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Abstract This paper is devoted to establishing the boundedness of the variation opera-
tors for commutators generated by approximate identities with Lipschitz functions in the
weighted Lebesgue spaces and the endpoint spaces. As applications, we obtain the corre-
sponding boundedness results for λ-jump operator, the number of up-crossing, heat semi-
groups, Poisson semigroups and maximal operator.
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1. Introduction

Let (X,F , µ) be an arbitrary σ finite measure space. For 1 < p < ∞, let {Tr}r>0 be a family of
bounded operators on Lp(X,F , µ) and limr→0 Trf exists in a certain sense. For the study of the
convergence properties and convergence rate of the operator family {Tr}, we usually consider

the square function
(∑∞

i=1 |Trif − Tri+1f |2
)1/2

or more general ρ-variation operator Vρ(T∗f)

Vρ(T∗f)(x) := sup
ri↘0

( ∞∑
i=1

|Tri+1f(x)− Trif(x)|ρ
)1/ρ

,

where the supremum is taken over all sequences {ri} that decreasing to 0.

The research on the variation operator of the operator family originates from the martingale
theory and ergodic theory in probability theory. Studying the bounded properties and related
inequalities of the variation operator on the function space can not only replace the traditional
dense subset convergence method to study the pointwise convergence of the operator family,
but also use these inequalities to measure the convergence speed of the operator family and
the oscillation when the operator family approaches the limit. Since Lepingle [17] improved the
classical Doob’s maximal inequality and Bougain [4] proved the similar variational estimates for
the Birkhoff ergodic mean of a binary system by using the variational inequality in the study of
martingale theory, the improvement and generalization of these results have opened up a new
direction for ergodic theory and harmonic analysis, and have attracted considerable research
interest in recent years. We refer readers to [1, 2, 5, 6, 8, 10–13,26,27].
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On the other hand, the commutator of singular integral operators is an important research
object in harmonic analysis. It can not only describe some function spaces but also play an
extremely important role and significance in partial differential equations. Therefore, the study
of variation operators associated with the commutators of singular integral operators in func-
tion spaces, especially in endpoint spaces, has attracted the attention of many scholars. In
2013, Betancor etc [3] established the Lp-boundedness of the variation operator of the commu-
tator of the Riesz transform under the Euclidean background and the Schrödinger background.
Later, Liu and Wu [18] studied the boundedness of the variation operator of the commutator
family generated by the Calderón-Zygmund singular integral with the standard kernel and the
BMO function, and established a boundedness criterion on the weighted Lp space. As an ap-
plication, the weighted Lp-boundedness of the variation operators for the commutators of the
Hilbert transform and the Hermitian Riesz transform has been obtained. Subsequently, signif-
icant progress has been made in the study of variational inequalities for the commutators of
singular integral operators with rough kernels. Recently, Wen and Hou [24] established the vari-
ational inequalities for the commutator families generated by b ∈ BMO(Rn) and approximate
identities on Lp(1 < p < ∞) space and endpoint spaces. For the latest research on commuta-
tors, we may refer to [22, 25]. Inspired by these results, in this paper, we devote to establish
variational inequalities for commutator families generated by approximate identity operators
and Lipschitz functions in weighted Lebesgue space, and to derive boundedness estimates on
the corresponding endpoint spaces. Since the boundedness of commutators is closely tied to the
smoothness of the function, and Lipschitz functions, while possessing certain smoothness, are
not necessarily bounded, the study of variational inequalities for commutator families involving
Lipschitz functions is of equal importance to those involving BMO functions. In order to express
the results of this paper, we will review some essential definitions and representations.

In the context of operator theory, the commutator [b, T ] is defined for a locally integrable
function b and an operator T (which may be linear or nonlinear) as

[b, T ]f(x) = T ((b(x)− b(·))f)(x).

Let ϕ ∈ S(Rn) with
∫
Rn ϕ(x)dx = 1, where S(Rn) denotes the Schwartz space. We investigate

the family of approximate identities Φ ⋆ f , which is defined as follows

Φ ⋆ f(x) := {ϕt ∗ f(x)}t>0, (1.1)

where ϕt(x) = t−nϕ(x/t).
Let 1 ≤ p ≤ ∞ and 0 < β < 1. We say the function b ∈ Lippβ(R

n), if

||b||Lippβ(Rn) = sup
B∋x

1

|B|β/n
( 1

|B|

∫
B
|b(x)− (b)B|pdx

)1/p
< ∞, (1.2)

where B is the ball in Rn and (b)B = |B|−1
∫
B b(x)dx.

When p = 1, Lippβ(R
n) is the homogeneous Lipschitz space Lip(β). Garćıa-Cuerva [9] proved

that as long as 1 ≤ p ≤ ∞, Lippβ space are uniform with respect to p, and the norm ∥ · ∥Lippβ(Rn)

is equivalent for different p.
Based on the definition of Lip(β), one can easily verify that for f ∈ Lip(β), 0 < β ≤ 1,

1

2
∥f∥Lip(β) ≤ sup

B∋x
inf
CB

1

|B|1+
β
n

∫
B
|f(x)− CB|dx ≤ ∥f∥Lip(β). (1.3)
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For m ∈ N, b⃗ = (b1, b2, · · · , bm) ∈ Lip(β⃗), i = 1, · · · ,m, where bi ∈ Lip(βi), β⃗ = (β1, · · · , βm)
and 0 < β =

∑m
i=1 βi < n, the iterated commutator family generated by approximate identities

with Lipschitz functions (Φ ⋆ f )⃗
b
:= {ϕ

t,⃗b
∗ f}t>0, for f ∈

⋃
1≤p<∞ Lp(Rn), which is given by

ϕ
t,⃗b

∗ (f)(x) = [bm, · · · , [b2, [b1, ϕt]]](f)(x) =

∫
Rn

m∏
j=1

[bj(x)− bj(y)]
1

tn
ϕ(

x− y

t
)f(y)dy. (1.4)

In this paper, we will establish the weighted (Lp, Lq)-type estimates of the ρ-variation op-
erators for the iterated commutators ϕ

t,⃗b
. The main theorems can be formulated as follows.

Theorem 1.1. Suppose that ϕ ∈ S(Rn) with
∫
Rn ϕ(x)dx = 1, b⃗ = (b1, · · · , bm) and bi ∈ Lip(βi)

with 0 < βi ≤ 1. Let ρ > 2, Φ = {ϕt}t>0 and Φ
b⃗
= {ϕ

t,⃗b
}t>0 be given by (1.1) and (1.4),

respectively. If 0 < β =
∑m

i=1 βi < n and Vρ(Φ ⋆ f) is bounded in Lp0(Rn, dx) for some
1 < p0 < ∞, then for any 1 < p < n/β with 1/q = 1/p − β/n, and ω ∈ A(p,q), Vρ((Φ ⋆ f )⃗

b
) is

bounded from Lp(Rn, ω(x)pdx) to Lq(Rn, ω(x)qdx).

When m = 1, the 1st-order commutator generated by approximate identities with Lipschitz
functions is defined as

(Φ ⋆ f)b = [b, ϕt](f)(x) =

∫
Rn

[b(x)− b(y)]
1

tn
ϕ(

x− y

t
)f(y)dy. (1.5)

And for n/β ≤ p ≤ ∞, we obtain the following un-weighted results only for the variation
operators associated with the 1st-order commutator.

Theorem 1.2. Suppose that ϕ ∈ S(Rn) with
∫
Rn ϕ(x)dx = 1, b ∈ Lip(β), 0 < β < 1. Let ρ > 2,

Φ = {ϕt}t>0 and Φb = {ϕt,b}t>0 be given by (1.1) and (1.5), respectively. If Vρ(Φ⋆f) is bounded
in Lp0(Rn, dx) for some 1 < p0 < ∞, then for any n/β < p < ∞, there exists a constant C > 0
such that for all bounded functions f with compact support,

∥Vρ((Φ ⋆ f)b)∥Lip(β/n−1/p) ≤ C∥b∥Lip(β)∥f∥Lp .

Theorem 1.3. Suppose that ϕ ∈ S(Rn) with
∫
Rn ϕ(x)dx = 1, b ∈ Lip(β), 0 < β < 1. Let ρ > 2,

Φ = {ϕt}t>0 and Φb = {ϕt,b}t>0 be given by (1.1) and (1.5), respectively. If Vρ(Φ⋆f) is bounded
in Lp0(Rn, dx) for some 1 < p0 < ∞, then for p = n/β, there exists a constant C > 0 such that
for all bounded functions f with compact support,

∥Vρ((Φ ⋆ f)b)∥BMO(Rn) ≤ C∥b∥Lip(β)∥f∥Ln/β .

Remark 1.1. We note that the arguments in proving Theorems 1.2-1.3 are not applicable to
the cases of high order commutators Φ

b⃗
(m > 1). It remains uncertain whether the results for

Vρ(Φb⃗
) also hold when m > 1, although this is a highly intriguing question.

When f ∈ H1(Rn), combined with atomic decomposition, we can establish the following
result.

Theorem 1.4. Suppose that ϕ ∈ S(Rn) with
∫
Rn ϕ(x)dx = 1, b ∈ Lip(β), and 0 < β < 1. Then

for ρ > 2 and f ∈ H1(Rn), Vρ((Φ ⋆ f)b) is bounded from H1(Rn) to L1,∞(Rn).

This paper is organized as follows. In Section 2, we review some basic concepts and prelimi-
nary results. Section 3 is devoted to proving our main results. Finally, in Section 4, we will give
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some applications of the main results, such as the λ-jump operator, the number of up-crossing,
heat semigroups, Poisson semigroups and maximal operators.

In this paper, the symbol C is employed to denote positive constants, which may take
different values in different occurrences. We use f ≲ g to denote f ⩽ Cg. For any ball
B := B(x0, r) ⊂ Rn, x0 denotes its center, and r represents its radius. The notation χB

represents the characteristic function of B. Given s ∈ [1,∞], we denote its conjugate index by
s′, where 1/s+ 1/s′ = 1.

2. Preliminaries

2.1. Weights

Let ω be a non-negative locally integrable function on Rn.

(i) We say that ω ∈ Ap for 1 < p < ∞, if

[ω]Ap = sup
B

(
1

|B|

∫
B
ω(y)dy

)(
1

|B|

∫
B
ω(y)1−p′dy

)p−1

< ∞,

where and below, the supremum runs over all balls in Rn, 1/p′ + 1/p = 1.

(ii) A weight ω belongs to the class A1, if

[ω]A1 = sup
B

( 1

|B|

∫
B
ω(y)dy

)
∥ω−1∥L∞(B) < ∞.

(iii) A weight ω(x) is said to belong to the class A(p,q), 1 < p ≤ q < ∞, if

[ω]A(p,q)
= sup

B

(
1

|B|

∫
B
ω(y)qdy

)1/q ( 1

|B|

∫
B
ω(y)−p′dy

)1/p′

< ∞.

Note that the Ap classes are nested and increase with p, namely Ap ⊂ Aq, and A∞ =
⋃

p≥1Ap.

The following properties of A(p,q) weights are presented in [5] and will be utilized in the
following estimates.

Lemma 2.1 (see [7]). Let 1 < p ≤ q < ∞. If ω ∈ A(p,q), then there exists r ∈ (1, p) such that
wr ∈ A(p/r,q/r).

2.2. Maximal functions

Here we review some classes of maximal functions, the Hardy-Littlewood maximal function is
defined as

M(f)(x) := sup
B∋x

1

|B|

∫
B
|f(y)|dy,

and the sharp maximal function is defined by

M ♯(f)(x) := sup
B∋x

1

|B|

∫
B
|f(y)− (f)B|dy ≈ sup

B∋x
inf
c

1

|B|

∫
B
|f(y)− c|dy. (2.3)

The operator M is bounded on Lp(ω) if and only if ω ∈ Ap for 1 < p < ∞, as shown by
Muckenhoupt [20].
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On the other hand, the fractional maximal operator Mβ is defined by

Mβ(f)(x) := sup
B∋x

1

|B|1−
β
n

∫
B
|f(y)|dy,

and its variant Mβ,s is defined by

Mβ,s(f)(x) := sup
B∋x

(
1

|B|1−
βs
n

∫
B
|f(y)|sdy

)1/s

, s > 0.

The following lemmas will play a pivotal role in the proof of our main theorems.

Lemma 2.2 (see [14]). Let 1 < p < ∞, ω ∈ A∞. Then

∥M(f)∥Lp(ω) ≤ ∥M ♯(f)∥Lp(ω), (2.4)

for all f such that the left hand is finite.

Lemma 2.3 (see [21]). Let 0 < β < n, 1 < p < n/β, and 1/q = 1/p− β/n. If ω ∈ A(p,q), then

∥Mβ(f)∥Lq(ωq) ≤ ∥f∥Lp(ωp). (2.5)

The following lemma follows directly from Lemma 2.1 and Lemma 2.3.

Lemma 2.4 (see [28]). Let 0 < β < n, 1 < r < p < n/β, and 1/q = 1/p − β/n. If ω ∈ A(p,q),
then

∥Mβ,r(f)∥Lq(ωq) ≤ ∥f∥Lp(ωp). (2.6)

2.3. Atomic decomposition

To prove Theorem 1.4, we introduce the atomic definition and the properties of the H1 norm.

Definition 2.1. Let B be a ball, we say that a function a(x) is an (1,∞)-atom if it satisfies:

(i) supp a ⊂ B;

(ii) ∥a∥L∞ ≤ |B|−1;

(iii)
∫
B a(x)dx = 0.

Lemma 2.5 (see [23]). A function f ∈ L1(Rn) belongs to H1(Rn) if and only if f =
∑

i λiai in
H1 norm or L1 norm, where ais are (1,∞)-atoms, λi ∈ C with

∑
i |λi| < ∞. Furthermore,

∥f∥H1(Rn)
∼= inf{

∑
i

|λi|},

where the infimum is taken over all the above atomic decomposition of f .

In this paper, we also need the following lemma in [19]. This lemma obtained some un-
weighted results concerning approximate identities.

Lemma 2.6 (see [19]). Suppose that ϕ ∈ S(Rn) with
∫
Rn ϕ(x)dx = 1, ρ > 2. Then for any

1 < p < ∞, we have

(i) Vρ(Φ ⋆ f) is bounded on Lp(Rn);

(ii) Vρ(Φ ⋆ f) is bounded from L1(Rn) to L1,∞(Rn);

(iii) Vρ(Φ ⋆ f) is bounded from H1(Rn) to L1(Rn).
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3. Proof of the main results

3.1. The weighted (Lp, Lq)-type estimates

This section is primarily concerned with proving Theorem 1.1. To begin with, we recall a
weighted result on Vρ(Φ ⋆ f), which will be applied in subsequent proofs.

Lemma 3.1 (see [15]). Let ϕ ∈ S(Rn) with
∫
Rn ϕ(x)dx = 1, ρ > 2, and Φ = {ϕt}t>0 be given

by (1.1). If Vρ(Φ ⋆ f) is bounded in Lp0(Rn) for some 1 < p0 < ∞, then for any 1 < p < ∞,
ω ∈ Ap,

∥Vρ(Φ ⋆ f)∥Lp(ω) ≤ C∥f∥Lp(ω). (3.1)

To prove Theorem 1.1, we first need to establish the following proposition.

Proposition 3.1. Suppose that ϕ ∈ S(Rn) with
∫
Rn ϕ(x)dx = 1, β⃗ = (β1, · · · , βn) with 0 < β =∑m

i=1 βi < n, b⃗ = (b1, · · · , bm) with bi ∈ Lip(βi)(i = 1, 2, · · · ,m), Φ and Φ
b⃗
being as in Theorem

1.1. If Vρ(Φ ⋆ f) is bounded in Lp0(Rn, dx) for some 1 < p0 < ∞. Then for ρ > 2, we have

M ♯(Vρ((Φ ⋆ f )⃗
b
))(x) ≲ ∥⃗b∥Lip(β){Mβ,s(Vρ(Φ ⋆ f))(x) +Mβ,s(f)(x)}

+
m−1∑
j=1

∑
σ∈Cm

j

∥⃗bσ∥Lip(βσ)Mβσ ,s(Vρ((Φ ⋆ f )⃗
bσ′

))(x)

hold for any s > 1.

Proof. Without loss of generality, we only prove the case m = 2. That is, we need to prove
the following results

M ♯(Vρ((Φ ⋆ f)b1,b2))(x) ≲ ∥b1∥Lip(β1)∥b2∥Lip(β2){Mβ,s(Vρ(Φ ⋆ f))(x) +Mβ,s(f)(x)}
+ ∥b1∥Lip(β1)Mβ1,s(Vρ((Φ ⋆ f)b2))(x)

+ ∥b2∥Lip(β2)Mβ2,s(Vρ((Φ ⋆ f)b1))(x).

For x ∈ Rn, let B := B(x0, r), we write f = f1 + f2, where f1 = fχ4B. Then for y ∈ B, one
can see that

Vρ((Φ ⋆ f)b1,b2)(y) ≤ |b1(y)− (b1)4B| |b2(y)− (b2)4B| Vρ(Φ ⋆ f)(y)

+ |b1(y)− (b1)4B| Vρ((Φ ⋆ f)b2)(y)

+ |b2(y)− (b2)4B| Vρ((Φ ⋆ f)b1)(y)

+ Vρ(Φ ⋆ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f1))(y)

+ Vρ(Φ ⋆ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f2))(y).

From the definition of M ♯, we only need to prove that

1

|B|

∫
B
|Vρ((Φ ⋆ f)b1,b2)(y)− Vρ(Φ ⋆ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f2))(x0)| dy

≲∥b1∥Lip(β1)∥b2∥Lip(β2){Mβ,s(Vρ(Φ ⋆ f))(x) +Mβ,s(f)(x)}
+ ∥b1∥Lip(β1)Mβ1,s(Vρ((Φ ⋆ f)b2))(x)

+ ∥b2∥Lip(β2)Mβ2,s(Vρ((Φ ⋆ f)b1))(x).
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For x ∈ Rn, it is not difficult to see that

1

|B|

∫
B
|Vρ((Φ ⋆ f)b1,b2)(y)− Vρ(Φ ⋆ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f2))(x0)| dy

≤ 1

|B|

∫
B
|b1(y)− (b1)4B| |b2(y)− (b2)4B| Vρ(Φ ⋆ f)(y)dy

+
1

|B|

∫
B
|b1(y)− (b1)4B| Vρ((Φ ⋆ f)b2)(y)dy

+
1

|B|

∫
B
|b2(y)− (b2)4B| Vρ((Φ ⋆ f)b1)(y)dy

+
1

|B|

∫
B
Vρ(Φ ⋆ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f1))(y)dy

+
1

|B|

∫
B

∣∣Vρ(Φ ⋆ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f2))(y)

− Vρ(Φ ⋆ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f2))(x0)
∣∣dy

=:
5∑

i=1

Ii.

For I1, using Hölder inequality, we have

I1 =
1

|B|

∫
B
|b1(y)− (b1)4B| |b2(y)− (b2)4B| Vρ(Φ ⋆ f)(y)dy

≤
( 1

|B|

∫
B
|b1(y)− (b1)4B|2s

′
) 1

2s′
( 1

|B|

∫
B
|b2(y)− (b2)4B|2s

′
) 1

2s′

×
( 1

|B|

∫
B
|Vρ(Φ ⋆ f)(y)|s dy

) 1
s

≲ ∥b1∥Lip(β1)∥b2∥Lip(β2)Mβ,s(Vρ(Φ ⋆ f))(x).

As for I2, we have

I2 ≤
( 1

|B|

∫
B
|b1(y)− (b1)4B|s

′
dy
) 1

s′
( 1

|B|

∫
B
|Vρ((Φ ⋆ f)b2)(y)|

s dy
) 1

s

≲ ∥b1∥Lip(β1)Mβ1,s(Vρ((Φ ⋆ f)b2))(x).

By symmetry, we can deduce that

I3 ≲ ∥b2∥Lip(β2)Mβ2,s(Vρ((Φ ⋆ f)b1))(x).

In order to estimate I4, we choose 1 < µ, q < ∞ satisfying µq = s. Form Lemma 2.6, we have

I4 =
1

|B|

∫
B
Vρ(Φ ⋆ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f1))(y)dy

≲
( 1

|B|

∫
B

∣∣∣Vρ(Φ ⋆ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f1))(y)
∣∣∣qdy) 1

q

≲
( 1

|B|

∫
4B

|b1(y)− (b1)4B|q |b2(y)− (b2)4B|q |f(y)|q dy
) 1

q
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≤
( 1

|B|

∫
4B

|b1(y)− (b1)4B|2qµ
′
dy
) 1

2qµ′
( 1

|B|

∫
4B

|b2(y)− (b2)4B|2qµ
′
dy
) 1

2qµ′

×
( 1

|B|

∫
4B

|f(y)|qµ dy
) 1

qµ

≲ ∥b1∥Lip(β1)∥b2∥Lip(β2)Mβ,s(f)(x).

Finally, we consider I5. Note that∣∣∣Vρ(Φ ⋆ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f2))(y)

− Vρ(Φ ⋆ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f2))(x0)
∣∣∣

≤
∥∥∥{ϕt ∗ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f2)(y)

− ϕt ∗ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f2)(x0)}t>0

∥∥∥
Vρ

=sup
tk↓0

(∑
k

∣∣∣ ∫
Rn\4B

{
[ϕtk(y − z)− ϕtk+1

(y − z)]− [ϕtk(x0 − z)− ϕtk+1
(x0 − z)]

}
× (b1(z)− (b1)4B)(b2(z)− (b2)4B)f(z)dz

∣∣∣ρ)1/ρ
≤
∫
Rn\4B

|f(z)| |b1(z)− (b1)4B| | |b2(z)− (b2)4B|

×
∥∥{ϕt(y − z)− ϕt(x0 − z)}t>0

∥∥
Vρ
dz.

By using Schwartz space properties and the mean value theorem, we obtain that∥∥{ϕt(y − z)− ϕt(x0 − z)}t>0

∥∥
Vρ

≤ sup
tk↓0

(∑
k

∣∣ ∫ tk

tk+1

∂

∂t
(ϕt(y − z)− ϕt(x0 − z))dt

∣∣)
≤
∫ ∞

0

∣∣∣∣ ∂∂t(ϕt(y − z)− ϕt(x0 − z))

∣∣∣∣ dt
≲ |y − x0|

∫ ∞

0

1

tn+2

(
1 +

|z − x0|
t

)−(n+2)
dt

=
|y − x0|

|z − x0|n+1

∫ ∞

0

tn

(t+ 1)n+2
dt

≲
|y − x0|

|z − x0|n+1 ,

where z ∈ Rn \ 4B. Thus,∣∣∣Vρ(Φ ⋆ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f2))(y)

− Vρ(Φ ⋆ ((b1(y)− (b1)4B)(b2(y)− (b2)4B)f2))(x0)
∣∣∣

≤
∫
Rn\4B

|f(z)| |b1(z)− (b1)4B| |b2(z)− (b2)4B|
|y − x0|

|z − x0|n+1
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≤
∞∑
j=2

∫
2j+1B\2jB

|b1(z)− (b1)4B| |b2(z)− (b2)4B| |f(z)|
(2jr)n+1

· rdz

≲
∞∑
j=2

1

2j

( 1

|2j+1B|

∫
2j+1B

|b1(z)− (b1)4B|s
′
|b2(z)− (b2)4B|s

′
dz
)1/s′

×
( 1

|2j+1B|

∫
2j+1B

|f(z)|s dz
)1/s

≲
∞∑
j=2

1

2j

( 1

|2j+1B|

∫
2j+1B

|b1(z)− (b1)2j+1B + (b1)2j+1B − (b1)4B|2s
′
dz
)1/2s′

×
( 1

|2j+1B|

∫
2j+1B

|b2(z)− (b2)2j+1B + (b2)2j+1B − (b2)4B|2s
′
dz
)1/2s′

×Mβ,s(f)(x)
∣∣2j+1B

∣∣− β
n

≤
∞∑
j=2

1

2j
(∥b1∥Lip(β1)

∣∣2j+1B
∣∣β1/n

+ ∥b1∥Lip(β1)(
j + 1

2
)
∣∣2j+1B

∣∣β1/n
)

× (∥b2∥Lip(β2)

∣∣2j+1B
∣∣β2/n

+ ∥b2∥Lip(β2)(
j + 1

2
)
∣∣2j+1B

∣∣β2/n
)

×Mβ,s(f)(x)
∣∣2j+1B

∣∣− β
n

=
( ∞∑

j=2

j + 3

2j+1

)
∥b1∥Lip(β1)∥b2∥Lip(β2)Mβ,s(f)(x)

≲∥b1∥Lip(β1)∥b2∥Lip(β2)Mβ,s(f)(x).

It implies that

I5 ≲ |b1∥Lip(β1)∥b2∥Lip(β2)Mβ,s(f)(x).

This completes the proof of Proposition 3.1.

Next, we prove Theorem 1.1, the proof is standard; see, for example [18,24].

Proof. We first verify that
∥∥M(Vρ((Φ ⋆ f )⃗

b
))
∥∥
Lq(ωq)

is finite. By the weighted Lq boundedness

of M , it suffices to verify that
∥∥Vρ((Φ ⋆ f )⃗

b
)
∥∥
Lq(ωq)

is finite. For simplicity, we will only check

that ∥Vρ((Φ ⋆ f)b)∥Lq(ωq) is finite, as the other cases are analogous. Assume that b and ω are
both bounded functions, then by Lemma 3.1, we have

∥Vρ((Φ ⋆ f)b)∥Lq(ωq) ≤ ∥b∥∞∥ω∥∞ ∥Vρ(Φ ⋆ f)∥Lq + ∥ω∥∞ ∥Vρ(Φ ⋆ (bf))∥Lq

≲ ∥b∥∞∥ω∥∞ ∥f∥Lq + ∥ω∥∞ ∥bf∥Lq

≲ ∥b∥∞∥ω∥∞ ∥f∥Lq

< ∞,

where f ∈ C∞
c (Rn).

Then, we perform induction on m. When m = 1, through the combination of Lemmas 2.2,
2.4, 3.1, and Proposition 3.1, we have

∥Vρ((Φ ⋆ f)b)∥Lq(ωq) ≲ ∥M(Vρ((Φ ⋆ f)b))∥Lq(ωq)
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≲
∥∥∥M ♯(Vρ((Φ ⋆ f)b))

∥∥∥
Lq(ωq)

≲ ∥b∥Lip(β)
(
∥Mβ,s(Vρ(Φ ⋆ f))∥Lq(ωq) + ∥Mβ,s(f)∥Lq(ωq)

)
≲ ∥b∥Lip(β)

(
∥Vρ(Φ ⋆ f)∥Lp(ωp) + ∥f∥Lp(ωp)

)
≲ ∥b∥Lip(β) ∥f∥Lp(ωp) .

Now we turn to consider the case m ⩾ 2. Assume that the theorem holds for m − 1, and
we shall prove it for m. The same reasoning as employed above, together with the induction
hypothesis, leads to the conclusion that∥∥Vρ((Φ ⋆ f )⃗

b
))
∥∥
Lq(ωq)

≲
∥∥M(Vρ((Φ ⋆ f )⃗

b
))
∥∥
Lq(ωq)

≲
∥∥∥M ♯(Vρ((Φ ⋆ f )⃗

b
))
∥∥∥
Lq(ωq)

≲ ∥⃗b∥Lip(β)
{
∥Mβ,s(Vρ(Φ ⋆ f))∥Lq(ωq) + ∥Mβ,s(f)∥Lq(ωq)

}
+

m−1∑
i=1

∑
σ∈Cm

j

∥⃗bσ∥Lip(βσ)

∥∥∥Mβσ′ ,s(Vρ((Φ ⋆ f )⃗
bσ′

))
∥∥∥
Lq(ωq)

≲ ∥⃗b∥Lip(β)
{
∥Vρ(Φ ⋆ f)∥Lp(ωp) + ∥f)∥Lp(ωp)

}
+

m−1∑
i=1

∑
σ∈Cm

j

∥⃗bσ∥Lip(βσ)

∥∥∥Vρ((Φ ⋆ f )⃗
bσ′

)
∥∥∥
Lpσ (ωpσ )

≲ ∥⃗b∥Lip(β) ∥f∥Lp(ωp) +

m−1∑
i=1

∑
σ∈Cm

j

∥⃗bσ∥Lip(βσ)∥⃗bσ′∥Lip(βσ′ )

× ∥f∥Lp(ωp)

≲ ∥⃗b∥Lip(β) ∥f∥Lp(ωp) ,

where βσ′ = β − βσ, 1/q = 1/p− β/n.
For the general case of Lipschitz functions b, the application of the Lebesgue dominated

convergence theorem, combined with reasoning analogous to the derivation of Theorem 1.1
in [24], we can establish Theorem 1.1. The details are omitted.

3.2. The (Lp, ∧̇(β/n−1/p)) -type estimates

In this section, we will prove Theorems 1.2 and 1.3. The proofs of these theorems are based on
the un-weighted results of Theorem 1.1.
Proof. For x ∈ Rn, let B be any ball containing x, define f1(y) = f(y)χ4B and f2(y) =
f(y)− f1(y). Let

CB = Vρ(Φ ⋆ ((b− (b)4B)f2))(x0).

According to (1.3), we need only verify that

1

|B|

∫
B
|Vρ((Φ ⋆ f)b)(y)− CB| dy ≲ ∥b∥Lip(β)∥f∥Lp |B|β/n−1/p.

We write

1

|B|

∫
B
|Vρ((Φ ⋆ f)b)(y)− CB| dy
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≤ 1

|B|

∫
B
|b(y)− (b)4B)| Vρ(Φ ⋆ f)(y)dy

+
1

|B|

∫
B
Vρ(Φ ⋆ ((b− (b)4B)f1))(y)dy

+
1

|B|

∫
B
|Vρ(Φ ⋆ ((b− (b)4B)f2))(y)− Vρ(Φ ⋆ ((b− (b)4B)f2))(x0)| dy

=:I+ II+ III.

First, for the term I, by Hölder inequality, we have

I ≤
( 1

|B|

∫
B
|b(y)− (b)4B)|p

′
dy
)1/p′( 1

|B|

∫
B
Vρ(Φ ⋆ f)(y)pdy

)1/p
≲ ∥b∥Lip(β)|B|β/n∥f∥Lp |B|−1/p

= ∥b∥Lip(β)∥f∥Lp |B|β/n−1/p.

Next, we choose 1 < p1 < p < n/β satisfy 1/q1 = 1/p1 − β/n, and combine with Theorem 1.1,
we can get

II ≤ 1

|B|

(∫
B
|Vρ(Φ ⋆ ((b− (b)4B)f1))(y)|q1 dy

)1/q1
|B|1−1/q1

≲ ∥b∥Lip(β)
1

|B|

(∫
Rn

|f1(y)|p1dy
)1/p1

|B|1−1/q1

= ∥b∥Lip(β)
1

|B|

(∫
4B

|f(y)|p1dy
)1/p1

|B|1−1/q1

≤ ∥b∥Lip(β)
1

|B|

(∫
R⋉

|f(y)|pdy
)1/p

|B|1−1/q1 |B|1/p1−1/p

≤ ∥b∥Lip(β)∥f∥Lp |B|β/n−1/p.

Now, we consider III. Note that∣∣∣Vρ(Φ ⋆ ((b− (b)4B)f2))(y)− Vρ(Φ ⋆ ((b− (b)4B)f2))(x0)
∣∣∣

≤
∥∥∥{ϕt ∗ ((b− (b)4B)f2)(y)− ϕt ∗ ((b− (b)4B)f2)(x0)

}
t>0

∥∥∥
Vρ

=sup
tk↓0

(∑
k

∣∣∣ ∫
Rn\4B

{
[ϕtk(y − z)− ϕtk+1

(y − z)]− [ϕtk(x0 − z)− ϕtk+1
(x0 − z)]

}
× (b(z)− (b)4B)f(z)dz

∣∣∣ρ)1/ρ
≤
∫
Rn\4B

|f(z)| |b(z)− (b)4B|
∥∥{ϕt(y − z)− ϕt(x0 − z)}t>0

∥∥
Vρ
dz.

For z ∈ Rn \ 4B, by Theorem 1.1, we have∣∣∣Vρ(Φ ⋆ ((b− (b)4B)f2))(y)− Vρ(Φ ⋆ ((b− (b)4B)f2))(x0)
∣∣∣

≲
∫
Rn\4B

|f(z)| |b(z)− (b)4B|
|y − x0|

|z − x0|n+1dz
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≤
∞∑
j=2

r

∫
2j+1B\2jB

|b(z)− (b)4B| |f(z)|
(2jr)n+1

dz

≲
∞∑
j=2

1

2j

( 1

|2j+1B|

∫
2j+1B

|b(z)− (b)4B|p
′
dz
)1/p′

×
(

1

|2j+1B|

∫
2j+1B

|f(z)|pdz
)1/p

≲
∞∑
j=2

1

2j

( 1

|2j+1B|

∫
2j+1B

|b(z)− (b)2j+1B + (b)2j+1B − (b)4B|p
′
dz
)1/p′

×
(

1

|2j+1B|

∫
2j+1B

|f(z)|pdz
)1/p

≲
∞∑
j=2

j + 3

2j+1
∥b∥Lip(β)|2j+1B|β/n∥f∥Lp |2j+1B|−1/p

≲∥b∥Lip(β)∥f∥Lp |B|β/n−1/p.

This completes the proof of Theorem 1.2.

Theorem 1.3 can be viewed as the endpoint case where p = n/β in Theorem 1.2, and its
proof is similar to that of Theorem 1.2. Hence, we omit the details.

3.3. Estimates on H1(Rn) space

Proof. Let f ∈ H1(Rn), then by atomic decomposition and Lemma 2.5, we only need to prove
it for f being a finite sum f =

∑
j λjaj with

∑
j |λj | ≤ 2∥f∥H1(Rn), where aj ia an (1,∞) atom.

Indeed, assume that Vρ((Φ ⋆ f)b) is bounded from H1(Rn) to L1,∞(Rn) for such f , then for
the general f , one can select a sequence {fk}k with fk being a finite sum as above such that
fk converges to f in H1 norm or almost everywhere when k → ∞. Consequently, by a limit
argument, Theorem 1.4 follows from the L2-boundedness of Vρ((Φ ⋆ f)b).

In the subsequent discussion, we assume that f =
∑

j λjaj is a finite sum satisfying
∑

j |λj | ≤
2∥f∥H1(Rn). Note that

Vρ((Φ ⋆ f)b)(y) ≤
∑
j

|λj |Vρ((Φ ⋆ aj)b1,b2)(y)χ4Bj (y)

+ Vρ

(
Φ ⋆

(∑
j

λjaj(b(y)− (b)Bj )
))

(y)χ(4Bj)c(y)

+
∑
j

|λj |
∣∣b(y)− (b)Bj

∣∣Vρ(Φ ⋆ aj)(y)χ(4Bj)c(y)

=:
3∑

i=1

Ai.

For A1, using Theorem 1.1 and Hölder inequality, we have∫
Rn

Vρ((Φ ⋆ aj)b)(y)χ4Bj (y)dy
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≲
(∫

4Bj

Vρ((Φ ⋆ aj)b)(y)
2dy
)1/2

|Bj |1/2

≲∥b∥Lip(β)|Bj |1/2
(∫

Bj

|aj(y)|2dy
)1/2

≲∥b∥Lip(β)|Bj |1/2|Bj |−1/2

=∥b∥Lip(β).

Applying the Chebyshev inequality and noting that
∑

j |λj | ≤ 2∥f∥H1(Rn), we obtain

|{y ∈ Rn : A1 > α/3}| ≤ 3

α

∑
j

|λj |
∫
Rn

Vρ((Φ ⋆ aj)b)(y)χ4Bj (y)dy

≲
1

α
∥b∥Lip(β)∥f∥H1(Rn).

Next, we consider A2, by Lemma 2.6, and(∫
Bj

∣∣(b(y)− (b)Bj )
∣∣2 dy)1/2 ≲ |b∥Lip(β),

we deduce that

|{y ∈ Rn : A2 > α/3}| ≤ 1

α

∥∥∥∑
j

λj(b(y)− (b)Bj )aj

∥∥∥
L1(Rn)

≤ 1

α

∑
j

|λj |
∥∥∥(b(y)− (b)Bj )aj

∥∥∥
L1(Rn)

≲
1

α

∑
j

|λj |
(∫

Bj

∣∣(b(y)− (b)Bj )
∣∣2 dy)1/2

×
(∫

Bj

|aj(y)|2dy
)1/2

≲
1

α
∥b∥Lip(β)∥f∥H1(Rn).

Now, we deal with A3, We apply the mean value theorem and Minkowski’s inequality, we
conclude that

Vρ(Φ ⋆ aj)(y)

= sup
tk↓0

(∑
k

∣∣∣ ∫
Rn

{
[ϕtk(y − x)− ϕtk+1

(y − x)]

− [ϕtk(y − yj)− ϕtk+1
(y − yj)]

}
aj(x)dx

∣∣ρ)1/ρ
≤
∫
Bj

|aj(x)|∥{ϕt(y − x)− ϕt(y − yj)}t>0∥Vρdx

≲
∫
Bj

|aj(x)|
|x− yj |

|y − yj |n+1
dx.
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Observe that ∫
Bj

|aj(x)|dx ≤ 1.

And we deduce that∫
Rn

∣∣b(y)− (b)Bj

∣∣Vρ(Φ ⋆ aj)(y)χ(4Bj)c(y)dy

≤
∞∑
i=2

∫
2i+1Bj\2iBj

∣∣b(y)− (b)Bj

∣∣ ∫
Bj

|aj(x)|
|x− yj |

|y − yj |n+1
dxdy

≲
∞∑
i=2

1

2i

( 1

|2i+1Bj |

∫
2i+1Bj

∣∣b(y)− (b)Bj

∣∣ dy)
≲

∞∑
i=2

1

2i

( 1

|2i+1Bj |

∫
2i+1Bj

∣∣∣b(y)− (b)2i+1Bj
+ (b)2i+1Bj

− (b)Bj

∣∣∣ dy)
≲∥b∥Lip(β).

Thus,

|{y ∈ Rn : A3 > α/3}| ≤ 3

α

∫
Rn

∑
j

|λj |
∣∣b(y)− (b)Bj

∣∣Vρ(Φ ⋆ aj)(y)χ(4Bj)c(y)dy

≲
1

α
∥b∥Lip(β)∥f∥H1(Rn).

Consequently, we arrive at Theorem 1.4.

4. Applications

This section presents applications of the main theorem.

4.1. λ-jump operators and the number of up-crossing

We present an application involving λ-jump operators and corresponding the number of up-
crossing related to the operators sequence {Fε}, which provides concrete quantitative information
about the convergence properties of {Fε}.

Definition 4.1. The λ-jump operator associated with a sequence F = {Fε}ε>0 applied to a
function f at a point x is denoted by Nλ(F)(x) and defined by

Nλ(F)(x) := sup{n ∈ N : ∃s1 < t1 ≤ s2 < t2 < · · · ≤ sn < tn

s.t. |Fsif(x)− Ftif(x)| > λ, i = 1, 2, · · · , n}.
(4.1)

Proposition 4.1 (see [16]). The behavior of the λ-jump operators is governed by the ρ-variation
operator. More precisely, we have

λ(Nλ(F)(x))1/ρ ≤ Vρ(Ff)(x).

Through the application of Theorems 1.1, 1.2, 1.3 and Proposition 4.1, we establish the
following results.
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Theorem 4.1. Let ϕ ∈ S(Rn) with
∫
Rn ϕ(x)dx = 1, b⃗ = (b1, · · · , bm) with bi ∈ Lip(βi) (i =

1, · · · ,m) and 0 < β =
∑m

i=1 βi < n, ρ > 2. Let Φ = {ϕε}ε>0 and Φ
b⃗
= {ϕ

ε,⃗b
}ε>0 be given by

(1.1) and (1.4), respectively. If Vρ(Φ ⋆ f) is bounded in Ls(Rn, dx) for some 1 < s < ∞, then
for 1 < p < n/β with 1/q = 1/p− β/n and ω ∈ A(p,q), we obtain∥∥∥Nλ((Φ ⋆ f )⃗

b
)1/ρ

∥∥∥
Lq(ωq)

≤ C(p, q, ρ)

λ
∥⃗b∥Lip(β)∥f∥Lp(ωp).

Theorem 4.2. Let ϕ ∈ S(Rn) with
∫
Rn ϕ(x)dx = 1, b ∈ Lip(β), 0 < β < 1, and ρ > 2. Let

Φ = {ϕε}ε>0 and Φb = {ϕε,b}ε>0 be given by (1.1) and (1.5), respectively. If Vρ(Φ⋆f) is bounded
in Ls(Rn, dx) for some 1 < s < ∞, then we obtain∥∥∥Nλ((Φ ⋆ f)b)

1/ρ
∥∥∥
Lip(β/n−1/p)

≤ C(p, ρ)

λ
∥b∥Lip(β)∥f∥Lp ,

where n/β < p < ∞, and∥∥∥Nλ((Φ ⋆ f)b)
1/ρ
∥∥∥
BMO(Rn)

≤ C(ρ)

λ
∥b∥Lip(β)∥f∥Ln/β .

Also, for fixed 0 < α < γ, we consider the number of up-crossing associated with a sequence
F = {Fε}ε>0 applied to a function f at a point x, which is defined by

U(F , f, α, γ, x) = sup
{
n ∈ N : ∃s1 < t1 < s2, t2 < · · · < sn < tn

s.t. Fsif(x) < α, Ftif(x) > γ, i = 1, 2, · · · , n
}
.

(4.2)

It can be easily verified that

U(Φ, f, α, γ, x) ≤ Nγ−α(Φ ⋆ f)(x). (4.3)

Combining this with Theorems 4.1 and 4.2, we immediately obtain the following results.

Theorem 4.3. Under the hypotheses of Theorem 4.1 or Theorem 4.2, it follows that

∥U(Φ
b⃗
, f, α, γ, ·)1/ρ∥Lq(ωq) ≤

C(p, q, ρ)

γ − α
∥⃗b∥Lip(β)∥f∥Lp(ωq)

or

∥U(Φb, f, α, γ, ·)1/ρ∥Lip(β/n−1/p) ≤
C(p, ρ)

γ − α
∥b∥Lip(β)∥f∥Lp ,

where n/β < p < ∞, and

∥U(Φb, f, α, γ, ·)1/ρ∥BMO(Rn) ≤
C(ρ)

γ − α
∥b∥Lip(β)∥f∥Ln/β .

4.2. On the heat semigroup and the Poisson semigroup

To the end, we consider the heat semigroup W := {et∆}t>0 and the Poisson semigroup P :=

{e−t
√
−∆}t>0 associated to ∆ =

∑n
i=1

∂2

∂x2
i
. It is easy to verify that the heat kernel Wt(x) :=

(πt)−n/2e−|x|2/t belongs to the Schwartz space S(Rn) and satisfies
∫
Rn Wt(x)dx = 1. Similar

to (1.4) and (1.5), we can define its commutator. Then, Theorems 1.1, 1.2, 1.3 hold for the
variation operators associated with W and their commutators. Therefore, we establish the
following corresponding results.
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Theorem 4.4. Suppose that Wt(x) ∈ S(Rn) with
∫
Rn Wt(x)dx = 1, bi ∈ Lip(βi) (i = 1, · · · ,m)

and 0 < β =
∑m

i=1 βi < n. If Vρ(W ⋆ f) is bounded in Lp0(Rn, dx) for some 1 < p0 < ∞ and
ρ > 2, then for any 1 < p < n/β with 1/q = 1/p − β/n, ω ∈ A(p,q), Vρ((W ⋆ f )⃗

b
) is bounded

from Lp(Rn, ω(x)pdx) to Lq(Rn, ω(x)qdx).

Theorem 4.5. Suppose that Wt(x) ∈ S(Rn) with
∫
Rn Wt(x)dx = 1, b ∈ Lip(β), 0 < β < 1. If

Vρ(W⋆f) is bounded in Lp0(Rn, dx) for some 1 < p0 < ∞ and ρ > 2, then for any n/β < p < ∞,
there exists a constant C > 0 such that for all bounded functions f with compact support,

∥Vρ((W ⋆ f)b)∥Lip(β/n−1/p) ≤ C∥b∥Lip(β)∥f∥Lp .

Theorem 4.6. Suppose that Wt(x) ∈ S(Rn) with
∫
Rn Wt(x)dx = 1, b ∈ Lip(β), 0 < β < 1. If

Vρ(W ⋆ f) is bounded in Lp0(Rn, dx) for some 1 < p0 < ∞ and ρ > 2, then for p = n/β, there
exists a constant C > 0 such that for all bounded functions f with compact support,

∥Vρ((W ⋆ f)b)∥BMO(Rn) ≤ C∥b∥Lip(β)∥f∥Ln/β .

Similarly, the variation operators associated with P and their commutators satisfy the con-
clusions as well.

4.3. Maximal operator

For any given f ∈ Lp(Rn), from the the definition of variation, we can obtain the following
pointwise control:

A∗f(x) ≤ Vρ(Af)(x), ρ ≥ 1

where the maximal operator A∗ is defined as

A∗f(x) = sup
t>o

|At(f)(x)|.

This demonstrates that the properties of the variation operator in many cases imply the
corresponding properties of the maximal operator. Therefore, we have the following inference.

Corollary 4.1. Under the same assumptions as those in Theorems 1.1-1.3, we define the max-
imal operator of approximate identities as Φ∗ ⋆ f = supt>o |ϕt ⋆ f(x)|, then

∥Φ∗ ⋆ f∥Lq(ωq) ≤ C∥f∥Lp(ωq)

or
∥Φ∗ ⋆ f∥Lip(β/n−1/p) ≤ C∥f∥Lp n/β < p < ∞,

and
∥Φ∗ ⋆ f∥BMO(Rn) ≤ C∥f∥Ln/β .

Remark 4.1. Let F = {Fϵ}ϵ>0 be a family of operators, and define its oscillation operator
O(Ff) as follows:

O(Ff)(x) :=
( ∞∑

i=1

sup
ti+1≤εi+1<εi≤ti

|Fεi+1f(x)− Fεif(x)|2
)1/2

,

where {ti}i∈N is a real decreasing sequence that converges to zero. Based on the proofs of the
theorems in this paper, we conclude that the results for oscillation operators associated with
commutators of approximate identities also hold correspondingly.
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