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ANALYSIS OF THE KINETIC PROPERTIES OF THE DISCRETE

FOREST DISEASE AND INSECT PEST MODELS∗

Jiarui Zhang1, Wei Li1 and Mi Wang1,†

Abstract In this paper, we study the dynamic behavior of discrete forest disease and pest
model-spruce aphid model, analyze the properties of the dynamics by using the difference
equation theory, including the existence of equilibrium points in the system model, and fur-
ther analyze the stability and instability conditions of these equilibrium points. In addition,
the step h is selected as the bifurcation parameter using the central manifold theorem to an-
alyze the Flip bifurcation and Hopf bifurcation at the equilibrium point, and prove the chaos
of the system through the maximum Lyapunov diagram. In order to verify the theoretical
proof, the system model is simulated numerically to draw relevant conclusions.

Keywords Discrete forest disease and insect pest models, Flip bifurcation, Hopf bifurca-
tion, chaos analysis.
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1. Introduction

With the rapid development of industry and agriculture and the acceleration of the process
of economic globalization, the problem of forest diseases and pests has gradually emerged and
brought adverse effects on the forest environment. The problem of forest diseases and pests is a
hot issue in international and domestic research on forest environment, and scientists from all
over the world have done a lot of research on forest diseases and pests [1,11,16,19,25,28–30,34],
especially spruce aphids [2, 5–7, 12, 13, 17, 21–24, 26]. As a major pest in coniferous forests,
the spruce aphid’s explosive reproduction can lead to large-scale defoliation of spruce, seriously
weakening the carbon sink capacity and ecological function of forests. Climate change has further
exacerbated the suddenness and unpredictability of the pests and diseases, and the traditional
means of chemical control is facing serious challenges due to environmental pollution and bio-
resistance, and other problems.

Ludwig et al. [18], proposed a model to separate the time scales of slow spruce regeneration
from the rapid population dynamics of budworm larvae and their predators, and they used a so-
called logistic model to study the finite food dynamics of budworms in the absence of predators,
S. J. Crute [3], established a computer simulation model of the population dynamics of Elatobium
abietinum, which provides a good research tool for further study of the population dynamics of
Elatobium abietinum. And Li Aihua et al. [14], used differential equations and control theory to
study the effect of the use of pesticides on the dynamic characteristics of the interaction model
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between a class of spruce aphids and their natural enemies, including the number of positive
equilibrium points in the control model of spruce aphids-natural enemies-insecticides, and the
relationship between the stability of the positive equilibrium points and the amount of pesticides
used.

In the ecological community, the survival and development of many biological populations
and the change of their numbers do not occur continuously, but many biological system models
are continuous system models. In order to study the nature of the population and analyze
it accordingly, the continuous system model is usually discretized [10, 15, 27, 31–33], and the
discretized system model is more helpful to analyze the properties of the biological population,
and at the same time, it can also ensure that the properties of the biological population will
not change in the research process, and even destroy the original good biological population
properties. In view of the relative lack of research on discrete models of forest diseases and
pests, it is of great importance to study these discrete models directly.

dN

dt
= rN

(
1− N

kS

)
− βPN2

η2S2 +N2
,

dS

dt
= ρS

(
1− S

smax

)
− δN.

(1.1)

The model was originally proposed by Ludwig et al. [18] for spruce-spruce aphid interactions
and provided a qualitative analysis of the insect outbreak system, and Anne Rasmussen et al. [20]
reviewed and added to the mathematical properties of this model by putting together a model
that investigated the number of equilibrium points and stability of the model, and analyzed the
relaxation oscillations and calculated the period of these by using singular regression analysis.
The model is reviewed and supplemented with a review of the mathematical properties of the
model. The predator-feeder model with Holling II functional reflections describes the interactions
between predator and prey, including population growth, environmental carrying capacity limits,
and the effects of predatory behavior on population dynamics. By analyzing these equations,
the dynamic balance between predators and prey in an ecosystem can be better understood.
Researchers have done many fruitful works on this class of models [4,9]. The article [4] studied
an improved Holling type II predator-prey model. A complete analysis of the global behavior of
the model is presented and it is shown that the model exhibits a dichotomy similar to that of
the classical Holling- II model: the coexisting steady state is globally stable; or it is unstable,
and thus there exists a unique, globally stable limit ring. The article [9] studied a stochastic
predator-prey model with a Holling II increasing function in the predator. The uniqueness of
the existence of a global positive solution is proved using Lyapunov analysis. The existence of a
smooth distribution in the model, which implies stochastic persistence of predators and prey, is
proved. In this paper, the relationship between spruce and budworm larvae is portrayed using
a model (1.2) in which the predator has a Holling II functional reflection.

The initial model for the spruce aphids is
dN

dt
= rN

(
1− N

kS

)
− βN

ηS +N
,

dS

dt
= ρS

(
1− S

smax

)
− δSN,

(1.2)

where t is the time arrangement, N is bud population density, S is spruce biomass density, r is
the intrinsic growth rate of bud population, ρ is the typical growth rate of biomass population,
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k is the larval effective bearing coefficient, Smax is the bearing capacity of leaf area, β is the
maximum consumption of each bud predator, δ is the average spruce consumption rate of each
aphid.

Since the spruce aphid is a species with obvious intergenerational relationship, the reproduc-
tion and growth of each generation have clear time intervals rather than a continuous process.
The discrete model can naturally reflect this intergenerational characteristic by dividing the dy-
namic changes of the population into discrete time steps. This model form is more compatible
with the actual reproduction pattern of the population, and can more accurately describe the
change rule of the population size between generations. The discrete model can reveal some
complex dynamical behaviors in the system, and is relatively simple in mathematical treatment,
especially in analyzing the stability of the system and the branching phenomenon. The equa-
tion form of the discrete model is usually easier to solve and analyze than the continuous model.
Therefore to explore the nature of this model, this paper discretizes the known continuous model:

Nn+1 = Nn + h

[
rNn

(
1− Nn

kSn

)
− βNn

ηSn +Nn

]
,

Sn+1 = Sn + h

[
ρSn

(
1− Sn

Smax

)
− δSnNn

]
,

(1.3)

where h represents the step size and has a h > 0.

2. Existence and stability of the equilibrium points

Now, we discuss the existence of equilibrium of the system (1.3).
(i) The system has a trivial equilibrium point E (0, 0).
(ii) The system has a boundary equilibrium point A (0, Smax).

(iii) If

∆ > 0,

N0N1 < 0,
there is a unique positive equilibrium point B (N0, S0), where N0 =

((rη−rk)Smax−βkm+2rkηmSmax)+
√
∆

2((rη−rk)m−r+rkηm2)
, ∆ = (rk + rη)2Smax

2+(βkm+rηSmax)
2−r2η2Smax

2−2rk2mβ

× Smax − 4rβkSmax, N0N1 =
(rkηSmax

2−βkSmax)
((rη−rk)m−r+rkηm2)

.

The Jacmatrix of the system (1.3) is

J |(N∗,S∗) =

J11 (N∗, S∗) J12 (N
∗, S∗)

J21 (N
∗, S∗) J22 (N

∗, S∗)

 , (2.1)

J11 (N
∗, S∗) = 1 + hr − 2rhNn

kSn
− hβηSn

(ηSn +Nn)
2 ,

J12 (N
∗, S∗) =

rhNn
2

kSn
2 +

hβηNn

(ηSn +Nn)
2 ,

J21 (N
∗, S∗) = −hδSn,

J22 (N
∗, S∗) = 1 + hρ− 2hρSn

Smax
− hδNn.

The stability of the model (1.3) is discussed below:
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Theorem 2.1. For the trivial equilibrium point E (0, 0), linear system of (2.1), there are two
eigenvalues at E (0, 0):

λ1 = 1 + hr, λ2 = 1 + hρ.

(i) The parameters are all positive, then E (0, 0) is a source.

Proof. For the trivial equilibrium point E (0, 0),

J |(E) =

1 + hr 0

0 1 + hρ

 ,

two eigenvalues of the matrix are:

λ1 = 1 + hr,

λ2 = 1 + hρ.

(i) |λ1| > 1, |λ2| > 1, then E (0, 0) is a source.

Theorem 2.2. For the boundary equilibrium point A (0, Smax), linear system of (2.1), the char-
acteristic equation at A (0, Smax) has two eigenvalues:

λ1 = 1 + hr − hβ

ηSmax
, λ2 = 1− hρ.

(i) When


1− J11 (A) J22 (A) > 0,

1 + (J11 (A) + J22 (A)) + J11 (A) J22 (A) > 0,

1− (J11 (A) + J22 (A)) + J11 (A) J22 (A) > 0,

A (0, Smax) is a sink.

(ii) When

1 + (J11 (A) + J22 (A)) + J11 (A) J22 (A) = 0,

|J11 (A) + J22 (A) + 1| < 1,
and (J11 (A) + J22 (A))

2 − 4J11 (A)

× J22 (A) > 0, the Flip bifurcation appears at this time.

(iii) When

1− (J11 (A) + J22 (A)) + J11 (A) J22 (A) = 0,

|J11 (A) J22 (A)− 1| < 1,
and (J11 (A) + J22 (A))

2 − 4J11 (A)

× J22 (A) > 0, the Fold bifurcation occurs at this time.

(iv) When λ1+λ2=J11 (A) + J22 (A), λ1λ2=J11 (A) J22 (A), λ1 and λ2 are a pair of conjugated
complex roots, the Hopf bifurcation appears.

Proof. For the boundary equilibrium point A (0, Smax), J |(A) =

J11 (A) J12 (A)
J21 (A) J22 (A)

 ,

J11 (A) = 1 + hr − hβ

ηSmax
,

J12 (A) = 0,

J21 (A) = −hδSmax,

J22 (A) = 1− hρ.

The characteristic equations of the matrix are as:

λ2 − (J11 (A) + J22 (A))λ+ J11 (A) J22 (A) = 0,
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two eigenvalues of the matrix are:
J11 (A) = λ1 = 1 + hr − hβ

ηSmax
,

J22 (A) = λ2 = 1− hρ.

(i) If |λ1| < 1, |λ2| < 1, then


1− J11 (A) J22 (A) > 0,

1 + (J11 (A) + J22 (A)) + J11 (A) J22 (A) > 0,

1− (J11 (A) + J22 (A)) + J11 (A) J22 (A) > 0,

A (0, Smax) is a

sink.

(ii) If (J11 (A) + J22 (A))
2 − 4J11 (A) J22 (A) > 0, λ1 = −1, |λ2| < 1 or λ2 = −1, |λ1| < 1, then1 + (J11 (A) + J22 (A)) + J11 (A) J22 (A) = 0,

|J11 (A) + J22 (A) + 1| < 1,
the Flip bifurcation appears.

(iii) If (J11 (A) + J22 (A))
2 − 4J11 (A) J22 (A) > 0, λ1 = 1, |λ2| < 1 or λ2 = 1, |λ1| < 1, then1− (J11 (A) + J22 (A)) + J11 (A) J22 (A) = 0,

|J11 (A) J22 (A)− 1| < 1,
the Fold bifurcation appears.

(iv) If λ1 and λ2 are a pair of conjugated complex roots, assume λ1 = a + bi, λ2 = a −
bi
(
a2 + b2 = 1, b ̸= 0

)
, since (λ− λ1) (λ− λ2) = λ2 − (λ1 + λ2)λ + λ1λ2 = 0, apparently

λ1+λ2=J11 (A)+ J22 (A), λ1λ2=J11 (A) J22 (A), the Hopf bifurcation appears at this time.

Theorem 2.3. For the equilibrium point B (N0, S0), linear system of (2.1), the characteristic
equation at B (N0, S0) has two eigenvalues:

λ1 =
J11 (B) + J22 (B) +

√
(J11 (B) + J22 (B))2 − 4 (J11 (B) J22 (B)− J12 (B) J21 (B))

2
,

λ2 =
J11 (B) + J22 (B)−

√
(J11 (B) + J22 (B))2 − 4 (J11 (B) J22 (B)− J12 (B) J21 (B))

2
.

(i) If


1− J11 (B)− J22 (B) + J11 (B) J22 (B)− J12 (B) J21 (B) > 0,

1 + J11 (B) + J22 (B) + J11 (B) J22 (B)− J12 (B) J21 (B) > 0,

1− J11 (B) J22 (B) + J12 (B) J21 (B) > 0,

B (N0, S0) is a sink.

(ii) If

1 + J11 (B) + J22 (B) + J11 (B) J22 (B)− J12 (B) J21 (B) = 0,

|J11 (B) + J22 (B) + 1| < 1,
and (J11 (B) + J22 (B))2

− 4 (J11 (B) J22 (B)− J12 (B) J21 (B)) > 0, the Flip bifurcation appears.

(iii) If

1− J11 (B)− J22 (B) + J11 (B) J22 (B)− J12 (B) J21 (B) = 0,

|J11 (B) + J22 (B)− 1| < 1,
and (J11 (B)+J22 (B))2

− 4 (J11 (B) J22 (B)− J12 (B) J21 (B)), the Fold bifurcation appears.

(iv) If λ1+λ2=J11 (B) + J22 (B), λ1λ2=J11 (B) J22 (B) − J12 (B) J21 (B), λ1 and λ2 are a pair
of conjugated complex roots, the Hopf bifurcation appears.
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Proof. For the equilibrium point B (N0, S0), J |(B) =

J11 (B) J12 (B)

J21 (B) J22 (B)

,

J11 (B) = 1 + hr − 2rρth

kSmax (ρl − δt)
− hβηSmax (ρl − δt)

ρl
(
ηSmax

(
1− δt

ρl

)
+ t

l

)2 ,
J12 (B) =

hrt2

kl2
(
Smax

(
1− δt

ρl

))2 +
hβηt

l
(
ηSmax

(
1− δt

ρl

)
+ t

l

)2 ,
J21 (B) = −hδ

((
1− δt

ρl

))
Smax,

J22 (B) = 1− hρ+
hδt

l
.

The characteristic equations of the matrix are as:

λ2 − (J11 (B) + J22 (B))λ+ J11 (B) J22 (B)− J12 (B) J21 (B) = 0,

the two characteristic values of the array are:
λ1 =

J11 (B) + J22 (B) +
√

(J11 (B) + J22 (B))2 − 4 (J11 (B) J22 (B)− J12 (B) J21 (B))

2
,

λ2 =
J11 (B) + J22 (B)−

√
(J11 (B) + J22 (B))2 − 4 (J11 (B) J22 (B)− J12 (B) J21 (B))

2
.

(i) If |λ1| < 1, |λ2| < 1,

then


1− J11 (B)− J22 (B) + J11 (B) J22 (B)− J12 (B) J21 (B) > 0,

1 + J11 (B) + J22 (B) + J11 (B) J22 (B)− J12 (B) J21 (B) > 0,

1− J11 (B) J22 (B) + J12 (B) J21 (B) > 0,

B (N0, S0) is a sink.

(ii) If (J11 (B) + J22 (B))2 − 4 (J11 (B) J22 (B)− J12 (B) J21 (B)) > 0, λ1 = −1, |λ2| < 1 or
λ2 = −1, |λ1| < 1,

then

1 + J11 (B) + J22 (B) + J11 (B) J22 (B)− J12 (B) J21 (B) = 0,

|J11 (B) + J22 (B) + 1| < 1,
the Flip bifurcation ap-

pears at this time.

(iii) If (J11 (B) + J22 (B))2−4 (J11 (B) J22 (B)− J12 (B) J21 (B)) > 0, λ1 = 1, |λ2| < 1 or λ2 = 1,
|λ1| < 1,

then

1− J11 (B)− J22 (B) + J11 (B) J22 (B)− J12 (B) J21 (B) = 0,

|J11 (B) + J22 (B)− 1| < 1,
the Fold bifurcation ap-

pears at this time.

(iv) If λ1 and λ2 are a pair of conjugated complex roots, assume λ1 = a + bi, λ2 = a −
bi
(
a2 + b2 = 1, b ̸= 0

)
, since (λ− λ1) (λ− λ2) = λ2 − (λ1 + λ2)λ + λ1λ2 = 0, apparently

λ1+λ2=J11 (B) + J22 (B), λ1λ2=J11 (B) J22 (B)− J12 (B) J21 (B), the Hopf bifurcation appears
at this time.
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3. Flip bifurcation at positive equilibrium point

3.1. The existence conditions of Flip bifurcation

Suppose that the t = ((rη − rk)Smax − βkm+ 2rkηmSmax) +
√
∆, ∆ = (rk + rη)2Smax

2 +
(βkm+rηSmax)

2−r2η2Smax
2−2rk2mβSmax−4rβkSmax, l = 2

(
(rη − rk)m− r + rkηm2

)
, then

N0=
t
l , S0 =

(
1− δt

ρl

)
, Z =

(
r − 2rρt

kSmax(ρl−δt) −
βηSmax(ρl−δt)

ρl
(
ηSmax

(
1− δt

ρl

)
+ t

l

)2

)
, M = rt2

kl2
(
Smax

(
1− δt

ρl

))2 +

βηt

l
(
ηSmax

(
1− δt

ρl

)
+ t

l

)2 .

At this point B (N0, S0) the Jacbian is:

J (B) =

 1 + hZ hM

−hδ
((

1− δt

ρl

))
Smax 1− hρ+

hδt

l

 ,

in order to obtain the bifurcation arguments, think about the transformation Nn+1 = Nn+1−N0,
Sn+1 = Sn+1 − S0 to move N0, S0 to the origin, and (1.3) can be formulated as:

Nn+1 = Nn + h

[
r
(
Nn +N0

)(
1−

(
Nn +N0

)
k
(
Sn + S0

))−
β
(
Nn +N0

)
η
(
Sn + S0

)
+
(
Nn +N0

)],
Sn+1 = Sn + h

[
ρ
(
Sn + S0

)(
1−

(
Sn + S0

)
Smax

)
− δ

(
Sn + S0

) (
Nn +N0

)]
,

(3.1)

equation (3.1) uses a Taylor expansion at B (N0, S0) to obtain the following expression:Nn+1

Sn+1

 = J |(N0,S0)

Nn

Sn

+ h

ψ1

(
Nn, Sn

)
ψ2

(
Nn, Sn

)
 , (3.2)

where
ψ1

(
Nn, Sn

)
=z1Nn

2
+ z2NnSn + z3Sn

2
+ z4Nn

3
+ z5Nn

2
Sn + z6NnSn

2
+ z7Sn

3

+O
((∣∣Nn

∣∣+ ∣∣Sn∣∣)4) ,
ψ2

(
Nn, Sn

)
= u1NnSn + u2Sn

2
+O

((∣∣Nn

∣∣+ ∣∣Sn∣∣)4),
z1 = − r

kS0
+

βηS0

(ηS0 +N0)
3 ,

z2 =
rN0

kS0
2 +

βη2S0 − βηN0

2(ηS0 +N0)
3 ,

z3 = −rN0
2

kS0
3 − βη2N0

(ηS0 +N0)
3 , z4 = − βηS0

(ηS0 +N0)
4 ,

z5 =
r

3kS0
2 +

βηN0 − 2βη2S0

3(ηS0 +N0)
4 ,

z6 = − 2rN0

3kS0
3 +

2βη2N0 − βη3S0

3(ηS0 +N0)
4 ,
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z7 =
rN0

2

kS0
4 +

βη3N0

(ηS0 +N0)
4 , u1 = −δ

2
, u2 = − ρ

Smax
.

On the basis of the characteristic polynomial, it can be obtained:

f (−1) =

(
Z

(
δt

l
− ρ

)
+M

(
δSmax

(
1− δt

ρl

)))
h2 + 2

(
Z +

δt

l
− ρ

)
h+ 4,

solution to h∗ =
−d2+

√
d2

2−16d1
2d1

, where d1 = Z
(
δt
l − ρ

)
+MδSmax

(
1− δt

ρl

)
, d2 = 2

(
Z + δt

l − ρ
)
.

Consider the parameter h with a small perturbation δ0, then h = h∗ + δ0, |δ0| ≪ 2, and the
system (3.2) changes to:Nn+1

Sn+1

 =

 1 + (h∗ + δ0)Z (h∗ + δ0)M

− (h∗ + δ0)

(
δSmax

(
1− δt

ρl

))
1 + (h∗ + δ0)

(
δt

l
− ρ

)
Nn

Sn


+ (h∗ + δ0)

ψ1

(
Nn, Sn

)
ψ2

(
Nn, Sn

)
 ,

(3.3)

the characteristic polynomial of the above formula is:

g (λ) =λ2 −
(
2 + (h∗ + δ0)

(
Z +

δt

l
− ρ

))
λ+ (1 + (h∗ + δ0)Z)

(
1 + (h∗ + δ0)

(
δt

l
− ρ

))
+ (h∗ + δ0)

2MδSmax

(
1− δt

ρl

)
,

the transversal condition at B (N0, S0) is given by:

dg (λ)

dδ0

∣∣∣∣
λ=−1,δ0=0

=

(
Z +

δt

l
− ρ

)
+ Z

(
1 + h∗

(
δt

l
− ρ

))
+

(
(1 + h∗Z)

(
δt

l
− ρ

))
+Mh∗δSmax

(
1− δt

ρl

)
+ h∗MδSmax

(
1− δt

ρl

)
.

3.2. The canonical form of Flip bifurcation solutions

For discussion convenience, defined

A =

 1 + h∗Z h∗M

−h∗
(
δSmax

(
1− δt

ρl

))
1 + h∗

(
δt

l
− ρ

) ,

if the characteristic value of A is λ = λ1 = −1, the corresponding feature vector is:

T1 =

h∗M
−2− h∗Z

 ,

if the characteristic value of A is λ = λ2, the corresponding feature vector is:

T2 =

h∗M
λ2 − 1− h∗Z

 ,
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as follows reversible matrix can be acquired:

T =
(
T1 T2

)
=

h∗M h∗M

−2− h∗Z λ2 − 1− h∗Z

 ,

let Xn+1

Yn+1

 = T−1

Nn+1

Sn+1

 ,

then Xn

Yn

 = T−1

Nn

Sn

 ,

that is: Xn+1

Yn+1

 =

−1 0

0 λ2

Xn

Yn

+

f1 (Nn, Sn, δ0
)

f2
(
Nn, Sn, δ0

)
 , (3.4)

where
f1
(
Nn, Sn, δ0

)
= a11Nnδ0 + a12Snδ0 + b11Nn

2
+ b12NnSn + b13Sn

2
+ b14Nn

3

+ b15Nn
2
Sn + b16NnSn

2
+ b17Sn

3
,

f2
(
Nn, Sn, δ0

)
= a21Nnδ0 + a22Snδ0 + b21Nn

2
+ b22NnSn + b23Sn

2
+ b24Nn

3

+ b25Nn
2
Sn + b26NnSn

2
+ b27Sn

3
,

a11 =

(
λ2 − 1− h∗Z

h∗M (λ2 + 1)

)
Z +

δSmax

(
1− δt

ρl

)
(λ2 + 1)

,

a12 =

(
λ2 − 1− h∗Z

h∗ (λ2 + 1)

)
−

δt
l − ρ

(λ2 + 1)
,

a21 = −
(

2 + h∗Z

h∗M (λ2 + 1)

)
Z −

δSmax

(
1− δt

ρl

)
(λ2 + 1)

,

a22 =

(
2 + h∗Z

h∗ (λ2 + 1)

)
+

δt
l − ρ

(λ2 + 1)
,

b11 =

(
λ2 − 1− h∗Z

M (λ2 + 1)

)
z1, b12 =

(
λ2 − 1− h∗Z

M (λ2 + 1)

)
z2 −

u1h
∗

(λ2 + 1)
,

b13 =

(
λ2 − 1− h∗Z

M (λ2 + 1)

)
z3 −

u2h
∗

(λ2 + 1)
, b14 =

(
λ2 − 1− h∗Z

M (λ2 + 1)

)
z4,

b15 =

(
λ2 − 1− h∗Z

M (λ2 + 1)

)
z5, b16 =

(
λ2 − 1− h∗Z

M (λ2 + 1)

)
z6,

b17 =

(
λ2 − 1− h∗Z

M (λ2 + 1)

)
z7, b21 =

(
2 + h∗Z

M (λ2 + 1)

)
z1,

b22 =

(
2 + h∗Z

M (λ2 + 1)

)
z2 +

u1h
∗

(λ2 + 1)
,
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b23 =

(
2 + h∗Z

M (λ2 + 1)

)
z3 +

u2h
∗

(λ2 + 1)
,

b24 =

(
2 + h∗Z

M (λ2 + 1)

)
z4, b25 =

(
2 + h∗Z

M (λ2 + 1)

)
z5,

b26 =

(
2 + h∗Z

M (λ2 + 1)

)
z6, b27 =

(
2 + h∗Z

M (λ2 + 1)

)
z7.

From Xn

Yn

 = T−1

Nn

Sn

 ,

then Nn

Sn

 = T

Xn

Yn

 =

 h∗M h∗M

−2− h∗Z λ2 − 1− h∗Z

Xn

Yn

 ,

and
Nn = h∗M (Xn + Yn) , Sn = (−2− h∗Z)Xn + (λ2 − 1− h∗Z)Yn,

by substituting (3.4), it can be concluded that:Xn+1

Yn+1

 =

−Xn

λ2Yn

+

f3 (Xn, Yn, δ0)

f4 (Xn, Yn, δ0)

 , (3.5)

f3 (Xn, Yn, δ0) =d11Xnδ0 + d12Ynδ0 + e11Xn
2 + e12XnYn + e13Yn

2 + e14Xn
3

+ e15Xn
2Yn + e16XnYn

2 + e17Yn
3,

f4 (Xn, Yn, δ0) =d21Xnδ0 + d22Ynδ0 + e21Xn
2 + e22XnYn + e23Yn

2 + e24Xn
3

+ e25Xn
2Yn + e26XnYn

2 + e27Yn
3

let k11 = k12 = h∗M , k21 = (−2− h∗Z), k22 = (λ2 − 1− h∗Z), where

d11 = a11k11 + a12k21,

d12 = a11k12 + a12k22,

e11 = b11k11
2 + b12k11k21 + b13k21

2,

e12 = 2b11k11k12 + b12 (k11k22 + k12k21) + 2b13k21k22,

e13 = b11k12
2 + b12k12k22 + b13k22

2,

e14 = b14k11
3 + b15k11

2k21 + b16k21
2k11 + b17k21

3,

e15 = 3b14k11
2k12 + b15

(
2k11k12k21 + k11

2k22
)
+ b16

(
2k11k22k21 + k21

2k12
)

+ 3b17k21
2k22,

e16 = 3b14k12
2k11 + b15

(
2k11k12k22 + k12

2k21
)
+ b16

(
2k12k22k21 + k22

2k11
)

+ 3b17k22
2k21,

e17 = b14k12
3 + b15k12

2k22 + b16k22
2k12 + b17k22

3,

d21 = a21k11 + a22k21,

d22 = a21k12 + a22k22,

e21 = b21k11
2 + b22k11k21 + b23k21

2,

e22 = 2b21k11k12 + b22 (k11k22 + k12k21) + 2b23k21k22,

e23 = b21k12
2 + b22k12k22 + b23k22

2,
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e24 = b24k11
3 + b25k11

2k21 + b26k21
2k11 + b27k21

3,

e25 = 3b24k11
2k12 + b25

(
2k11k12k21 + k11

2k22
)
+ b26

(
2k11k22k21 + k21

2k12
)

+ 3b27k21
2k22,

e26 = 3b24k12
2k11 + b25

(
2k11k12k22 + k12

2k21
)
+ b26

(
2k12k22k21 + k22

2k11
)

+ 3b27k22
2k21,

e27 = b24k12
3 + b25k12

2k22 + b26k22
2k12 + b27k22

3,

eij = h∗fij(i = 1, 2; j = 1, 2, · · · , 7).
The following discusses the direction of the Flip bifurcation at B (N0, S0), using the central

manifold theorem and the gauge theory:

θ1 =

(
∂2f

∂Xn∂δ0
+

1

2

∂f

∂δ0

∂2f

∂Xn
2

)∣∣∣∣
(0,0)

,

θ2 =

(
1

6

∂3f

∂Xn
3 +

(
1

2

∂2f

∂Xn
2

)2
)∣∣∣∣∣

(0,0)

.

Theorem 3.1. If θ1 ̸= 0,θ2 ̸= 0, the system has a Flip bifurcation at the fixed point B (N0, S0),
and if θ2 > 0(θ2 < 0), the point of period 2 is stable (unstable).

Proof. For a adequate small neighborhood at the argument δ0 = 0, there is a central manifold
at (0, 0):

W c =
{
(Xn, Yn) : Yn = m1Xn

2 +m2Xnδ0
}
, (3.6)

put (3.5) into (3.4):

Yn+1 = m1Xn+1
2 +m2Xn+1δ0, then Yn = m1Xn

2 +m2Xnδ0,

then

Xn+1 ≈ e11Xn
2 + (−1 + d11δ0)Xn,

Xn+1δ0 ≈ −Xnδ0,

Xn+1
2 = Xn

2,

Yn+1 = (λ1m1 + e21)Xn
2 + (λ1m2 + d21)Xnδ0 = m1Xn+1

2 +m2Xn+1δ0,

m1 =
e21

1− λ2
=
b21k11

2 + b22k11k21 + b23k21
2

1− λ2
,

m2 =
−d21
1 + λ2

=
− (a21k11 + a22k21)

1 + λ2
,

limit the equations to W c (0, 0) with the following results:

Xn+1 =−Xn + e11Xn
2 + d11Xnδ0 + (d12m1 + e12m2)Xn

2δ0 + (e12m1 + e14)Xn
3

+O
((∣∣Nn

∣∣+ ∣∣Sn∣∣)4) .
According to reference [8], at (X,Y, δ0) = (0, 0, 0), if θ1 ̸= 0,θ2 ̸= 0, the system experiences
a Flip bifurcation at point B (N0, S0), and if θ2 > 0, (θ2 < 0), the point of period 2 is stable
(unstable), where

θ1 =

(
∂2f

∂Xn∂δ0
+

1

2

∂f

∂δ0

∂2f

∂Xn
2

)∣∣∣∣
(0,0)

= d11 + d12m1 + e12m2,
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θ2 =

(
1

6

∂3f

∂Xn
3 +

(
1

2

∂2f

∂Xn
2

)2
)∣∣∣∣∣

(0,0)

= e12m1 + e14 + e11
2.

Numerical simulation is used to prove the above results. Now we set k = 10000, η = 7.54,
β = 14.96, ρ = 0.9, h = 0.262122270347572, Smax = 50, δ = 0.6, r = 10, B (N0, S0) =
(1.499951950752, 0.001601641574):

0 200 400 600 800 1000

t

1.49995195068

1.4999519507

1.49995195072

1.49995195074

1.49995195076
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N

0 200 400 600 800 1000

t
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1.60164157406

P

10-3

Figure 1. The graph of N , S when Flip bifurcation occurs at k = 10000, η = 7.54, β = 14.96, ρ = 0.9,
h = 0.262122270347572, Smax = 50, δ = 0.6, r = 10, B (N0, S0) = (1.499951950752, 0.001601641574).

4. Hopf bifurcation at point B (N0, S0)

4.1. The existence conditions of Hopf bifurcation

For the Hopf bifurcation occurring near the positive equilibrium point B (N0, S0), the two roots
of the characteristic polynomial must be a pair of conjugated unit compound radical. Therefore,
the bifurcation parameters are readily obtained:

λ1λ2 = J11 (B) J22 (B)− J12 (B) J21 (B) = 1,

select the bifurcation parameter as:

h∗ = −
(
Z + δt

l − ρ
)

Z
(
δt
l − ρ

)
+M

(
δSmax

(
1− δt

ρl

)) ,
with h > 0, we still consider the parameter h with small perturbations δ0, namely h = h∗ + δ0,
|δ0| ≪ 1, then the characteristic equation can be written as:

λ2 + p (δ0)λ+ q (δ0) = 0,

where

p (δ0) = −
(
2 + (h∗ + δ0)

(
Z +

δt

l
− ρ

))
,
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q (δ0) = 1 + (h∗ + δ0)

(
Z +

δt

l
− ρ

)
+ (h∗ + δ0)

2

(
Z

(
δt

l
− ρ

)
+MδSmax

(
1− δt

ρl

))
,

the root of the equation at J |(N0,S0)
is

λ1 =
p (δ0) + i

√
4q (δ0)− p(δ0)

2

2
,

λ2 =
p (δ0)− i

√
4q (δ0)− p(δ0)

2

2
, and |λ1,2| =

√
q (δ0).

d |λ1,2|
dδ0

∣∣∣∣
δ0=0

=
1

2

((
Z +

δt

l
− ρ

)
+ 2h∗

(
Z

(
δt

l
− ρ

)
+MδSmax

(
1− δt

ρl

)))
×
(
1 + h∗

(
Z +

δt

l
− ρ

)
+ (h∗)2

(
Z

(
δt

l
− ρ

)
+MδSmax

(
1− δt

ρl

)))− 1
2

,

if and only if
(
Z + δt

l − ρ
)
+2h∗

(
Z
(
δt
l − ρ

)
+MδSmax

(
1− δt

ρl

))
> 0,

d|λ1,2|
dδ0

∣∣∣
δ0=0

> 0, if p (0) ̸=

0, 1, then − (h∗ + δ0)
(
Z + δt

l − ρ
)
̸= 2, 3, λ1,2

n ̸= 1, n = 1, 2, 3, 4.

The cross-sectional condition at the positive equilibrium point B (N0, S0) is:

d |λ1,2|
dδ0

∣∣∣∣
δ0=0

=

(
λ1
dλ2
dδ0

+ λ2
dλ1
dδ0

)∣∣∣∣
δ0=0

=
1

2
(−i− 1)h∗iZ − 1

2
(−i− 1)h∗Z − 1

2
(i− 1)h∗Z − 1

2
(i− 1)h∗iZ

=
(
h∗ − h∗i2

)
Z,

when d|λ1|2
dδ0

∣∣∣
δ0=0

> 0, the Hopf Bifurcation exists at the positive equilibrium point B (N0, S0).

4.2. The canonical form of Hopf bifurcation solutions

Let

u =
1

2

(
−
(
2 + h

(
Z +

δt

l
− ρ

)))
,

v =
1

2
h

√
4

(
Z

(
δt

l
− ρ

)
+MδSmax

(
1− δt

ρl

))
−
(
Z +

δt

l
− ρ

)2

,

the corresponding reof λ1 = u+ iv and the λ2 = u− iv are:

T =
(
T1 T2

)
=

 hM 0

u− 1− hZ v

, T−1 =


1

hM
0

−u− 1− hZ

hM

1

v

,

use the following transformation: Nn+1

Sn+1

 = T

Xn+1

Yn+1

 ,
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then, equation (3.3) transforms to:Xn+1

Yn+1

 =

u−v

v u

Xn

Yn

+

 f̃ (Xn, Yn
)

g̃
(
Xn, Yn

)
 ,

where

f̃
(
Xn, Yn

)
= T−1f

(
Xn, Yn

)
, g̃
(
Xn, Yn

)
= T−1g

(
Xn, Yn

)
,

f
(
Xn, Yn

)
= e1Xn

2
+ e2XnYn + e3Yn

2
+ e4Xn

3
+ e5Xn

2
Yn + e6XnYn

2
+ e7Yn

3
,

g
(
Xn, Yn

)
= s1Xn

2
+ s2XnYn + s3Yn

2
,

where

e1 = z1(hM)2 + z2hM (u− 1− hZ) + z3(u− 1− hZ)2,

e2 = z2hMv + 2z3 (u− 1− hZ) v,

e3 = z3v
2,

e4 = z4(hM)3 + z5(hM)2 (u− 1− hZ) + z6hM(u− 1− hZ)2 + z7(u− 1− hZ)3,

e5 = z5(hM)2v + 2z6 (M) (u− 1− hZ) v + 3z7(u− 1− hZ)2v,

e6 = z6 (hM) v2 + 3z7 (u− 1− hZ) v2,

e7 = z7v
3,

s1 = u1 (hM) (u− 1− hZ) + u2(u− 1− hZ)2,

s2 = u1 (hM) v + 2u2 (u− 1− hZ) v,

s3 = u2v
2,

so  f̃ (Xn, Yn
)

g̃
(
Xn, Yn

)
 =


1

hM
0

−u− 1− hZ

hM

1

v


f (Xn, Yn

)
g
(
Xn, Yn

)
 .

According to the central manifold theorem and the normative theory, we can get the bi-
furcation direction of the Hopf bifurcation at the positive equilibrium point, and according
to the canonical theory of the Hopf bifurcation, make the following equation take values at(
Xn, Yn, δ0

)
= (0, 0, 0).

L = −Re

[
(1− 2λ)λ

2

1− λ
g11g20

]
− 1

2
|g11|2 − |g02|2 +Re

(
λg21

)
,

g20 =
1

8

(
f̃XnXn

+ f̃YnYn
+ 2g̃XnYn

+ i
(
g̃XnXn

− g̃YnYn
− 2f̃XnYn

))
,

g11 =
1

4

(
f̃XnXn

+ f̃YnYn
+ i
(
g̃XnXn

+ g̃YnYn

))
,

g02 =
1

8

(
f̃XnXn

− f̃XnYn
+ 2g̃XnYn

+ i
(
g̃XnXn

− g̃YnYn
+ 2f̃XnYn

))
,

g21 =
1

16

(
f̃XnXnXn

+ f̃XnYnYn
+ g̃XnYnYn

+ g̃YnYnYn

)
+

1

16
i
(
g̃XnXnXn

− g̃XnYnYn
− f̃XnXnYn

− f̃YnYnYn

)
,

f̃XnXn
=

2e1
hM

,

f̃YnYn
=

2e3
hM

,
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f̃XnYn
=

e2
hM

,

f̃XnXnXn
=

6e4
hM

,

f̃XnXnYn
=

2e5
hM

,

f̃XnYnYn
=

2e6
hM

,

f̃YnYnYn
=

6e7
hM

,

g̃XnXn
= 2

((
−u− 1− hZ

hM

)
e1 +

s1
v

)
,

g̃YnYn
= 2

((
−u− 1− hZ

hM

)
e3 +

s3
v

)
,

g̃XnYn
=

(
−u− 1− hZ

hM

)
e2 +

s2
v
,

g̃XnXnXn
= 6

(
−u− 1− hZ

hM

)
e4,

g̃XnXnYn
= 2

(
−u− 1− hZ

hM

)
e5,

g̃XnYnYn
= 2

(
−u− 1− hZ

hM

)
e6,

g̃YnYnYn
= 2

(
−u− 1− hZ

hM

)
e7.

Theorem 4.1. If the above condition holds and L ̸= 0, the Hopf bifurcation appears at the
positive equilibrium point B (N0, S0). If L > 0, it converges at that point; if L < 0, it diverges
at that point.

Using numerical simulations to verify the theoretical proof, we set k = 50000, η = 1.54, β =
5.77, ρ = 1, h = 0.087593294844698, Smax = 10, δ = 0.9, r = 5, (N0, S0) = (4.319623064185476,
1.360753871629049) :
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Figure 2. The graph of N , S when Hopf bifurcation occurs at k = 50000, η = 1.54, β = 5.77, ρ = 1,
h = 0.087593294844698, Smax = 10, δ = 0.9, r = 5, (N0, S0) = (4.319623064185476, 1.360753871629049).
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5. Chaotic analysis

Definition 5.1. For the twos systems Nn+1 = f (Nn), Sn+1 = f (Sn), if there is a small
perturbation δ0 is imposed to the system, as the number of iterations increases, the system
will diverge. The extent of separation is commonly used to measure the maximum Lyapunov
exponent, which has the formula:

λ = lim
n→+∞

1

n

n−1∑
n=0

ln

∣∣∣∣df (Nn, δ0)

dN

∣∣∣∣.
Theorem 5.1. If λ < 0, it means that the adjacent points eventually merge into a point, which
corresponds to stable fixed points and periodic motion; if λ > 0, it means that the adjacent points
eventually separate, which corresponds to the local instability of the orbit, chaos occurs.

After selecting the perturbation δ0 = (0, 0.1), the trend of N variation is analyzed using
numerical simulation, and through numerical simulation, the maximum Lyapunov exponent
plot is consistent with the trend of the bifurcation plot.

First we set k = 10000, η = 7.54, β = 14.97, ρ = 0.9, h = 0.262122270347572, Smax = 50,
δ = 0.6, r = 10, B (N0, S0) = (1.499951950752, 0.001601641574).

Figure 3. The Flip bifurcation is chaotic with the parameters k = 10000, η = 7.54, β = 14.97, ρ = 0.9,
h = 0.262122270347572, Smax = 50, δ = 0.6, r = 10, B (N0, S0) = (1.499951950752, 0.001601641574).

Then we set k = 50000, η = 1.54, β = 5.77, ρ = 1, h = 0.087593294844698, Smax = 10,
δ = 0.9, r = 5. In this case, we have (N0, S0) = (4.319623064185476, 1.360753871629049),
and the Hopf bifurcation is chaotic (see Figure 5), the maximum Lyapunov exponential map is
demonstrated by Figure 6.

6. Conclusion

The dynamic behavior of a type of spruce aphid model in discrete forest diseases and insect pests
is mainly considered, we have discussed the existence of the equilibrium point in system (1.3),
and found that it has three unique equilibrium points, then analyzed the stability and instability
conditions. Additionally, according to the conditions where the Flip bifurcation and the Hopf
bifurcation occur, we obtained the model (1.3) to experience the double cycle bifurcation (the
Flip bifurcation) and the Hopf bifurcation at the positive equilibrium point B (N0, S0). Finally,
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Figure 4. The parameters in the figure are the maximum Lyapunov exponential map where k = 10000,
η = 7.54, β = 14.97, ρ = 0.9, h = 0.262122270347572, Smax = 50, δ = 0.6, r = 10, B (N0, S0) =
(1.499951950752, 0.001601641574).

Figure 5. The Hopf bifurcation is chaotic with the parameters k = 50000, η = 3.72, β = 8.47, ρ = 1,
h = 0.149687409244297, Smax = 10, δ = 0.9, r = 5, B (N0, S0) = (4.3149528055, 1.3700943889).
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Figure 6. The parameters in the figure are the maximum Lyapunov exponential map where k = 50000, η = 3.72,
β = 8.47, ρ = 1, h = 0.149687409244297, Smax = 10, δ = 0.9, r = 5, B (N0, S0) = (4.3149528055, 1.3700943889).
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the numerical simulation results are consistent with the theoretical predictions, and we illustrate
the results of the double cycle bifurcation (Flip bifurcation) and Hopf bifurcation at the positive
equilibrium point B (N0, S0) with the corresponding figure.
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