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ON THE PERIODIC ORBITS OF CONTINUOUS THIRD-ORDER

DIFFERENTIAL EQUATION WITH PIECEWISE PERTURBATIONS

Zouhair Diab1, Feng Li2 and Meilan Cai2,†

Abstract In this paper, we study the sufficient conditions for the existence of periodic
solutions of the following differential equation

...
x = −ẋ+ ε|ẍ| − ε (αx− βẋ)

m
,

where m is a natural number, and α, β and ε are real parameters with |ε| > 0 being small.
We apply the averaging method and the Melnikov function method respectively to study the
periodic solutions of this type of differential equation. We also provide an example as an
application.
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1. Introduction and statement of the main results

In [13], Llibre et al. used the averaging method to study the periodic orbits analytically of the
following differential equation:

...
x = −ẋ+ ε|ẍ| − εaxm, (1.1)

where m is a natural number and a, ε are real parameters with |ε| > 0 being small.

In the following, we use the averaging method and the Melnikov function method respectively
to study the periodic orbits of the following equation:

...
x = −ẋ+ ε|ẍ| − ε (αx− βẋ)m , (1.2)

where m is a natural number, and α, β and ε are real parameters with |ε| > 0 being small.
This equation is a generalization of (1.1) and is of the form

...
x = J (ẍ, ẋ, x) which is the so-

called jerk equation. It is well known that jerk equation can describe some physical phenomena.
Many researchers have shown their interest in the study of periodic solutions of nonlinear jerk
equations, such as in [10,18] and references therein.

To our knowledge, the averaging theory is one of the useful tools for obtaining periodic solu-
tions of differential equations, see for instance, [1, 3, 4, 6, 15, 21]. The Melnikov function method
also plays an important role in the study of the number of periodic solutions of differential
equations, such as in [5, 8, 9, 12] and references therein. The authors [7] proved that these two
methods are equivalent in the study of the number of limit cycles of planar analytic or C∞
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near-Hamiltonian systems. The authors [11] established the Melnikov function method and the
averaging method for finding limit cycles of piecewise smooth near-integrable systems in arbi-
trary dimension. Further, they showed that these two methods are also equivalent for higher
dimensional systems.

The differential equation (1.2) is equivalent to the following differential system
ẋ = y,

ẏ = z,

ż = −y + ε|z| − ε (αx− βy)m .

(1.3)

In this paper, we are mainly interested in discussing how the number of periodic solutions of
system (1.3) depends on the parameters α and β, as well as the exponent m. The main results
are stated in Theorem 1.1. Later we will prove the following theorem by means of the averaging
method and the Melnikov function method, respectively.

Theorem 1.1. For |ε| ≠ 0 sufficiently small, the differential system (1.3) satisfies the following
statements:

If m is even and α ̸= 0, then by using the first order Melnikov vector function method or
the first order averaging theory the system (1.3) has a periodic solution (x(t, ε), y(t, ε), z(t, ε))
bifurcating from the periodic solutions of system (1.3)|ε=0 such that

(x(t, ε), y(t, ε), z(t, ε)) = (−ρ∗0 cos t, ρ∗0 sin t, ρ∗0 cos t) +O(ε)

with

ρ∗0 =

(
2m!!

π (m− 1)!! (α2 + β2)m/2

) 1
m−1

.

If m is odd, or m is even and α = 0, then the first order Melnikov vector function method or
the first order averaging theory cannot detect the periodic solutions of the system (1.3).

The rest of this paper is organized as follows. In Section 2, some preliminaries about the
first order averaging theory are presented. In Section 3, we show some preliminary results about
the Melnikov vector function method and the averaging theory of perturbed piecewise smooth
systems in arbitrary dimension. In Section 4, we prove our main results by using the methods
given in Section 2 and Section 3, respectively. In Section 5, an example is provided as an
application.

2. The first order averaging theory for differential equations

In this section of this paper we present some preliminaries about the first order averaging theory
that we need to find periodic solutions of differential equations.

We consider the following system

ẋ = F0 (t, x) + εF1 (t, x) + ε2R (t, x, ε) , (2.1)

where the functions Fi : R ×Ω → Rn for i = 0, 1, R : R ×Ω × (−ε0, ε0) → Rn are continuous
and T−periodic in the first variable, the parameter |ε| ̸= 0 is small and Ω is an open subset of
Rn. Suppose that F0 is of class C1, DF0,F1 and R are locally Lipschitz in the second variable.
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Now we consider the system
ẋ = F0 (t, x) , (2.2)

which is called the unperturbed system of (2.1). We suppose that there exists a submanifold of
periodic solutions of this system. Let x(t, z, 0) be solution of system (2.2) and V be an open
set with Cl (V ) ⊂ Ω such that for each z ∈ Cl (V ), the solution x(t, z, 0) of the unperturbed
system (2.2) is T−periodic, where Cl (V ) is defined as the closure of V .

Define x(t, z, ε) as the solution of system (2.1) that satisfies the initial condition x(0, z, ε) = z.
The linearization of system (2.2) about the solution x(t, z, 0) has the form

ẏ = DxF0 (t, x (t, z, 0)) y. (2.3)

Denote by Mz(t) the fundamental matrix of the linearized system (2.3) such that Mz(0) = In is
n× n identity matrix.

The following result provides a way for finding periodic solutions of the differential system
(2.1). It can be found in [14].

Theorem 2.1. ( [14]) Consider differential system (2.1). We suppose that there exists an open
and bounded set V with Cl (V ) ⊂ Ω such that for each z ∈ Cl (V ), the solution x(t, z, 0) of
system (2.2) is T-periodic. Let f : Cl (V ) → Rn be the first order averaged function

f(z) =
1

T

∫ T

0
M−1

z (t)F1(t, x(t, z, 0))dt.

For each a ∈ V satisfying f(a) = 0 there exists a neighborhood U of a such that f(z) ̸= 0 for
all z ∈ Ū\{a} and dB(f, U, 0) ̸= 0, where dB(f, U, 0) be the Brouwer degree of f at a. Then
for |ε| ≠ 0 sufficiently small, the zero a provide T−periodic solution x(t, ε) of system (2.1) such
that x(0, ε) → a as ε→ 0.

In the references [17] and [19] we found the first version of Theorem 2.1 for C2 differential
systems. In [2], Buica et al. set out a more shorter proof of this result.

Remark 2.1. If f(z) is C1 with det(Df(a)) ̸= 0, then dB(f, U, 0) ̸= 0, see [16].

3. The first order Melnikov vector function method for piecewise
smooth systems

In this section, we show the first order Melnikov vector function method of perturbed piecewise
smooth systems in arbitrary dimension.

We first introduce the following definition given in [20].

Definition 3.1. ( [20]) Let S be an (n − 1) × n (n ≥ 2) matrix. We define S̄ to be the
(n− 1)× (n− 1) matrix satisfying S = (β, S̄), where β ∈ Rn is the first column of S.

Next, we consider the following n-dimensional piecewise smooth near-integral system

ẋ =

f+(x) + εg+(x), x1 ≥ 0, (3.1a)

f−(x) + εg−(x), x1 < 0, (3.1b)
(3.1)

where x = (x1, x2, · · · , xn)T , f± and g± are C∞ vector functions defined on an open set U ⊂ Rn

with U
⋂
{x1 = 0} ≠ ∅, 0 ≤ ε≪ 1.
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We assume that the following basic assumptions hold for the unperturbed system (3.1)|ε=0

as in [11,20].

(H1) System (3.1a)|ε=0 ((3.1b)|ε=0, resp.) has n − 1 different C∞ first integrals H+
i (x)

(H−
i (x), resp.), i = 1, 2, · · · , n− 1, such that for each x ∈ U+ (x ∈ U−, resp.), the gradients

DH+
1 , DH

+
2 , · · · , DH

+
n−1(DH

−
1 , DH

−
2 , · · · , DH

−
n−1, resp.)

are linearly independent, where U+ = {x ∈ U |x1 ≥ 0} (U− = {x ∈ U |x1 < 0}, resp.).
(H2) Let H±(x) = (H±

1 (x), H±
2 (x), · · · , H±

n−1(x))
T . There exists an open set V ⊂ Rn−1

such that for each h ≡ (h1, h2, · · · , hn−1)
T ∈ V , the curves L+

h = {x ∈ U+|H+(x) = h} and
L−
h = {x ∈ U−|H−(x) = H−(A(h))} contain no critical point of (3.1)|ε=0 and have two different

end points A(h) and B(h) in common satisfying

A(h) = (0, a2(h), · · · , an(h))T ∈ U, B(h) = (0, b2(h), · · · , bn(h))T ∈ U.

The orbit L+
h starts from A(h) and ends at B(h), and L−

h starts from B(h) and ends at A(h).
Thus, Lh = L+

h

⋃
L−
h is a closed orbit of (3.1) for h ∈ V .

(H3) The curves L±
h , h ∈ V are not tangent to the switch plane x1 = 0 at points A(h) and

B(h). In other words, for each h ∈ V ,

J±(x1, x2, · · · , xn) = det
∂(H±

1 , H
±
2 , · · · , H

±
n−1)

∂(x2, x3, · · · , xn)

is not equal to zero at each of the points A(h) and B(h).

The authors [11, 20] gave a definition of bifurcation function of system (3.1). From [11], for
any integer k ≥ 1, the bifurcation function F (h, ε) can be written as

F (h, ε) =
k∑

i=1

εi−1Mi(h) +O(εk) (3.2)

for 0 < ε≪ 1. In the above formula, Mi is called the ith order Melnikov vector function, which
plays an important role in studying the number of limit cycles of differential equations. The
authors [20] provided an expression of the first order Melnikov vector function M1(h) and the
sufficient conditions for system (3.1) to have periodic orbits as follows.

Lemma 3.1. ( [20]) Let system (3.1) satisfy (H1)-(H3). Then the first order Melnikov vector
function M1(h) has an expression below

M1(h) =

∫
ÂB

DH+g+dt+DH+(A)
[
DH−(A)

]−1
∫
B̂A

DH−g−dt.

Further, if M1(h0) = 0 and detDM1(h0) ̸= 0 for some h0 ∈ G, then for sufficiently small ε > 0
there exists a unique periodic orbit near Lh0 for system (3.1).

Let

L+
h : x = q+(t, h), 0 ≤ t ≤ T1(h),

L−
h : x = q−(t, h), T1(h) < t ≤ T (h)

(3.3)
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satisfy q+(0, h) = A(h), q+(T1(h), h) = q−(T1(h), h) = B(h), and q−(T (h), h) = A(h), where
T1(h) is defined as the time from A(h) to B(h) along L+

h , and T (h) is defined as the minimal
positive period of the periodic orbit Lh. Define

G(θ, h) =

G+(θ, h), 0 ≤ θ ≤ θ1(h),

G−(θ, h), θ1(h) < θ ≤ 2π,
(3.4)

where

G+(θ, h) = q+
(
T (h)

2π
θ, h

)
, G−(θ, h) = q−

(
T (h)

2π
θ, h

)
.

From [11] there exists a variable transformation

x = G(θ, h), 0 ≤ θ ≤ 2π, h ∈ V,

such that system (3.1) carries into a 2π periodic differential equation

dh

dθ
= εR(θ, h, ε), (3.5)

where R(θ, h, ε) is a piecewise C∞ smooth function.

For h0 ∈ V , let h(θ, h0, ε) be the solution of (3.5) satisfying h(0, h0, ε) = h0 for θ ∈ [0, 2π].
The Poincaré map of (3.5) has the form

P (h0, ε) = h(2π, h0, ε) = h0 + εd(h0, ε),

where d(h0, ε) is called a bifurcation function.

From [11], for any integer k ≥ 1, d(h0, ε) can be expressed as

d(h0, ε) =

k∑
i=1

εi−1fi(h0) +O(εk) (3.6)

for 0 < ε ≪ 1, where fi is called the ith order averaged function. From [11], the first order
averaged function f1(h) has the form

f1(h) =

∫ θ1(h)

0

T (h)

2π
DH+(G+)g+(G+)dθ

+

∫ 2π

θ1(h)

T (h)

2π
DH+(A)

[
DH−(A)

]−1
DH−(G−)g−(G−)dθ. (3.7)

Suppose that system (3.1) satisfies assumptions (H1)-(H3). The authors [11] proved that
the averaging method and the Melnikov function method are equivalent. That is, if for a given
integer k ≥ 1, fk(h) ̸≡ 0, fj(h) ≡ 0, j = 1, 2, · · · , k−1, then the kth order Melnikov functionMk

defined in (3.2) and the kth order averaged function fk defined in (3.6) satisfy fk(h) = Mk(h).
In particular,

M1(h) = f1(h). (3.8)
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4. Proofs of Theorem 1.1

In this section, we prove Theorem 1.1 by using the methods given in Section 2 and Section 3,
respectively.

The first method. First, we suppose that m = 2n with n a positive integer. By means
of a cylindrical change of coordinates (x, y, z) = (x, ρ sin θ, ρ cos θ) with ρ > 0, the differential
system (1.3) is written as

ẋ = ρ sin θ,

ρ̇ = ε cos θ
(
|ρ cos θ| − ((αx− βρ sin θ))2n

)
,

θ̇ = 1 +
ε

ρ
sin θ

(
(αx− βρ sin θ)2n − |ρ cos θ|

)
,

(4.1)

or, it is equivalent to the following system with the new independent variable θ
dx

dθ
= x′ = ρ sin θ + ε sin2 θ

(
|ρ cos θ| − (αx− βρ sin θ)2n

)
+O

(
ε2
)
,

dρ

dθ
= ρ′ = ε cos θ

(
|ρ cos θ| − (αx− βρ sin θ)2n

)
+O

(
ε2
)
,

(4.2)

where the prime denotes the derivative with respect to θ. The unperturbed system of (4.2) isx′ = ρ sin θ,

ρ′ = 0.
(4.3)

We denote by ψ (θ, x0, ρ0) the solution of the unperturbed system (4.3) satisfying ψ (0, x0, ρ0) =
(x0, ρ0). Then, we have

ψ (θ, x0, ρ0) = (x0 + ρ0(1− cos θ), ρ0) .

Now, note that for all ρ0 > 0, the solution ψ (θ, x0, ρ0) is 2π−periodic. The fundamental matrix
associated to the unperturbed system (4.3) is

M(x0,ρ0)(θ) =M(θ) =

1 1− cos θ

0 1

 .

Note that M(0) = I2, where I2 is the 2× 2 identity matrix. Then, by Theorem 2.1 we need to
calculate the zeros of the first order averaged function

f (x0, ρ0) =
1

2π

∫ 2π

0
M(θ)−1F1 (θ, ψ (θ, x0, ρ0)) dθ

with

F1(θ, (x, ρ)) =

sin2 θ
(
|ρ cos θ| − (αx− βρ sin θ)2n

)
cos θ

(
|ρ cos θ| − (αx− βρ sin θ)2n

)
 .
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Thus, we have

f (x0, ρ0) =

f1 (x0, ρ0)
f2 (x0, ρ0)


=

1

2π

∫ 2π

0

(1− cos θ)
(
ρ0| cos θ| − (αρ0 + αx0 − αρ0 cos θ − βρ0 sin θ)

2n
)

cos θ
(
ρ0| cos θ| − (αρ0 + αx0 − αρ0 cos θ − βρ0 sin θ)

2n
)

 dθ.

(4.4)
Using simple calculations, we find that∫ 2π

0
ρ0 cos θ| cos θ|dθ = 0.

For ρ0 > 0 we have that

f2 (x0, ρ0) =− 1

2π

∫ 2π

0
cos θ (αρ0 + αx0 − αρ0 cos θ − βρ0 sin θ)

2n dθ

=− 1

2π

∫ 2π

0
ρ2n0 cos θ

(
αρ0 + αx0

ρ0
− α cos θ − β sin θ

)2n

dθ

=− 1

2π

∫ 2π

0
ρ2n0

2n∑
k=0

(−1)kCk
2nα

2n−k

×
(
ρ0 + x0
ρ0

)2n−k

cos θ (α cos θ + β sin θ)k dθ.

If k = 2p, then
∫ 2π
0 cos θ (α cos θ + β sin θ)2p dθ = 0. So f2 (x0, ρ0) becomes

f2 (x0, ρ0) =
1

2π

n−1∑
p=0

C2p+1
2n ρ2n0 α

2n−2p−1

(
ρ0 + x0
ρ0

)2n−2p−1

×
∫ 2π

0
cos θ (α cos θ + β sin θ)2p+1 dθ

=
1

2π

n−1∑
p=0

C2p+1
2n ρ2p+1

0 α2n−2p−1 (ρ0 + x0)
2n−2p−1

×
∫ 2π

0
cos θ (α cos θ + β sin θ)2p+1 dθ

=

n−1∑
p=0

C2p+1
2n ρ2p+1

0 α2n−2p−1 (ρ0 + x0)
2n−2p−1

×
(
α
(2p+ 1)!!

(2p+ 2)!!

(
α2 + β2

)p)
.

We note that the function f2 (x0, ρ0) = 0 at x0 = −ρ0. We put x0 = −ρ0 in the function
f1 (x0, ρ0) we obtain

f1 (−ρ0, ρ0) =
1

2π

∫ 2π

0
−ρ0 cos θ| cos θ|+ ρ0| cos θ|dθ
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− 1

2π

∫ 2π

0
ρ2n0 (1− cos θ) (α cos θ + β sin θ)2n dθ

=
1

π

(
2ρ0 − πρ2n0

(2n− 1)!!

(2n)!!

(
α2 + β2

)n)
.

Solving f1 (−ρ0, ρ0) = 0 with respect to ρ0, we get the following solution

ρ∗0 =

(
2 (2n)!!

π (2n− 1)!! (α2 + β2)n

) 1
2n−1

.

Note that α2 + β2 ̸= 0 ensures the existence of the solution ρ∗0 > 0. We conclude that if m = 2n
and α2 + β2 ̸= 0, then the first order averaged function f (x0, ρ0) has a unique zero (−ρ∗0, ρ∗0)
with ρ∗0 > 0.

To apply the averaging theory of first order, we will show that

det
∂ (f1, f2)

∂ (x0, ρ0)

∣∣∣∣
(x0,ρ0)=(−ρ∗0,ρ

∗
0)

̸= 0. (4.5)

By calculating the partial derivative of f2 (x0, ρ0) with respect to x0 and ρ0, we obtain

∂f2
∂x0

(−ρ0, ρ0) =
∂f2
∂ρ0

(−ρ0, ρ0)

=
α

2π
C2n−1
2n ρ2n−1

0

∫ 2π

0
cos θ (α cos θ + β sin θ)2n−1 dθ

= α2 2n (2n− 1)!!

(2n)!!
ρ2n−1
0

(
α2 + β2

)n−1
.

Analogously by calculating the partial derivative of f1 (x0, ρ0), we obtain

∂f1
∂x0

(−ρ0, ρ0) =−∂f2
∂x0

(−ρ0, ρ0) ,

∂f1
∂ρ0

(−ρ0, ρ0) =
2

π
− ∂f2
∂ρ0

(−ρ0, ρ0)−
1

2π

∫ 2π

0
2nρ2n−1

0 (α cos θ + β sin θ)2n dθ.

Using the above partial derivatives with substituting ρ0 by ρ∗0, we find the following matrix

Df (−ρ∗0, ρ∗0) =


−∂f2
∂ρ0

(−ρ∗0, ρ∗0)

2

π
− ∂f2
∂ρ0

(−ρ∗0, ρ∗0)

− 1

2π

∫ 2π

0
2n (ρ∗0)

2n−1 (α cos θ + β sin θ)2n dθ

∂f2
∂ρ0

(−ρ∗0, ρ∗0)
∂f2
∂ρ0

(−ρ∗0, ρ∗0) ,

 ,

the determinant of this matrix is

−∂f2
∂ρ0

(−ρ∗0, ρ∗0)
(
2

π
− 1

2π

∫ 2π

0
2n (ρ∗0)

2n−1 (α cos θ + β sin θ)2n dθ

)
= −α2 2n (2n− 1)!!

(2n)!!
(ρ∗0)

2n−1
(
α2 + β2

)n−1
(
2

π
− 2n (ρ∗0)

2n−1 (2n− 1)!!

(2n)!!

(
α2 + β2

)n)
= − 8nα2

π2 (α2 + β2)
(1− 2n)

̸= 0
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when α ̸= 0 for all natural number n.

Hence, if α ̸= 0, then (4.5) holds. It follows from Theorem 2.1 and Remark 2.1 that the
system (4.2) has the periodic solution of the form

(x(θ, ε), ρ(θ, ε)) = (−ρ∗0 cos θ, ρ∗0) +O(ε).

By means of the previous cylindrical change of coordinates, the system (1.3) has the periodic
solution of the form

(x(t, ε), y(t, ε), z(t, ε)) = (−ρ∗0 cos θ, ρ∗0 sin t, ρ∗0 cos t) +O(ε).

Now we study the case m = 2n+ 1. Similarly, we have

f2 (x0, ρ0) =− 1

2π

∫ 2π

0
cos θ (αρ0 + αx0 − αρ0 cos θ − βρ0 sin θ)

2n+1 dθ

=− 1

2π

∫ 2π

0
ρ2n+1
0 cos θ

(
αρ0 + αx0

ρ0
− α cos θ − β sin θ

)2n+1

dθ

=− 1

2π

∫ 2π

0
ρ2n+1
0

2n+1∑
k=0

(−1)kCk
2n+1α

2n+1−k

×
(
ρ0 + x0
ρ0

)2n+1−k

cos θ (α cos θ + β sin θ)k dθ.

If k = 2p, then
∫ 2π
0 cos θ (cos θ + sin θ)2p dθ = 0 as before. So the function f2 (x0, ρ0) becomes

f2 (x0, ρ0) =
1

2π

∫ 2π

0
ρ2n+1
0

n∑
p=0

C2p+1
2n+1α

2n−2p

×
(
ρ0 + x0
ρ0

)2n−2p

cos θ (α cos θ + β sin θ)2p+1 dθ

=
ρ0
2π

n∑
p=0

C2p+1
2n+1α

2n−2p

×ρ2p0 (ρ0 + x0)
2n−2p

∫ 2π

0
cos θ (α cos θ + β sin θ)2p+1 dθ

= ρ0

n∑
p=0

C2p+1
2n+1ρ

2p
0 α

2n−2p (ρ0 + x0)
2n−2p

(
α
(2p+ 1)!!

(2p+ 2)!!

(
α2 + β2

)p)
.

Therefore, when ρ0 > 0, for α ̸= 0 the function f2 (x0, ρ0) ̸= 0 and the first order averaged
function f (x0, ρ0) do not accept real zeros.

We conclude that if m = 2n+1 the first order averaging theory does not detect any periodic
solution of the differential system (1.3). This completes the proof of Theorem 1.1.

The second method. Take the change of variables

x = w + u, y = u, z = −v.
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Then the system (1.3) can be transformed into the following 3-dimensional piecewise smooth
system 

v̇ = u+ ε[−v + (αw + αv − βu)m],

u̇ = −v, v ≥ 0,

ẇ = ε[v − (αw + αv − βu)m],
v̇ = u+ ε[v + (αw + αv − βu)m],

u̇ = −v, v < 0,

ẇ = ε[−v − (αw + αv − βu)m],

(4.6)

where ε > 0 is a small parameter. For ε = 0, system (4.6) has 2 different C∞ first integrals
H1 =

1
2(v

2 + u2) and H2(w) = w. By (3.3) and (3.4), we have

G(θ, h) = (
√

2h1 sin θ,
√
2h1 cos θ, h2)

T , 0 ≤ θ ≤ 2π.

It follows from (3.7) and (3.8) that the first order Melnikov vector function M1 of system (4.6)
has an expression of the form

M1(h1, h2) = f1(h1, h2) =

f11(h1, h2)
f12(h1, h2)

 =

f+11(h1, h2) + f−11(h1, h2)

f+12(h1, h2) + f−12(h1, h2)

 , (4.7)

where f+11(h1, h2)
f+12(h1, h2)

 =

∫ π

0
DH(G)g+(G)dθ,

f−11(h1, h2)
f−12(h1, h2)

 =

∫ 2π

π
DH(G)g−(G)dθ,

with

g+(G) =


−
√
2h1 sin θ + (αh2 + α

√
2h1 sin θ − β

√
2h1 cos θ)

m

0
√
2h1 sin θ − (αh2 + α

√
2h1 sin θ − β

√
2h1 cos θ)

m

 ,

g−(G) =


√
2h1 sin θ + (αh2 + α

√
2h1 sin θ − β

√
2h1 cos θ)

m

0

−
√
2h1 sin θ − (αh2 + α

√
2h1 sin θ − β

√
2h1 cos θ)

m

 .

Then by direct computations we get

f11(h1, h2) =
√

2h1

∫ π

0

(
−
√
2h1 sin θ + (αh2 + α

√
2h1 sin θ − β

√
2h1 cos θ)

m
)
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× sin θdθ +
√
2h1

∫ 2π

π

(√
2h1 sin θ + (αh2 + α

√
2h1 sin θ

−β
√

2h1 cos θ)
m
)
sin θdθ

=
√
2h1

∫ 2π

0
(αh2 + α

√
2h1 sin θ − β

√
2h1 cos θ)

m sin θdθ

=
√
2h1

∫ 2π

0

m∑
k=0

Ck
m(αh2)

m−k(2h1)
k
2 (α sin θ − β cos θ)k sin θdθ. (4.8)

Note that
∫ 2π
0 (α sin θ − β cos θ)k sin θdθ =

[
1− (−1)k

]
k!!

(k+1)!!πα(α
2 + β2)

k−1
2 . Then we have

f11(h1, h2) = α
m∑
k=0

Ck
m(αh2)

m−k(2h1)
k+1
2

[
1− (−1)k

]
k!!

(k + 1)!!
π(α2 + β2)

k−1
2 . (4.9)

Similarly, by certain calculations, we get

f12(h1, h2) =

∫ π

0

(√
2h1 sin θ − (αh2 + α

√
2h1 sin θ − β

√
2h1 cos θ)

m
)
dθ

+

∫ 2π

π

(
−
√

2h1 sin θ − (αh2 + α
√
2h1 sin θ − β

√
2h1 cos θ)

m
)
dθ

= 4
√

2h1 −
∫ 2π

0
(αh2 + α

√
2h1 sin θ − β

√
2h1 cos θ)

mdθ

= 4
√

2h1 −
∫ 2π

0

m∑
k=0

Ck
m(αh2)

m−k(2h1)
k
2 (α sin θ − β cos θ)kdθ. (4.10)

Note that
∫ 2π
0 (α sin θ − β cos θ)kdθ =

[
1− (−1)k+1

] (k−1)!!
k!! π(α2 + β2)

k
2 . Then we obtain

f12(h1, h2) = 4
√
h1 −

m∑
k=0

Ck
m(αh2)

m−k(2h1)
k
2

[
1− (−1)k+1

] (k − 1)!!

k!!
π(α2 + β2)

k
2 .

(4.11)

From (4.9) it is not hard to see that f11(h1, h2) = 0 as α = 0. Therefore, in this case, the first
order Melnikov vector function method or the first order averaging theory cannot detect the
periodic solutions of system (4.6).

As α ̸= 0, if m is an odd number, then from (4.9) it can be seen that f11(h1, h2) and α have
the same sign. Hence, there are no h1 and h2 such that f11 is equal to 0. It means that at this
point the first order Melnikov vector function method or the first order averaging theory also
fails to detect the periodic solutions of system (4.6).

If m is an even number, then it is easy to check that f11(h1, h2) and h2 have the same sign.
Thus, f11(h1, h2) = 0 only when h2 is equal to 0. Substituting h2 = 0 into formula (4.11) yields

h1 =
1
2

(
2m!!

(m−1)!!π(α2+β2)
m
2

) 2
m−1

.

From the above discussion, it can be seen that as α ̸= 0 and m is even equations

f11(h1, h2) = f12(h1, h2) = 0
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have a unique solution

h10 =
1

2

(
2m!!

(m− 1)!!π(α2 + β2)
m
2

) 2
m−1

, h20 = 0.

Further, we calculate

det
∂(f11, f12)

∂(h1, h2)

∣∣∣∣
(h10,h20)

= det

 0
2m(m− 1)!!

m!!
πα2(α2 + β2)

m
2
−1(2h10)

m
2

2
1
2h

− 1
2

10 − m(m− 1)!!

m!!
π(α2 + β2)

m
2 2

m
2 h

m
2
−1

10 0


=

8m(2m− 1)α2

α2 + β2
̸= 0

when α ̸= 0. Thus, by Lemma 3.1, for 0 < |ε| ≪ 1 and m even, system (4.6) has a periodic orbit
if α ̸= 0.

Remark 4.1. From the above proof process, it can be seen that the proof of the second method
is simpler and requires less computation.

5. Example

In this section we provide an example as an application of our main results.

Example 5.1. Consider the following perturbed system
ẋ = y,

ẏ = z,

ż = −y + ε|z| − ε (x− ẋ)2 ,

(5.1)

where ε > 0 is a small parameter. Note that system (5.1) is obtained by taking α = β = 1 and
m = 2 in (1.3).

The first method. By applying the previous cylindrical change of coordinates, the system
(5.1) becomes 

ẋ = ρ sin θ,

ρ̇ = ε cos θ
(
|ρ cos θ| − ((x− ρ sin θ))2

)
,

θ̇ = 1 +
ε

ρ
sin θ

(
(x− ρ sin θ)2 − |ρ cos θ|

)
.

(5.2)

According to the proof process of the first method of Theorem 1.1 and by simple calculations,
we have

f1 (x0, ρ0) =
1

π

(
2 ρ0 − 3πρ0x0 − 3πρ0

2 − πx0
2
)
,

f2 (x0, ρ0) = ρ0 (ρ0 + x0) .
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Now, we solve the following nonlinear systemf1 (x0, ρ0) = 0,

f2 (x0, ρ0) = 0.

Since ρ0 > 0, it is clear that the function f2 (x0, ρ0) vanishes at x0 = −ρ0. Substituting value of
x0 in the function f1 (x0, ρ0), we get

f1 (x0, ρ0) =
ρ0
π

(2 − πρ0) .

Since ρ0 > 0, the function f1 (x0, ρ0) only vanishes when ρ0 =
2

π
. So the function f (x0, ρ0)

has unique zero (x0, ρ0) =

(
− 2

π
,
2

π

)
. By computing the Jacobian matrix and the Jacobian of

function f (x0, r0) at (x0, ρ0) =

(
− 2

π
,
2

π

)
, we find respectively

Df

(
− 2

π
,
2

π

)
=

− 2

π
− 4

π
2

π

2

π

 ,

and

det
∂ (f1, f2)

∂ (x0, ρ0)

∣∣∣∣
(x0,ρ0)=

(
−
2

π
,
2

π

) =
4

π2
̸= 0.

Then, for ε > 0 sufficiently small, the system (5.2) has the periodic solution of the form

(x(t, ε), y(t, ε), z(t, ε)) =

(
− 2

π
cos t,

2

π
sin t,

2

π
cos t

)
+O(ε).

The second method. Take the change of variables

x = w + u, y = u, z = −v

as before. Then (5.1) can be transformed into the following 3-dimensional piecewise smooth
system 

v̇ = u+ ε[−v + (αw + αv − βu)2],

u̇ = −v, v ≥ 0,

ẇ = ε[v − (αw + αv − βu)2],
v̇ = u+ ε[v + (αw + αv − βu)2],

u̇ = −v, v < 0,

ẇ = ε[−v − (αw + αv − βu)2],

(5.3)
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where ε > 0 is a small parameter. Obviously, system (5.3)|ε=0 has 2 different C∞ first integrals
H1 = 1

2(v
2 + u2) and H2(w) = w. From (4.7), (4.8) and (4.10) we obtain that the first order

Melnikov vector function M1 of system (5.3) has an expression of the form

M1(h1, h2) = f1(h1, h2) =

f11(h1, h2)
f12(h1, h2)

 ,

where

f11(h1, h2) =
√

2h1

∫ π

0

(
−
√

2h1 sin θ + (αh2 + α
√
2h1 sin θ − β

√
2h1 cos θ)

2
)
sin θdθ

+
√

2h1

∫ 2π

π

(√
2h1 sin θ + (αh2 + α

√
2h1 sin θ − β

√
2h1 cos θ)

2
)
sin θdθ

= 4πh1h2,

and

f12(h1, h2) =

∫ π

0

(√
2h1 sin θ − (αh2 + α

√
2h1 sin θ − β

√
2h1 cos θ)

2
)
dθ

+

∫ 2π

π

(
−
√
2h1 sin θ − (αh2 + α

√
2h1 sin θ − β

√
2h1 cos θ)

2
)
dθ

= 4
√
2h1 − 4πh1 − 2πh22.

Due to h1 > 0, we can solve equations f11(h1, h2) = f12(h1, h2) = 0 have a unique solution
h10 =

2
π2 , h20 = 0. By direct calculations we have

det
∂(f11, f12)

∂(h1, h2)

∣∣∣∣
(h10,h20)

= det

 0
8

π

−3π 0

 = 24.

Thus, from Lemma 3.1, for 0 < ε≪ 1 system (5.3) has a periodic solution.
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