)7yo(t)7Dg}rﬂTo(t),Dgiyo(t)),

g (0 (D 1(1))) = falt, 20(t). yo(t). Dyt o(t). Dyt yo(t)) t € (0, 1),

Dt a1(0) = 21(0) = 21'(0) = -+ = 21" (0) = 0,

Dy2yi(0) = 41(0) = 41/(0) = - = 5" 72(0) = 0, (3.3)
1 1

x1(1) —a,l/o77 yo(s ds—i—bl/& yo(s

(s)
y1(1) —a2/0n2 zo(s)

DJtai(1) = e1 Dyt ao(r),

)ds
1
s)ds + bg/ xo(s)ds, Dgiyl( ) = 52D0+y0(r2)
&2
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has a unique solution (z1,y;). Since (xg,yo) is a lower solution of boundary value problems
(1.1), then

( Df <<Pp1(D0+l‘o(t))) < faltxo(t), yo(t), Dgtao(t), Dot yo(h)).
Dg7 (9 (D32 90(1))) < Falt 20(t), yo(t), Dytao(t), Dy yo().
Dgto(0) = 0(0) = < > =2 72(0) =0,
Dgiyo( = yo(0) = =y "(0) =0, (3-4)
' B B1
xo(l) < a1/0 s)ds + b1/£ yo(s)ds, Dyixo(1) > e1Dyrao(r1),
wo(1) < as /0 $)ds + by /E zo(s)ds,  Dyo(1) > eaDEyo(ra).
(3.3) minus (3.4), and we can get that
D51 (#m (Dgtan(8)) = op, (Dgian(t))) = 0,
g2 (0 (DG201(0) = 0 (DS uo(1)) 20, € (0,1),
Déjiom( ) — Dgiu’ﬂo(o) 21(0) = 20(0) = 21/(0) — 20'(0) = -+ = 2,"2(0) — 2" "?(0) = 0,
Dgfiy1(0) = Dgyo(0) = y1(0) = 90(0) = 11/(0) = ' (0) = --- = 2 ™2 (0) — o™~ (0) =0,
v1(1) —2(1) >0,  Dftai(1) — Djlzg(1) <0,
011 —w0(1) 20, Dyi(1) = Dytyo(1) < 0.

Let
oo (DG 1(8)) = @py (Dt z0(t) :=w(t),  py (Dg2u1(1)) — @ (D yo(t)) := ().

Since Djia1(0) — Dytag(0) = 0, then @, (Dgtai(t)) — ¢p (Dgiao(t) = @p(Dgian(t)
Dgiﬁo( )) = 0 which is w(0) = 0. And since Dgizl(l) — Dg}r:no(l) < 0, we get that

(1£ ) o (Dgra1(t)) = o, (Dgrao(t)) < 0.
e
A(t) = DRt (0 (D a1(8)) = ey, (Dgh a0 (1) )
and ¢, (d1) = w(1), then we obtain the following boundary value problem
D2tw(t) = h(t) > 0, te (0,1),
w(0) =0,  w(l)=pp(d1) <0.

By (2.10) and Lemma 2.2
1
w(t) = pp (D a1(t)) = py (Dgiao(t)) = pp (di)t™ " = /0 Hy(t, s)h(s)ds <0, ¢ €]0,1].

From the monotonicity of p-Laplacian operator ¢, , we have

Dty (t) — Dt ao(t) = Dot (21(t) — xo(t)) := 6(t) < 0.
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Similarly, we can get that

w(t) = @pz(Dgiyl( )) QOPQ(D()-&-Z/O( )) <0, te [0’ 1]7

and
D yi(t) — D2 yo(t) = D2 (y1(t) — yo(t)) = 8(t) < 0.

Then we obtain the following boundary value problem

D (x1(t) — wo(t)) = d(t) <

D (11 (t) — yo(t) :=8(t) <0, te€(0,1),

21(0) — 20(0) = 21'(0) — g <o> = 2:"72(0) — 20" 2(0) =
y1(0) = 0(0) = 11"(0) — yo'(0) = -+ = y1<m—2><0> —50"2(0) =

Thus, we have
1
1(8) — wo(t) = ath =1 — / Gr(t, 5)5(s)ds > 0,
0

1 —_
1 (t) — yo(t) = at™! —/O Gal(t, s)d(s)ds > 0.

So, we can get that (zg,y0) < (z1,91).
From the condition (Hy), we get

D51 (e (Dgi (1)) = fi(t0(t), yo(8), Dy o(t), Dyyo(t))
< f1(t73?1(t)7y1(t)7D€i9?1(t)7Dgiyl(t)),
g2 (0 (DRE31(1))) = folts wo(t), wolt), Dyt o(t), Dy (1)
< folt,21(t), y1(t), Dot (t), Dg2ua (£)),
Dyia1(0) = 21(0) = 1/(0) = -+ = 2"~ (0) = 0,
D2y1(0) = y1(0) = 51’(0) = -+ = 1n "2 (0) = 0,
m 1 71 1
z1(1) = al/ yo(S)d3+bl/ Yo(s)ds < Gl/ yl(s)d5+bl/ y1(s)ds,
0 & 0 &1
72 1 72 1
y1(1) = ag/ xo(s)ds + by [ xo(s)ds < ag/ x1(s)ds + b2/ x1(s)ds,
0 &2 0 &2
Dl ai(1) = e1 Dt ag(r1) > e1 Dty (),
\ Dgiyl(l) = €2D§iyo(r2) > €2Dgiy1(7“1)

Then (z1,y1) is a lower solution of boundary value problem (1.1). Starting from the initial
(z0,Y0), by the following iterative scheme

D5 (s (Dgar(®))) = fult wimr (8), yioa (8, Dt (1), Dy (1),

D32 (m (Dg2ye() = folt,wioa (0, yi1 (1), D wra (8, Dty (B), £ € (0,1), (35)
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D (0) = 24(0) = 2/(0) = - - = 2,""2(0) = 0,

Dy (0) = i (0) = ' (0) = -+ = y™=2(0) = 0,
m 1

zp(l) = a1 yp—1(s)ds + b1/ yr—1(s)ds, Dgixk(l) = €1Dgixk,1(r1),
0 1

n2 1
yﬁD:a{/ %Agms+@/nm4@m& D yp(t) = eaDByp_1(r2), k=12,
0 &2

We can obtain the sequence {(x,yx)}, where (z,y) = (xr(t),yx(t)) are lower solutions of
boundary value problem (1.1), and (zx—1,yk—1) < (Zk,yr), so that {(x,yx)} is monotonically

increasing. Starting from the initial function (ug,vg), by the following iterative scheme

(D52 (0 (DR un(8)) = Aalt s (8), 061 (6. D w1 (8), D v (1),

D52 (0 (D un(t)) ) = faltsu1(8), w1 (1), Déﬁuk (1), DYk (1)), £ € (0,1),
DgiUk(O) = up(0) = w,'(0) = - - = up, ("2 (0) =

D220, (0) = v (0) = v/ (0) = - -+ = v M=) (0) =

mn 1
ug(1) = al/ vg—1(s)ds + b1/ vg—1(s)ds, Dgiuk(l) = 51D€iuk_1(r1),
0

1

72 1
vp(1) = ag/ ug—1(s)ds + b2/ ug—1(s)ds, Dgivk(t) = 52D€ivk_1(7“2), k=1,2,---.
0

&2
(3.6)
We can get the sequence {(ug,vr)}, where (u,v) = (ug(t),vi(t)) are upper solutions of
boundary value problem (1.1), and {(ug, vx)} is monotonically decreasing.

Step 2. We prove that (zg,yx) < (uk,vg), if (xp—1,9%-1) < (uk—1,v%-1), k=1,2,---. Since
(@e-1,90-1) < (-1, vp-1) and (Dax-1(8), D2yp-1(t)) > (Dgtug-1(t), Dgtop-1(t)), and
from (H1), fi(t, zx-1(8), yeo1(), Dot an-1(8), D2 y—1()) < filt u—1(8), vp—1 (1), Dyt wpa (1),
Dgivk,l(t)), i=1,2,---. By (3.5) and (3.6), we can get

DGt (o (D un(t) soplw%k(t)))
= f1(t, up—1(t), ve—1(t 0+Uk: 1(t), D2 v (1))

— fu(t, w1 (8), o1 (8), Dt g1 (1), D2y (1)) > 0,

DG (9 (D2 0r(1)) = (DG (1))
= fa(t, ug—1(t), vg—1(t), D 0+uk 1(t), DY v (1))

— fat, 1 (8), Y1 (£), Dt g1 (1), D2 y—1(1)) > 0,
Dt up(0) — Dt ak(0) = up(0) — 24(0) = up/(0) — 24'(0) = - -+ = w*~2)(0) — 2,2 (0) = 0,
Dgivk(o) - Dgiyk(o) = 0(0) — y&(0) = v’ (0) — yi'(0) = - -+ = v, (™=2(0) — (™= (0) = 0,
up(1) — (1) 20, Dtug(l) — Dita(l) <0,
ve(1) —ye(1) >0, DZup(1) — DEyi(1) < 0.

) -
): D
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Similarly, we can get that (x,yx) < (ug,vx), in the same way as the above. Therefore,

(xo,y0) < (z1,11) < -+ < (g, yx) < -+ < (ug,v) < -+ < (u1,v1) < (ug,vo).

Since P is a normal cone on FE, the {(xg,yx)} and {(ug,vg)} are uniforming bounded. Be-
cause H;, G;, ¢p,, pq, and f; are continuous, we can easily get that {(xy,yx)} and {(ug,vy)} are
equicontinuous. Hence, the {(xg,yx)} and {(ug,vx)} are relatively compact. Then there exist
(z*,y*) and (u*,v*) such that

lim (2p,90) = (2%,97), lim (Dghay, Dye) = (Dgta™, Dty"), (3.7)
and
Jim (ug, o) = (u*,0%), lim (Dt ug, D2 vy) = (Dgu*, D2 o), (3.8)

which imply that (z*,y*) is the maximun lower solution, (u*,v*) is the minimal upper solution
of boundary value problem (1.1) in [z, uo] X [yo,v0] C P, and (z*,y*) < (u*,v*).

Step 3. We prove that both (z*,y*) and (u*,v*) are the solutions of boundary value problem
(1.1). According to Lemma 2.1 and (3.5), we can get that

tP1—1

1 1 2
() == [ Gt ) (aua(s))ds - m[k< | [F e sianan @iisnas
1 1 1
+bz/0 G1(7,8)dTpg, (Tr—1( >+a1/ ! (Ga(T, 5)dT)pgy (Yr—1(5))ds
+b1// (Ga(r, $)d7) pga (Frr (s M,

() = — /0 Galt, 5) P (Fr1(5))ds

tP2—1 T rm
- [l@ (al/ G (T, 8)dT¢pg, (Jr—1(s))ds
1 —Fkiko o Jo

1 1

wn [ [ sy @k_l(s))ds)
0 J&

1

1 rn2 1
—i—ag/ G1(1,8)dTpg, (Zr—1(s))ds + 62/ Gi(r, s)dTg, (xkl(s))ds] ,
o Jo 0

)
where
Tr-1(8) =pp, <€1D§i3«“k71(71)30”_1
- /0 H(s ) A xk_1<7>,yk_1<f>,Dgixk_mﬂ,Dﬁiyk_m))ch) :
Yk—1(8) =¢p, (521753%_1(72)50‘271
-/  Ha(s, 7)ol 0 (7)y g (7), Dt onalr). Dt a ()i ).

From (3.7), and by the continuity of ¢,,, fi, Gi, H; and Lebesgue dominated convergence
theorem, we can show that (u*,v*) is a solution of boundary value problem (1.1).
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In the same way, we can show that (u*,v*) is also a solution of boundary value problem
(1.1). Furthermore,

(0,0) < (z0,90) < (a",y") < (u",v") < (o, vo),
(0,0) > (Dgk o, Dy yo) 2 (Dyta™, D2 y") = (Dyiu®, Dgtv) = (Dgtuo, Dy o).

The proof is completed. O

4. Tllustration

We consider the following multi-point boundary value problem of nonlinear fractional differential
system with P-Laplacian operators:

5

(D2 u(t ))> = J1t, u(t), v(t), D0+U( ), Dg:v(t),

I

+l\.’) w
/‘\
N\w

5

Di. (10303 0(0)) = hlt.ult), (0. DY), D v(t). 0 <t <1,

m 9 1 (4.1)
u(l) = / v(s)ds + / v(s)ds, 0<m <& <1,
2 Jo 3 Je,
1 [ 3 [t
v(l) = / u(s)ds+ — [ u(s)ds, 0<m<&<l1
8.Jo &
3 R |
Dyu(l) = 2D (),
5 3 5 2
D5+U(1) §D5+’U(§)
0.6 16
0.5 T4
1:2
0.4
5
Zo3 Zos8
0.2 g5
0.4
0.1
0.2
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 1. The approximate solution of the system.

Assume that
I'(
32T(

(tet(u+v)—3 _ 1 16

2 7 105/

)
)t

fl(ta u,v,w, Z)

z),

NN

3
2
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105\/%)%1
4 t

16
— z
RRTIE

We can easily check that (g, y0) = (zo(t),v0(t)) = (0,0) is a lower and (ug, vo) = (uo(t), vo(t))
is an upper solution of boundary value problem (4.1), where ug(t) = 23 — ?tQ, vo(t) = t2 — %t%
All conditions in Theorem 3.1 hold. Then boundary value problem (4.1) has the maximal lower
solution (z*,y*) and the minimal upper solution (u*,v*), both (z*,y*) and (u*,v*) are solutions
of boundary value problem (4.1). O

(t2€t(g+v)—2 _

fg(t,U,U,UJ,Z): (

).

5. Conclusion

Nonlinear fractional differential system with P-Laplacian operators and integral boundary con-
ditions are an important research area, which has shown high value in both theoretical and ap-
plications. With the continuous advancement of computational technology and the emergence
of new methods, research in this field will undoubtedly expand to deeper levels and broader
fields in the future. At the same, we also expect that these research results can provide more
effective tools and methods for solving practical problems.

With the continuous development and improvement of the theory of fractional calculus, the
research boundary value problems of nonlinear fractional differential systems will be more in-
depth and extensive. This paper only makes a major study on the existence of system solutions,
and in subsequent research, stability and persistence of solutions can be further discussed. In
addition, we should also continue to study equations with practical value, and the solution of
these problems will lay a more theoretical for the research of fractional differential equations,
and strive to solve more complex practical problems.
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