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Abstract In this paper, we investigate the time-delayed feedback control of a novel three-
dimensional chaotic system which is found from a class of modified KdV-Burgers-Kuramoto
(mKBK) equation. First, the local stability and the occurrence of Hopf bifurcation are
studied by introducing a single time-delayed feedback term into the chaotic system. Then,
the dynamical properties of bifurcated periodic solutions are investigated by applying the
algorithm depending on the normal form theory and center manifold theorem. Finally,
numerical simulations are presented to illustrate the effectiveness of the theoretical results.
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1. Introduction

Finding exact solutions for nonlinear partial differential equations (PDEs) have received consid-
erable attention in recent years. Many methods such as Lie symmetry method, tanh-function
method, Weis-Tabour-Carneville transform, generalized F-expansion method, and so on have
been developed to solve these solutions [3, 5, 7, 14, 19, 25]. Notably, recent advances in analyt-
ical and numerical techniques have further enriched the toolbox for tackling nonlinear PDEs.
For instance, studies in [9, 12, 20, 23, 30, 31] have demonstrated innovative approaches such as
Painlevé analysis, neural networks to resolving high-dimensional nonlinearities in fluid-like sys-
tems, while studies in [4,11,27] explored the process of pattern formations in dissipative systems
using fractional-order and adaptive strategies. These developments underscore the growing syn-
ergy between theoretical analysis and computational methods in nonlinear dynamics.

However, Chaos may exist in nonlinear equations and make the dynamics much more com-
plicated. Therefore, it is of great significance to explore complex dynamics such as chaos in
the nonlinear equations. There are many works concentrating on these aspects. For instance,
Jhangeer etc. [15] studied the bifurcation of nonlinear dynamical systems for chaotic behavior
in traveling wave solutions and analyzed the formation of patterns. Wang etc. [28] studied the
traveling wave dynamics of the KdV-Burgers-Kuramoto (KBK) equation with Marangoni effect
perturbations. Lavrova and Kudryashov [18] explored the nonlinear dynamics of the generalized
Kuramoto-Sivashinsky equation with varying degrees of nonlinearity.

In most cases, chaos phenomenon which appears in nonlinear equations is undesirable and
shall be controlled. Consequently, chaos control with regard to nonlinear equations has aroused
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great attention by many researchers. For instance, Luo etc. [21] investigated the chaos control
problem of microelectromechanical system resonators by using the analog circuits. Adéchinan
etc. [2] studied chaos, coexisting attractors and chaos control in a nonlinear dissipative chemical
oscillator using the Melnikov method. Abro etc. [1] presented the chaos control and chaotic char-
acteristics of brushless DC motors through fractal-fractional differentiations techniques. Zheng
etc. [32] analyzed chaotic motion and control of the driven-damped double Sine-Gordon equation
by Melnikov method. Amongst many control methods, the time-delayed feedback control tech-
nique developed by Pyragas [24] has proven to be a simple and feasible method for controlling
continuous chaotic systems with a wide spectrum of applications [6, 8, 10, 22, 26, 29]. Motivated
by this method, in this paper, we attempt to study a single delay feedback control of a class of
novel chaotic system recently found in the modified KdV-Burgers-Kuramoto (mKBK) equation.
The rest of this paper is structured as follows. In Section 2, a brief introduction of mKBK
chaotic system is presented. The local stability and the occurrence of Hopf bifurcation are in-
vestigated for mKBK chaotic system with a single delay feedback. In Section 3, the explicit
formulae including determining the direction and stability of bifurcation periodic solutions are
derived by applying normal form theory and the central manifold theorem. In Section 4, nu-
merical simulations which show good agreement with theoretical results are presented. Finally,
Section 5 gives a brief conclusion.

2. Local stability and occurrence of Hopf bifurcation

The standard KBK equation, given by:

ut + uux + αuxx + βuxxx + γuxxxx = 0, (2.1)

where α, β, γ are real constants, is widely recognized for its role in modeling physical processes
in unstable systems [16, 17]. It unifies several well-known equations, such as the KdV equation
(α = γ = 0, and β ̸= 0), the Burgers equation (β = γ = 0, and α ̸= 0), and the Kuramoto
equation (β = 0, α ̸= 0, and γ ̸= 0). These equations are fundamental in describing wave
phenomena, turbulence, and pattern formation in various physical contexts, including fluid
dynamics, plasma physics, and chemical reactions.

The mKBK equation, as studied in the paper, introduces a quadratic nonlinear term into
the standard KBK equation, resulting in:

ut + (u+ u2)ux + uxx + buxxx + uxxxx = 0. (2.2)

This modification enhances the nonlinearity of the system, leading to richer dynamical be-
haviors, including chaos. The mKBK equation is particularly relevant in scenarios where higher-
order nonlinear effects cannot be neglected, such as in the study of complex wave interactions,
soliton dynamics, and chaotic systems. The inclusion of the term u2ux allows for a broader ex-
ploration of nonlinear phenomena, making the mKBK equation a valuable tool for understanding
intricate dynamical systems in both theoretical and applied contexts.

Performing the traveling wave transformation as follows

u(x, t) = ϑ(ξ) = ϑ(x− at). (2.3)

Substituting Eq. (2.3) into Eq. (2.2) and performing one integration, we get a third-order
ordinary differential equation: c − aϑ + 1

2ϑ
2 + 1

3ϑ
3 + ϑ′ + bϑ′′ + ϑ′′′ = 0, which is equivalent to
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the following three-dimensional autonomous system
ẋ= y,

ẏ = z,

ż = ax− 1

2
x2 − 1

3
x3 − y − bz − c,

(2.4)

where a represents the wave speed and c is an integration constant.

It is found recently that system (2.4) exhibits chaotic dynamical behaviors when a = 1, b =
1, c = −0.5, as illustrated in Figure 1. For convenience, in what follows we refer to system (2.4) as
mKBK chaotic system. It is easy to calculate that mKBK chaotic system has three equilibrium
points E1(−2.496, 0, 0), E2(−0.433254, 0, 0) and E3(1.40226, 0, 0) when a = 1, b = 1, c = −0.5.
Without loss of generality, we denote E∗(x∗, 0, 0) as the equilibrium point of mKBK chaotic
system.
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Figure 1. Chaotic attractor of system (2.4) with a = 1, b = 1, c = −0.5.

In order to apply delayed feedback control technique to realize chaos control of mKBK chaotic
system, we attempt to introduce a single delay feedback term into the system and express it as
follows: 

ẋ(t) = y(t),

ẏ(t) = z(t) + k22[y(t)− y(t− τ)],

ż(t) = ax(t)− 1

2
x2(t)− 1

3
x3(t)− y(t)− bz(t)− c,

(2.5)

where τ(> 0) is the delay and k22 is the scaling parameter.

It is obvious that system (2.5) and mKBK chaotic system have the same equilibrium points.
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Taking x(t) = x̃(t) + x∗, y(t) = ỹ(t), z(t) = z̃(t) and substituting them into system (2.5) yields
˙̃x(t) = ỹ(t),

˙̃y(t) = z̃(t) + k22[ỹ(t)− ỹ(t− τ)],

˙̃z(t) = ax̃(t)− 1

2
x̃2(t)− 1

3
x̃3(t)− ỹ(t)− bz̃(t)− x∗x̃(t)− x∗2x̃(t)− x∗x̃2(t).

(2.6)

The corresponding characteristic equation of system (2.6) appears as

s3 − (k22 − b)s2 − (k22b− 1)s+ x∗2 + x∗ − a+ (k22s
2 + k22bs)e

−sτ = 0. (2.7)

Particularly, when τ = 0, Eq. (2.7) is reduced to s3 + bs2 + s+ x∗2 + x∗ − a = 0. It follows
from Routh-Huruitz criterion that all roots of the equation have negative real parts if b > 0 and
b+ a− x∗ − x∗2 > 0 hold.

Rewrite Eq. (2.7) as

s3 + α2s
2 + α1s+ α0 + (β2s

2 + β1s)e
−sτ = 0, (2.8)

where α0 = x∗2 + x∗ − a, α1 = 1− k22b, α2 = b− k22, β2 = k22, β1 = k22b.
Let s = iξ(ξ > 0) be the pure imaginary root of Eq. (2.8). Substituting it into Eq. (2.8), we

have
−ξ3i− α2ξ

2 + α1ξi + α0 + (−β2ξ2 + β1ξi)(cos ξτ − i sin ξτ) = 0.

Separating the real and imaginary parts, we haveα2ξ
2 − α0 = β1ξ sin ξτ − β2ξ

2 cos ξτ,

ξ3 − α1ξ = β1ξ cos ξτ + β2ξ
2 sin ξτ.

(2.9)

It follows from Eq. (2.9) that

ξ6 + (α2
2 − β2

2 − 2α1)ξ
4 + (α1

2 − 2α0α2 − β1
2)ξ2 + α0

2 = 0. (2.10)

Let ξ =
√
u, p = α2

2 − β2
2 − 2α1, q = α1

2 − 2α0α2 − β1
2, r = α0

2. Then Eq. (2.10) can be
rewritten as the following cubic equation

u3 + pu2 + qu+ r = 0. (2.11)

Without loss of generality , let uj(j = 1, 2, 3) be the roots of Eq. (2.11) satisfying ξj =√
uj(j = 1, 2, 3). It follows from Eq. (2.9) that

τ
(k)
j =

1

ξj

[
arccos

(
β1ξj

2 − α1β1 − α2β2ξj
2 + α0β2

β2
2ξj

2 + β1
2

)
+ 2kπ

]
, τ0 = min

j∈{1,2,3}

{
τ
(0)
j

}
, (2.12)

where j = 1, 2, 3; k = 0, 1, 2, · · · .
Denote by ρ(u) = u3+ pu2+ qu+ r,∆ = p2− 3q, and u∗1 =

−p+
√
∆

3 . Combined with the root
distribution of cubic equation, the following results are immediate.

Lemma 2.1. (i) If ∆ ≤ 0, then the number of roots of Eq. (2.8) with positive real parts when
τ > 0 is the same with that of Eq. (2.8) when τ = 0.
(ii) If ∆ > 0, u∗1 > 0 and ρ(u∗1) ≤ 0, then the number of roots of Eq. (2.8) with positive real parts
for 0 < τ < τ0 is the same with that of Eq. (2.8) when τ = 0.
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Lemma 2.2. If ρ′(uj) ̸= 0, then
dRes(τ

(k)
j )

dτ ̸= 0 and sign

{
dRes(τ

(k)
j )

dτ

}
= sign {ρ′(uj)} hold

(j=1,2,3).

Proof. Assume that s(τ) is the root of Eq. (2.7). Substituting s(τ) into Eq. (2.7) and taking
the derivative of τ yields

{
3s2 + 2(b− k22)s+ 1− k22b+ [2k22s+ k22b−τ(k22s2 + k22bs)]e

−sτ
} ds

dτ
=s(k22s

2+k22bs)e
−sτ .

Hence we have

(
ds

dτ
)−1 =

(3s2 + 2(b− k22)s+ 1− k22b)e
sτ

s(k22s2 + k22bs)
+

2k22s+ k22b

s(k22s2 + k22bs)
− τ

s
. (2.13)

Substituting s(τ) = iξj into Eq. (2.13) yields

[s(k22s
2 + k22bs)]τ=τ

(k)
j

= −k22bξj2 − ik22ξj
3,

and

[(3s2 + 2(b− k22)s+ 1− k22b)e
sτ ]

τ=τ
(k)
j

= [(1− k22b− 3ξj
2) cos ξjτ

(k)
j − 2(b− k22)ξj sin ξjτ

(k)
j ]

+i[2(b− k22)ξj cos ξjτ
(k)
j + (1− k22b− 3ξj

2) sin ξjτ
(k)
j ].

Thus we have[
dRes(τ)

dτ

]∣∣∣∣−1

τ=τ
(k)
j

= Re

[
(3s2 + 2(b− k22)s+ 1− k22b)e

sτ

s(k22s2 + k22bs)

]∣∣∣∣
τ=τ

(k)
j

+Re

[
2k22s+ k22b

s(k22s2 + k22bs)

]∣∣∣∣
τ=τ

(k)
j

=
1

Υ

{
−k22bξj2[(1− k22b− 3ξj

2) cos ξjτ
(k)
j − 2(b− k22)ξj sin ξjτ

(k)
j ]

−k22ξj3[2(b− k22)ξj cos ξjτ
(k)
j + (1− k22b− 3ξj

2) sin ξjτ
(k)
j ]− k22b

2ξj
2 − 2k22

2ξj
4
}

=
1

Υ

{
3ξj

6 + 2(b2 − 2)ξj
4 + [1− 2k22b+ 2k22(x

∗2 + x∗ − a)− 2b(x∗2 + x∗ − a)]ξj
2
}

=
1

Υ

(
3ξj

6 + 2pξj
4 + qξj

2
)

=
1

Υ

{
uj(3uj

2 + 2puj + q)
}

=
uj
Υ
ρ′(uj),

where p = α2
2 − β2

2 − 2α1, q = α1
2 − 2α0α2 − β1

2, uj = ξj
2, and Υ = k22

2b2ξj
4 + k22

2ξj
6. If

ρ′(uj) ̸= 0, then
dRes(τ

(k)
j )

dτ ̸= 0 and sign

{
dRes(τ

(k)
j )

dτ

}
= sign {ρ′(uj)} hold. This completes the

proof.

In summary, we have the following results.
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Theorem 2.1. (i) If b > 0, b + a − x∗ − x∗2 > 0, and ∆ ≤ 0, then all roots of Eq. (2.7) have
negative real parts for all τ ≥ 0 and thus the equilibrium point E∗(x∗, 0, 0) of system (2.5) is
locally asymptotically stable.
(ii) If b > 0, b+ a−x∗−x∗2 > 0, ∆ > 0, u∗1 > 0, and ρ(u∗1) ≤ 0, then all roots of Eq. (2.7) have
negative real parts for τ ∈ [0, τ0) and thus the equilibrium point E∗(x∗, 0, 0) of system (2.5) is
locally asymptotically stable.
(iii) If b < 0 or b+ a− x∗ − x∗2 < 0, and ∆ ≤ 0, then at least one root of Eq. (2.7) has positive
real part for τ ≥ 0 and thus the equilibrium point E∗(x∗, 0, 0) of system (2.5) is unstable.
(iv) If ∆ > 0, u∗1 > 0, ρ(u∗1) ≤ 0, and ρ′(uj) ̸= 0, then system (2.5) undergoes Hopf bifurcation

at the equilibrium point E∗(x∗, 0, 0) for τ = τ
(k)
j (j = 1, 2, 3; k = 0, 1, 2, · · · ).

3. Dynamical properties of Hopf bifurcation

In this section, we further study the dynamical properties of Hopf bifurcation by means of the
algorithms depending on the center manifold theorem and normal form theory [13].

Suppose that system (2.6) bifurcates at the equilibrium point (x̃, ỹ, z̃). Let x1 = x − x̃,
y1 = y− ỹ, z1 = z− z̃, τ = τj+υ, and t = τt. Then system (2.6) in C([−1, 0], R3) can be written
as

ẋt = Nυ(xt) + h(υ, xt), (3.1)

where xt = (x1t, x2t, x3t)
T ∈ R3, and for φ = (φ1, φ2, φ3)

T ∈ C,

Nυ = (τj + υ)


0 1 0

0 k22 1

a− x∗ − x∗2 −1 −b



φ1(0)

φ2(0)

φ3(0)

+ (τj + υ)


0 0 0

0−k22 0

0 0 0



φ1(−1)

φ2(−1)

φ3(−1)

 ,

h(υ, φ) = (τj + υ)


0

0

−1+2x∗

2 φ2
1(0)− 1

3φ
3
1(0)

 .

According to Riesz representation theorem, there exists a bounded variation function η(θ,
υ)(θ ∈ [−1, 0]) such that

Nυ(φ) =

∫ 0

−1
dη(θ, 0)φ(θ). (3.2)

In fact, we may take

η(θ, υ) = (τj + υ)


0 1 0

0 k22 1

a− x∗ − x∗2 −1 −b

σ(θ)− (τj + υ)


0 0 0

0−k22 0

0 0 0

σ(θ + 1), (3.3)

where σ(·) is the Dirac delta function.
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For φ ∈ C([−1, 0], R3), define

L(υ)φ =


dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1
dη(υ, s)φ(s), θ = 0

and

F (υ)φ =

0, θ ∈ [−1, 0),

h(υ, φ), θ = 0.

Then Eq. (3.1) is equivalent to

ẋt = L(υ)xt + F (υ)xt. (3.4)

For ψ ∈ C ′([0, 1], (R3)∗), define the adjoint operator L∗ of L as

L∗ψ(s) =


−dψ(s)

ds
, s ∈ [−1, 0),∫ 0

−1
dηT (t, 0)ψ(−t), s = 0

and the bilinear inner product as

⟨ψ,φ⟩ = ψ̄(0)φ(0)−
∫ 0

−1

∫ θ

ζ=0
ψ̄(ζ − θ)dη(θ)φ(ζ)dζ,

where η(θ) = η(θ, 0).

Let q(θ) = (1, γ, δ)T eiθξjτj be the eigenvector of L(0) such that L(0)q(θ) = iτjξjq(θ). Then
we have

τj


iξj −1 0

0 iξj − k22 + k22e
−iξjτj −1

x∗2 + x∗ − a 1 iξj + b

 q(θ) =

0

0

0

 . (3.5)

From Eq. (3.5), we can calculate that

q(θ) = (1, γ, δ)T eiθξjτj =

(
1, iξj ,

a− x∗ − x∗2 − iξj
iξj + b

)T

eiθξjτj . (3.6)

Similarly, let q∗(s) = D(1, γ∗, δ∗)eisξjτj be the eigenvector of L∗(0) such that L∗(0)q∗(θ) =
−iτjξjq

∗(θ). Then we have

q∗(s) = D(1, γ∗, δ∗)eisξjτj

= D

(
1,

iξj(iξj − b)

a− x∗ − x∗2
,

−iξj
a− x∗ − x∗2

)
eisξjτj .
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Thus we can obtain that

⟨q∗(s), q(θ)⟩ = D̄(1, γ̄∗, δ̄∗)(1, γ, δ)T −
∫ 0

−1

∫ θ

ζ=0
D̄(1, γ̄∗, δ̄∗)e−i(ζ−θ)ξjτjdη(θ)(1, γ, δ)T e−iζξjτjdζ

= D̄
(
1 + γγ̄∗ + δδ̄∗ − k22τjδδ̄∗e

−iξjτj
)
.

If we choose D = 1

1+γ̄γ∗+δ̄δ∗−k22τj δ̄δ∗e
−iξjτj

, then ⟨q∗(s), q(θ)⟩ = 1 and ⟨q∗(s), q̄(θ)⟩ = 0 hold.

Next we compute the coordinates of center manifold Ξ0 at υ = 0. Assume that xt is the
solution of Eq. (3.4). Define

z(t) = ⟨q∗, xt⟩,W (t, θ) = xt(θ)− z(t)q(θ)− z̄(t)q̄(θ), (3.7)

where z(t) and z̄(t) are local coordinates for center manifold Ξ0 in the direction of q∗ and q̄∗,
respectively.

On the center manifold Ξ0, we have

W (t, θ) =W (z(t), z̄(t), θ) =W20(θ)
z2(t)

2
+W11(θ)z(t)z̄(t) +W02

z̄2

2
+W30(θ)

z3(t)

6
+ · · · ,

and
ż(t) = iξjτjz(t) + q̄∗(0)h(0,W (z(t), z̄(t), θ) + 2Re {z(t)q(0)})

= iξjτjz(t) + q̄∗(0)h0(z(t), z̄(t))

= iξjτj + g(z(t), z̄(t)),

where

g(z(t), z̄(t)) = q̄∗(0)h0(z(t), z̄(t)) = g20
z2(t)

2
+ g11z(t)z̄(t)+ g02

z̄2(t)

2
+ g21

z2(t)z̄(t)

2
+ · · · . (3.8)

It follows from xt(θ) = (x1t(θ), x2t(θ), x3t(θ))
T = W (t, θ) + z(t)q(θ) + z̄(t)q̄(θ) and q(θ) =

(1, γ, δ)T eiθξjτj that

x1t(0) = z(t) + z̄(t) +W
(1)
20 (0)

z2(t)

2
+W

(1)
11 (0)z(t)z̄(t) +W

(1)
02 (0)

z̄2(t)

2
+ o(|(z(t), z̄(t))|3),

x2t(0) = γz(t) + γ̄z̄(t) +W
(2)
20 (0)

z2(t)

2
+W

(2)
11 (0)z(t)z̄(t) +W

(2)
02 (0)

z̄2(t)

2
+ o(|(z(t), z̄(t))|3),

x3t(0) = δz(t) + δ̄z̄(t) +W
(3)
20 (0)

z2(t)

2
+W

(3)
11 (0)z(t)z̄(t) +W

(3)
02 (0)

z̄2(t)

2
+ o(|(z(t), z̄(t))|3).

On the other hand, from Eq. (3.8) we have

g(z(t), z̄(t)) = q̄∗(0)h0(z(t), z̄(t))

= D̄τj (1, γ̄
∗, δ̄∗)


0

0

−1 + 2x∗

2
x1t

2(0)− 1

3
x1t

3(0)


= −1 + 2x∗

2
D̄τj δ̄

∗[x1t(0)]
2 − 1

3
D̄τj δ̄

∗[x1t(0)]
3.
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Comparing the corresponding coefficients, we have

g20 = −(1 + 2x∗)D̄τj δ̄
∗,

g11 = −(1 + 2x∗)D̄τj δ̄
∗,

g02 = −(1 + 2x∗)D̄τj δ̄
∗,

g21 = −D̄τj δ̄
∗
[
(1 + 2x∗)W

(1)
20 (0) + 2(1 + 2x∗)W

(1)
11 (0) + 3

]
.

(3.9)

To determine g21, it is necessary to calculate W20(θ) and W11(θ). Since W (t, θ) = xt(θ) −
z(t)q(θ)− z̄(t)q̄(θ), we have

Ẇ = ẋt − ż(t)q − ˙̄z(t)q̄

=

LW − 2Re {q̄∗(θ)h0(z(t), z̄(t))q(θ)} , θ ∈ [−1, 0),

LW − 2Re {q̄∗(0)h0(z(t), z̄(t))q(0)}+ h0, θ = 0,

= LW +H(z(t), z̄(t), θ),

(3.10)

where

H(z(t), z̄(t), θ) =

2Re {q̄∗(θ)h0(z(t), z̄(t))q(θ)} , θ ∈ [−1, 0),

2Re {q̄∗(0)h0(z(t), z̄(t))q(0)}+ h0, θ = 0

= H20
z2(t)

2
+H11z(t)z̄(t) +H02

z̄2(t)

2
+ · · · .

Note that

W + zq(θ) + z̄q̄(θ) =


W (1)(z, z̄, θ) + zeiξjτjθ + z̄e−iξjτjθ

W (2)(z, z̄, θ) + zγeiξjτjθ + z̄γ̄e−iξjτjθ

W (3)(z, z̄, θ) + zδeiξjτjθ + z̄δ̄e−iξjτjθ


and

h0 =




0

0

0

 , θ ∈ [−1, 0),


0

0

h
(3)
0

 , θ = 0,

(3.11)

where

h
(3)
0 = −1 + 2x∗

2
τj [W

(1)(z, z̄, 0) + z + z̄]2 − 1

3
τj [W

(1)(z, z̄, 0) + z + z̄]3. (3.12)

On the other hand, on the center manifold Ξ0, we also have

Ẇ =Wz ż +Wz̄ ˙̄z. (3.13)
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Expanding the series in Eq. (3.10) and Eq. (3.13), and comparing the corresponding coeffi-
cients, we can obtain 

(L− 2iξjτj)W20(θ) = −H20(θ),

LW11(θ) = −H11(θ),

· · · .
(3.14)

Note that for θ ∈ [−1, 0), we have

H(z(t), z̄(t), θ) = −q̄∗(0)h0q(θ)− q∗(0)h̄0q̄(θ) = −gq(θ)− ḡq̄(θ). (3.15)

Expanding the series in the above equation and comparing the corresponding coefficients
yields {

H20(θ) = −g20q(θ)− ḡ20q̄(θ),

H11(θ) = −g11q(θ)− ḡ11q̄(θ).
(3.16)

It follows from Eq. (3.14), Eq. (3.16) and the definition of L that

Ẇ20(θ) = 2iξjτjW20(θ) + g20q(θ) + ḡ02q̄(θ). (3.17)

Solving the above differential equation yields

W20(θ) =
ig20
ξjτj

q(0)eiθξjτj +
iḡ02
3ξjτj

q̄(0)e−iθξjτj + C1e
2iθξjτj , (3.18)

where C1 = (C
(1)
1 , C

(2)
1 , C

(3)
1 ) ∈ R3 is a constant vector to be determined.

Similarly, we have

W11(θ) =
ig11
ξjτj

q(0)eiθξjτj +
iḡ11
ξjτj

q̄(0)e−iθξjτj + C2, (3.19)

where C2 = (C
(1)
2 , C

(2)
2 , C

(3)
2 ) ∈ R3 is a constant vector to be determined.

When θ = 0, we have

H(z(t), z̄(t), θ) = −2Re {q̄∗(0)h0(z(t), z̄(t))q(0)}+ h0

= −gq(0)− ḡq̄(0) + h0,
(3.20)

where h0 = h0,z2
z2

2 + h0,zz̄zz̄ + h0,z̄2
z̄2

2 + · · · .

It follows from Eq. (3.14) and the definition of L that∫ 0

−1
dη(θ)W20(θ) = 2iτjξjW20(θ)−H20(0) (3.21)

and ∫ 0

−1
dη(θ)W11(θ) = −H11(0). (3.22)
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It can be obtained from Eq. (3.20) that

H20(0) = −g20q(0)− ḡ02q̄(0) +


0

0

h
(3)
0,z2



= −g20q(0)− ḡ02q̄(0) + τj


0

0

−(1 + 2x∗)


(3.23)

and

H11(0) = −g11q(0)− ḡ11q̄(0) + τj


0

0

−(1 + 2x∗)

 . (3.24)

Substituting Eq. (3.18) and Eq. (3.23) into Eq. (3.21) and noting that(
iξjτjI −

∫ 0

−1
eiθξjτjdη(θ)

)
q(0) = 0,

(
−iξjτjI −

∫ 0

−1
eiθξjτjdη(θ)

)
q̄(0) = 0,

where I is an identity matrix, we get

(
2iξjτjI −

∫ 0

−1
e2iθξjτjdη(θ)

)
C1 = τj


0

0

−(1 + 2x∗)

 .
Thus we have

2iξj −1 0

0 2iξj − k22 + k22e
−2iξjτj −1

x∗2 + x∗ − a 1 2iξj + b

C1 =


0

0

−(1 + 2x∗)

 .
From the above equation we can calculate that

C
(1)
1 =

−(1 + 2x∗)

A
,

C
(2)
1 =

−(2iξj)(1 + 2x∗)

A
,

C
(3)
1 =

−(2iξj)(1 + 2x∗)(2iξj − k22 + k22e
−2iξjτj )

A
,

where

A =

∣∣∣∣∣∣∣∣∣
2iξj −1 0

0 2iξj − k22 + k22e
−2iξjτj −1

x∗2 + x∗ − a 1 2iξj + b

∣∣∣∣∣∣∣∣∣ .
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Similarly, substituting Eq. (3.19) and Eq. (3.24) into Eq. (3.22) yields
0 −1 0

0 0 −1

x∗2 + x∗ − a 1 b

C2 =


0

0

−(1 + 2x∗)

 .
Hence, we can calculate that

C
(1)
2 =

−(1 + 2x∗)

B
, C

(2)
2 = 0, C

(3)
2 = 0,

where

B =

∣∣∣∣∣∣∣∣∣
0 −1 0

0 0 −1

x∗2 + x∗ − a 1 b

∣∣∣∣∣∣∣∣∣ .
Through the above analysis, the following parameters can be calculated:

d1(0) =
i

2ξjτj

(
g11g20 − 2|g11|2 −

|g02|2

3

)
+
g21
2
,

µ2 = −Re {d1(0)}
Re {s′(τj)}

,

δ2 = 2Re {d1(0)} ,

κ2 = − Im {d1(0)}+ υ2Im {s′(τj)}
τjξj

,

(3.25)

where the sign of µ2 determines the direction of the Hopf bifurcation: If µ2 < 0(µ2 > 0), the
Hopf bifurcation is subcritical (supercritical); the sign of δ2 determines the stability of the Hopf
bifurcation: If δ2 < 0(δ2 > 0), the bifurcated periodic solution is stable (unstable); and the sign
of κ2 determines the period of the Hopf bifurcation periodic solution: If κ2 < 0(κ2 > 0), the
period decreases (increases).

4. Numerical simulations

In this section, we shall perform some numerical simulations to illustrate the effectiveness of the
theoretical results obtained in the previous sections. We consider the mKBK chaotic system
with a single delay feedback described as follows:

ẋ(t) = y(t),

ẏ(t) = z(t) + k22[y(t)− y(t− τ)],

ż(t) = x(t)− 1

2
x2(t)− 1

3
x3(t)− y(t)− z(t) +

1

2
.

(4.1)

System (4.1) has three equilibrium points E1(−2.496, 0, 0), E2(−0.433254, 0, 0) and
E3(1.40226, 0, 0). Without loss of generality, let E∗(x∗, 0, 0) be the equilibrium point of system
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(4.1). Performing the transformation x(t) = x̃(t) + x∗, y(t) = ỹ(t), z(t) = z̃(t) and substituting
them into system (2.5) yields the following equivalent system

˙̃x(t) = ỹ(t),

˙̃y(t) = z̃(t) + k22[ỹ(t)− ỹ(t− τ)],

˙̃z(t) = x̃(t)− 1

2
x̃2(t)− 1

3
x̃3(t)− ỹ(t)− z̃(t)− x∗x̃(t)− x∗2x̃(t)− x∗x̃2(t).

(4.2)

The corresponding characteristic equation of system (4.2) appears as

s3 − (k22 − 1)s2 − (k22 − 1)s+ x∗2 + x∗ − 1 + (k22s
2 + k22s)e

−sτ = 0. (4.3)

In what follows we only analyze the case when x∗ = −2.496 (corresponding to E1(−2.496,
0, 0)) as the analysis for the cases when x∗ = −0.433254 (corresponding to E2(−0.433254, 0, 0))
and x∗ = 1.40226 (corresponding to E3(1.40226, 0, 0)) can be done in a similar way. When
x∗ = −2.496, Eq. (4.3) can be expressed as

s3 − (k22 − 1)s2 − (k22 − 1)s+ 2.626961 + (k22s
2 + k22s)e

−sτ = 0. (4.4)

According to the analysis presented in Section 2, we can obtain that b = 1 > 0, b + a −
x∗2 − x∗ = −1.626961 < 0, p = α2

2 − β2
2 − 2α1 = b2 − 2 = −1, q = α1

2 − 2α0α2 − β1
2 =

1−2k22b−(x∗2+x∗−a)(1−k22) = −4.253922+3.253922k22, r = α0
2 = (x∗2+x∗−a)2 = 6.900924.

Note that b > 0, b+ a− x∗2 − x∗ < 0, from Theorem 2.1 we know that when ∆ = p2 − 3q =
13.761766− 9.761766k22 ≤ 0, i.e, k ≥ 1.409762, the equilibrium point of system (4.2) is locally
unstable for all τ ≥ 0.

Therefore, to achieve control of the chaotic system, we shall consider k22 < 1.409762. Spe-
cially, we may choose k22 = −1. Then in this case we can calculate that ∆ = 23.523532,
ρ(u) = u3+pu2+qu+r = u3−u2−7.507844u+6.900924, u1 = 0.909161, ξ1 =

√
u1 = 0.953499,

u2 = 2.800868, ξ2 =
√
u2 = 1.673580, ρ′(u1) = −6.846445, ρ′(u2) = 10.425034, u∗1 = −p+

√
∆

3 =

1.950035, u∗2 = −p−
√
∆

3 = −1.283369, ρ(u∗1) = −3.754001, τ
(k)
j = 1

ξj

{
arccos

(
ξj

2−0.626961

ξj
2+1

)
+

2kπ}, τ (0)1 = 1.491809, τ
(0)
2 = 0.574765, τ

(1)
1 = 8.801415, τ

(1)
2 = 4.329103, τ0 = min

j∈{1,2}

{
τ
(0)
j

}
=

0.574765.

It is evident that a single delay feedback term has a little impact on the dynamics of system
(4.2) when the value of the delay τ is very small. However, as τ increases, the dynamics of
system (4.2) could be affected considerably. According to the analysis presented in Section

2, it is known that Hopf bifurcation occurs when τ reaches the critical value, i.e., τ = τ
(k)
j .

Here we take τ = τ
(0)
1 = 1.491809 for example, thus we can check that ∆ > 0, u∗1 > 0,

ρ(u∗1) < 0, ρ′(u1) ̸= 0. Hence system (4.2) exhibits Hopf bifurcation near the equilibrium point,
as shown in Figure 2. In addition, we can determine that µ2 > 0 and δ2 < 0 by means of the
formulae presented in Section 3, indicating that the bifurcated periodic solution is supercritical
and stable. In this circumstance, chaos phenomenon has disappeared. Furthermore, when the

delay τ = 1.93 ∈ (τ
(0)
1 , τ

(1)
2 ) = (1.491809, 4.329103), all roots of the corresponding characteristic

equation have negative real parts and the equilibrium point of system (4.2) is locally stable, as
illustrated in Figure 3. Chaos in this sense has been completely controlled.
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Figure 2. System (4.2) exhibits Hopf bifurcation when τ = 1.491809 and k22 = −1.
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Figure 3. The equilibrium point of system (4.2) is locally stable when τ = 1.93 and k22 = −1.

5. Conclusion

In this paper, we have studied nonlinear dynamics and chaos control of the novel mKBK chaotic
system via a single delay feedback. Some sufficient conditions guaranteeing the local stability
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and the existence of Hopf bifurcation are obtained by analyzing the corresponding characteristic
equation. Explicit formulae which determine the direction of Hopf bifurcation and the stability
of bifurcated periodic solutions are derived by means of center manifold theorem and normal
form theory. Finally, numerical simulations are carried out to illustrate the effectiveness of
the theoretical analysis, which indicate that the proposed delayed feedback control effectively
suppresses chaotic behavior when the delay exceeds critical thresholds.

The results may contribute to the growing body of research on chaos control in nonlinear
PDEs, particularly in systems with higher-order nonlinearities like the mKBK equation. The
success of a single delay feedback highlights its practicality for real-world applications, such as
stabilizing fluid flow instabilities, or controlling chaotic oscillations in mechanical systems. Fu-
ture work in this line could explore the interplay of multiple delays to enhance control robustness,
as well as the adaptive delay mechanisms to handle parameter uncertainties.
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