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EXISTENCE RESULTS OF MILD SOLUTIONS FOR IMPULSIVE

FRACTIONAL MEASURE DRIVEN DIFFERENTIAL EQUATIONS

WITH INFINITE DELAY∗
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Abstract The primary focus of this study is the existence and uniqueness of mild solutions
for impulsive fractional measure driven differential equations with infinite delay in regular
function spaces. First, we rigorously justify the definition of mild solutions for impulsive
fractional measure driven differential equations. Then, under conditions of semigroup non-
compactness, by utilizing operator semigroup theory, the Kuratowski measure of noncom-
pactness, fixed point theorems, and piecewise estimation techniques, sufficient conditions
for the existence of mild solutions are derived. This work extends numerous prior research
outcomes, eschewing the need for any priori estimates or noncompactness constraints. Fi-
nally, an illustrative example is provided to demonstrate the applicability and efficacy of the
theoretical framework.
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1. Introduction

Measure driven differential equations, also called measure differential equations(MDEs), were
investigated first in [9,10,35]. These types of equations permit the presence of an infinite number
of discontinuities within finite time intervals, effectively capturing the behavior of discontinu-
ous dynamical systems, and as such, they are frequently utilized in fields including mechanics,
biomathematics, and economics [4,13,38,41]. Fractional calculus represents a crucial field in the
study and application of differentiation and integration at arbitrary orders, serving as a gener-
alization of traditional integer-order calculus. It enjoys widespread applications across various
domains, including anomalous diffusion, signal processing and control, fluid mechanics, image
processing, and the implementation of fractional order PID controllers [1–3,11,12,36,40].

In recent years, an increasing number of scholars have begun to explore the existence and
controllability of mild solutions for fractional measure differential equations, and have achieved
a wealth of theoretical results [16,18,25,26,28].
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In [18], Gu and Sun have studied the existence and controllability of mild solutions for
fractional measure evolution equations with nonlocal conditions{

CDα
0+x(t) = Ax(t)dt+ (f(t, x(t)) +Bu(t))dg(t), t ∈ (0, b],

x(0) + p(x) = x0,

by using Hausdorff noncompact measure and fixed point theorems, sufficient conditions ensuring
the existence and nonlocal controllability of mild solutions were obtained.

In [28], Liu and Liu have investigated the exact controllability for the following fractional
measure evolution systems with state-dependent delay and nonlocal conditions{

CDαx(t) = Ax(t) + [Bu(t) + f(t, xρ(t,xt))]dg(t), t ∈ [0, a],

x(t) + p(xt1 , xt2 , · · · , xtm)(t) = φ(t), t ∈ (−∞, 0],

without imposing the Lipschitz continuity on the nonlinear term, the exact controllability of
the system was achieved by utilizing fractional calculus theory, the Kuratowski measure of
noncompactness, and Mönch’s fixed point theorem.

In [16], Gou has studied the existence of S-asymptotically ω-periodic mild solutions for the
following fractional measure differential equations with nonlocal conditions in Banach spaces

CD1+β
t u(t) +

n∑
k=1

αC
k D

γk
t u(t) = Au(t) + F (t, u(t), ut)dg(t), t ≥ 0,

u(t) = Q(σ(u), u)(t) + φ(t), t ∈ [−r, 0],
u′(0) = Q0(u) + ψ,

by employing the monotone iterative method with upper and lower solutions, the existence of S-
asymptotically ω-periodic mild solutions for the equation was obtained. Furthermore, without
assuming the generalized monotonicity condition and without requiring the noncompactness
measure of the nonlinear term, the existence of upper and lower S-asymptotically ω-periodic
mild solutions was established. For more research on measure differential equations, see reference
[5–7,14,17,27,30,32,37,39].

As is well known, impulsive and time delay phenomena are ubiquitous in practical problems
across various fields. Therefore, discussing impulsive fractional measure differential equations
with infinite delay is of great significance. However, few previous research outcomes on mea-
sure differential equations have taken into account the effects of impulsive and time delay fac-
tors. To establish the existence of mild solutions for the equations, authors commonly employ
compactness conditions of operator semigroups, a priori estimates, and stringent conditions on
noncompactness measures, as seen in references [18,28]

M1c+ φ sup
t∈[0,b]

(

∫ t

0
[(t− s)α−1]qdg(s))

1
q
M1

Γ(α)
∥h∥HLSp

g
< 1,

M1γ

Γ(α)
sup

t∈[0,a]
N(t)(M̃N(a) + 1) < 1.

Inspired by the aforementioned studies, this paper investigates the existence of mild solu-
tions for impulsive fractional measure differential equations with infinite delay. Notably, the
compactness conditions of operator semigroups and the restrictive a priori estimates concerning
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the impulsive term are not relied on. Our conclusions extend and improve the results from
existing literature [5,6,30,39]. As an application, an example of a noncompact semigroup is pro-
vided. Utilizing the measure of noncompactness and Mönch’s fixed point theorem, we establish
the existence of mild solutions for the following fractional measure differential equations

CDα
t (x

′(t)− g(t, xt)) = Ax(t) + f(t, xt,Kx(t))dw(t), t ∈ J, t ̸= ti,

∆x(ti) = Ii(xti),∆x
′(ti) = Ji(xti), i = 1, 2, · · · , n,

x0 = ϕ ∈ B, x′(0) = x1 ∈ X,

(1.1)


CDα

t x(t) = Ax(t) + h(t, x(t),Kx(t))dw(t), t ∈ J, t ̸= ti,

∆x(ti) = Ii(xti), i = 1, 2, · · · , n,
x0 = z0 ∈ X,

(1.2)

where J = [0, b], b > 0, CDα
t is Caputo fractional derivative of order α ∈ (0, 1). The state

variable x(·) takes values in a complex Banach space X. A : D(A) ⊆ X → X is a sectorial
operator. The history xt : (−∞, 0] → X is defined by xt(s) = x(t + s) for t ≥ 0 belongs to the
phase space B ⊂ G((−∞, 0], X), where G((−∞, 0], X) denotes the space of regulated functions
on (−∞, 0]. Kx(t) =

∫ t
0 k(t, s)x(s)ds, k ∈ C(D,R+), D = {(t, s) : 0 ≤ s ≤ t ≤ b}. Here, the

fixed times ti satisfies 0 = t0 < t1 < · · · < ti < · · · < tn < tn+1 = b, x(t+i ) and x(t−i ) denote
the right and left limits of x(t) at time ti, and △x(ti) = x(t+i ) − x(t−i ) represents the jump in
the state x at time ti, where Ii determines the size of the jump. Accordingly, Ji and △x′(ti)
have the same meaning. w : J → R is a nondecreasing function. g, f, ϕ, Ii, Ji(i = 1, 2, · · · , n)
are appropriate functions to be specified later.

2. Preliminaries

In this section, we recall some known facts about regulated functions, explanations, and prelim-
inary results from functional analysis, resolvent operator theory, and fractional calculus, which
will be used throughout this article.

Let G(J,X) denote the Banach space consisting of all regulated functions with the norm
defined by ∥x∥∞ = supt∈J∥x(t)∥. A : D(A) ⊆ X → X is a sectorial operator. For details,
see [19]. C(J,X) is the Banach space composed of all continuous functions from J into X with
the norm ∥ · ∥C(J,X). L(X) is the Banach space composed of all bounded linear operators from
X into X with the norm ∥ · ∥L(X).

Let Gb(J,X) = {x : J → X, x(t) is a regular function at t ̸= ti, x(t
−
i ) = x(ti) and x(t+i )

exists, for all i = 1, 2, · · · , n}. Evidently, Gb(J,X) is a Banach space with norm ∥x∥Gb
=

supt∈J∥x(t)∥. For x ∈ Gb(J,X) and i = 1, 2, · · · , n, let x̃i(t) = x(t) for t ∈ (ti, ti+1] and
x̃i(t

+
i ) = x(t+i ), then x̃i ∈ G([ti, ti+1], X), and we denote the right limit at zero by x(0). For

V ∈ Gb, let V (t) = {x(t) : x ∈ V } and KV (t) = {Kx(t) : x ∈ V }. Moreover, for i = 1, · · · , n,
we use the concept Ṽi = {x̃i : x ∈ V }. From Lemma 1.1 in [22], we know that the set
V ⊆ Gb(J,X) is relatively compact if and only if each set Ṽi = {x̃i : x ∈ V } is relatively
compact in G([ti, ti+1], X)(i = 0, 1, · · · , n). Let J0 = J0 = [0, t1], J1 = [t1, t2], · · · , Jn = [tn, b].

A partition of [a, b] is a finite collection of pairs {([ti−1, ti], ei), i = 1, 2, · · · , n}, where [ti−1, ti]
are nonoverlapping subintervals of [a, b], ei ∈ [ti−1, ti], i = 1, 2, · · · , n and

⋃n
i=1[ti−1, ti] = [a, b].

A gauge δ on [a, b] is a positive function on [a, b]. For a given gauge δ we say that a partition is
δ−fine if [ti−1, ti] ⊂ (ei − δ(ei), ei + δ(ei)), i = 1, 2, · · · , n.
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Definition 2.1. [5] A function x : [a, b] → X is said to be regulated on [a, b], if the limits

lim
s→t−

x(s) = x(t−), t ∈ (a, b] and lim
s→t+

x(s) = x(t+), t ∈ [a, b),

exist and are finite. Obviously, G(J,X) is a Banach space endowed with the norm ∥x∥∞.

Definition 2.2. [5] A set V ⊂ G([a, b], X) is called equiregulated, if there is δ > 0, t0 ∈ [a, b]
and for every ε > 0, such that

(i) If x ∈ V, t ∈ [a, b], t− δ < t < t0, then ∥x(t−0 )− x(t)∥ < ε,

(ii) If x ∈ V, t ∈ [a, b], t0 < t < t+ δ, then ∥x(t)− x(t+0 )∥ < ε.

Lemma 2.1. [17, 34] Let {xn}∞n=1 be a sequence of functions from [a, b] to X, If xn converge
pointwise to x0 as n→ ∞ and the sequence {xn}∞n=1 is equiregulated, then xn converges uniformly
to x0.

Lemma 2.2. [17, 34] Let V ⊂ G([a, b], X). If V is bounded and equiregulated, then the set
co(V ) is also bounded and equiregulated. The set co(V ) is defined as the closed convex hull of V .

Next, we will review the definition of Henstock-Lebesgue-Stieljes integral.

Definition 2.3. [17, 34] A functions ψ : [a, b] → X is said to be Henstock-Lebesgue-Stieltjes
integrable w.r.t. w : [a, b] → R if there exists a function denoted by

(HLS)

∫ (·)

a
: [a, b] → X,

such that, for every ε > 0, there is a gauge δε on [a, b] with

n∑
i=1

∥ψ(ei)(w(ti)− w(ti−1))− ((HLS)

∫ ti

0
ψ(s)dw(s)− (HLS)

∫ ti−1

0
ψ(s)dw(s))∥ < ε,

for every δε-fine partition {([ti−1, ti], ei), i = 1, 2, · · · , n} of [a, b].

Denote by HLSpw([a, b],R)(p > 1) the space of all p−ordered Henstock-Lebesgue-Stieltjes
integral regulated from [a, b] to R with respect to w, with norm ∥ · ∥HLSpw defined by

∥ψ∥HLSpw = ((HLS)

∫ b

a
∥ψ(s)∥pdw(s))

1
p .

Lemma 2.3. [18] Let p, q > 1 such that 1
p + 1

q = 1, Ψ ∈ HLSpw([a, b],R+) and w : J → R be

regulated, then the function H(t) =
∫ t
0 (t− s)ϱΨ(s)dw(s) is regulated and satisfies

H(t)−H(t−) ≤ (

∫ t

t−
(t− s)qϱdw(s))

1
qΨ(t)(∆−w(t))

1
p , t ∈ (a, b],

H(t+)−H(t) ≤ (

∫ t

t+
(t+ − s)qϱdw(s))

1
qΨ(t)(∆+w(t))

1
p , t ∈ [a, b),

where ∆+w(t) = w(t+)− w(t) and ∆−w(t) = w(t)− w(t−), with w(t+) and w(t−) representing
the right and left limits of w at t, respectively.
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Definition 2.4. [33] The α order Caputo fractional derivative of the function f : [0,∞) → R
is defined as follows

Dα
t f(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1f ′(s)ds = In−αf (n)(t), n− 1 ≤ α < n, n ∈ N,

where Γ(·) is the Gamma function. Specially, when 0 < α ≤ 1, then

Dα
t f(t) =

1

Γ(1− α)

∫ t

0
(t− s)−αf ′(s)ds.

The Laplace transform of the caputo derivative is given as

L{Dα
t f(t);λ} = λαF (λ)−

n−1∑
k=0

λα−k−1fk(0), n− 1 ≤ α < n.

Definition 2.5. The definition of the n dimensional Mittag-Leffler function is as follows

E(a1,...,an),b(z1, . . . , zn) =

∞∑
k=0

∑
l1+···+ln=k

k!

l1!× · · · × ln!

∏n
i=1 z

li
i

Γ(b+
∑n

i=1 aili)
,

where b > 0, ai > 0, li ≥ 0, |zi| <∞, i = 1, 2, · · · , n.

Specifically, the two dimensional Mittag-Leffler function is defined as follows:

Eζ,ξ(z) =

∞∑
k=0

zk

Γ(kζ + ξ)
=

1

2πi

∫
C

µζ−ξeµ

µζ − z
dµ, ζ, ξ > 0, z ∈ C,

where C is a contour which starts and ends at −∞ and encircles the disc |µ| ≤ |z|
1
ζ counter

clockwise. The Laplace transform formula for the Mittag-Leffler function is defined as follows∫ ∞

0
e−λttξ−1Eζ,ξ(ϑt

ζ)dt =
λζ−ξ

λζ − ϑ
,Reλ > ϑ

1
ζ , ϑ > 0.

For more details, refer to [33].

Definition 2.6. Let A be a closed linear operator defined on the domain D(A) in the Banach
space X. ρ(A) be the resolvent set of A and γ > 0. If there exists a strongly continuous function
Sγ : R+ → L(X) and ϑ ≥ 0, such that {λγ : Reλ > ϑ} ⊂ ρ(A) and

(i) λγ−1(λγI −A)−1x =
∫∞
0 e−λtSγ(t)xdt,Reλ > ϑ, x ∈ X,

(ii) (λγI −A)−1x =
∫∞
0 e−λtTγ(t)xdt,Reλ > ϑ, x ∈ X,

where Sγ(t) is known as the solution operator generated by A, Tγ(t) is the γ−resolvent family
generated by A (For details, see [8]).

The Kuratowski measure of noncompactness of a bounded subset V of the Banach space X
is defined by

β(V ) = inf {δ > 0 : V can be expressed as the union of a finite number of sets such that the

diameter of each set does not exceed δ, i.e., V =

n⋃
i=1

Vi

with diam(Vi) ≤ δ, i = 1, 2, · · · , n.},

where diam(V ) denotes the diameter of a set V .
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Lemma 2.4. [6] Let V,W be bounded sets of X, and λ ∈ R. Then

(i) β(V ) = 0 if and only if V is relatively compact;

(ii) V ⊆W implies β(V ) ≤ β(W );

(iii) β(V ) = β(V );

(iv) β(V
⋃
W ) = max{β(V ), β(W )};

(v) β(λV ) = |λ|β(V ), where λV = {x = λz : z ∈ V };
(vi) β(V +W ) ≤ β(V ) + β(W ), where V +W = {x = y + z : y ∈ V, z ∈W};
(vii) β(coV ) = β(V );

(viii) |β(V ) − β(W )| ≤ 2dh(V,W ), where dh(V,W ) denotes the Hausdorff metric of V and
W , that is

dh(V,W ) = max{sup
x∈V

d(x,W ), sup
x∈W

d(x, V )},

and d(·, ·) is the distance from an element of X to a subset of X.

Lemma 2.5. [21] Let V ⊂ G([a, b], X). If V is bounded and equiregulated, then β(V (t)) is
regulated and satisfies β(V ) = sup{β(V (t)) : t ∈ [a, b]}, where V (t) = {x(t) : x ∈ V }.

Since the Lebesgue-Stieltjes measure is a regular Borel measure, then we refer to Theorem3.1
in [21], the following result can be derived.

Lemma 2.6. [6, 21] Let V0 ⊆ HLSpw(J,X) be a countable set. Assume that there exists a
positive function ς ∈ HLSpw(J,R+) such that for all v(t) ∈ V0, ∥v(t)∥ ≤ ς(t), w − a.e. Then we
have

β(

∫
J
V0(t)dw(t)) ≤ 2

∫
J
β(V0(t))dw(t).

Proof. Let V0(t) = {v(t) : v ∈ V0} and β(V0) = sup{V0(t) : t ∈ J}. Using the Heine-
Borel theorem and properties of the Kuratowski measure of noncompactness, consider an ar-
bitrary ϵ > 0. There exists a sequence {vi} ⊂ V0 for i = 1, 2, · · · , n and m > 0 such that
we have V0 ⊂ Un

i=1B(vi(s), ϵ + m), where B(vi(s), ϵ + m) denotes a finite number of open

balls with radius r = ϵ + m, centered at wi for i = 1, 2, · · · , n. In fact,
∫ t
0 V0(s)dw(s) can be

covered by Un
i=1B(

∫ t
0 vi(s)dw(s), ϵ + m), then we have β(

∫ t
0 V0(s)dw(s)) ≤ β(V0(s)) ≤ β(V0).

there exists a separable closed linear subspace X0 ⊂ X such that β(V0) ≤ 2χ(V0, X0) ≤
2
∫
χ(V0(s), X0)dw(s) ≤ 2

∫
β(V0(s))dw(s), where χ is defined by Hausdorff measure of non-

compactness.

Lemma 2.7. [15] Let κ : J → [0,∞) be such that m,κ :∈ HLSpw(J,R+). If m, y : J → R are
such that m, y ∈ HLSpw(J,R+) and

y(t) ≤ m(t) +

∫ t

0
κ(s)y(s)dw(s), 0 ≤ t ≤ b,

then we have

y(t) ≤ m(t) +

∫ t

0

m(s)κ(s)

1 + κ(s)∆+w(s)

exp(
∫ t
0 κ(η)dw(η))

exp(
∫ s
0 κ(η)dw(η))

dw(s), 0 ≤ s < t ≤ b.

Remark 2.1. The choice of κ(t) and y(t) as nonnegative continuous functions, and m(t) as
any continuous function on 0 ≤ t ≤ b reduces Theorem 3.2 to Corollary 1.9.1 of [24], which is a
generalized version of the well known integral inequality of Gronwall-Bellman type.
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In this work, we adopt the conventional phase space framework for retarded functional
differential equations with unbounded delay (see [20]), which will allow us to work with more
general phase spaces. Our candidate for the phase space of a measure functional differential
equation with infinite delay is a linear space B ⊂ G((−∞, 0], X) equipped with a norm denoted
by ∥ · ∥B [14]. Assume that this normed linear space satisfies B the following conditions:

(H1) B is complete;

(H2) For all t0 ∈ R, all σ > 0, and all x : (−∞, t0+σ] → Rn which are regulated on [t0, t0+σ]
and xt0 ∈ B, the following conditions hold: for every t ∈ [t0, t0 + σ],

(h1) xt ∈ B;

(h2) there exists a locally bounded function κ1 : [0,∞) → (0,∞), such that

∥x(t)∥ ≤ κ1(t− t0)∥xt∥B;

(h3) there exist locally bounded functions κ2, κ3 : [0,∞) → (0,∞), such that

∥xt∥B ≤ κ2(t− t0)∥xt0∥B + κ3(t− t0) sup
s∈[t0,t]

∥x(s)∥,

where κ1, κ2, κ3 are functions independent of x, t0 and σ;

(H3) Let C(t) : B → B for t ≥ 0 be the operator defined by

C(t)φ(θ) =


φ(t+ θ), θ < −t,
φ(0−), −t ≤ θ < 0,

φ(0), θ = 0.

Then there exists a continuous function κ4 : [0,∞) → (0,∞), such that κ4(0) = 0 and such
that ∥C(t)φ∥B ≤ (1 + κ4(t))∥φ∥B for all φ ∈ B.

Lemma 2.8. [31] Let Ω be a bounded open subset in the Banach space X and 0 ∈ Ω. Assume
that the operator F : Ω → X is continuous and satisfies the following conditions:

(1) x ̸= λFx, ∀ λ ∈ (0, 1), x ∈ ∂Ω,

(2) V is relatively compact if D ⊂ co({0} ∪ F (V )) for any countable set V ⊂ Ω, then F has
a fixed point in Ω.

3. Main results

In this chapter, we will discuss the mild solutions of impulsive fractional measure driven dif-
ferential equations (1.1) and (1.2). Initially, we will employ the Laplace transform method to
derive the mild solutions of these equations.

Theorem 3.1. Let A be a sectorial operator. If f ∈ HLS1w(J,R+) and g satisfy the uniform
Hölder condition with the exponent ξ ∈ (0, 1], then x : (−∞, b] → X is a mild solution of the
problem (1.1) provided that x0 = ϕ, x(·)|J ∈ Gb(J,X) and it satisfies the following integral
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equation

x(t) =



Sq(t)ϕ(0) +

∫ t

0
Sq(s)[x1 − g(0, ϕ)]ds+

∑
ti<t

Sq(t− ti)Ii(xti)

+
∑
ti<t

∫ t

ti

Sq(t− s)[Ji(xti)− g(ti, xti + Ii(xti)) + g(ti, xti)]ds

+

∫ t

0
Sq(t− s)g(s, xs)ds+

∫ t

0
Tq(t− s)f(s, xs,Kx(s))dw(s), t ∈ J,

(3.1)

where Sq(t), Tq(t) : R+ → L(X)(q = 1 + α) are defined as follows

Sq(t) = Eq,1(At
q) =

1

2πi

∫
Br

eλtλq−1

λq −A
dλ,

Tq(t) = tq−1Eq,q(At
q) =

1

2πi

∫
Br

eλt

λq −A
dλ,

and Br denotes the Bromwich path.

Proof. If t ∈ [0, t1], apply the Riemann-Liouville fractional integrable operator on both sides,
we have

x′(t) = x1 − g(0, ϕ(0)) + g(t, xt) +
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, xs,Kx(s))dw(s),

x(t) = ϕ(0) + [x1 − g(0, ϕ(0))]t+

∫ t

0
g(s, xs)ds

+
1

Γ(α)

∫ t

0

∫ s

0
(s− τ)α−1Ax(τ)dτds

+
1

Γ(α)

∫ t

0

∫ s

0
(s− τ)α−1f(τ, xτ ,Kx(τ))dw(τ)ds.

If t ∈ (t1, t2], then x(t
+
1 ) = x(t1) + I1(xt1), x

′(t+1 ) = x′(t−1 ) + J1(xt1), we get

x′(t) = x1 − g(0, ϕ(0)) + J1(xt1)− g(t1, xt1 + I1(xt1)

+ g(t1, xt1) + g(t, xt) +
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, xs,Kx(s))dw(s),

x(t) = ϕ(0) + I1(xt1) + [x1 − g(0, ϕ(0))]t

+ (t− t1)[J1(xt1)− g(t1, xt1 + I1(xt1)) + g(t1, xt1)]

+

∫ t

0
g(s, xs)ds+

1

Γ(α)

∫ t

0

∫ s

0
(s− τ)α−1Ax(τ)dτds

+
1

Γ(α)

∫ t

0

∫ s

0
(s− τ)α−1f(τ, xτ ,Kx(τ))dw(τ)ds.
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Similarly, if t ∈ (tk, tk+1], we get

x(t) =ϕ(0) +
n∑

i=1

Ii(xti) + [x1 − g(0, ϕ(0))]t

+
n∑

i=1

(t− ti)[Ji(xti)− g(ti, xti + Ii(xti)) + g(ti, xti)]

+

∫ t

0
g(s, xs)ds+

1

Γ(α)

∫ t

0

∫ s

0
(s− τ)α−1Ax(τ)dτds

+
1

Γ(α)

∫ t

0

∫ s

0
(s− τ)α−1f(τ, xτ ,Kx(τ))dw(τ)ds.

Let Ni(t) = 1, t > ti, Ni(t) = 0, t ≤ ti, i = 1, · · · , n. The above equation can be represented
in the following form

x(t) =ϕ(0) +
n∑

i=1

Ni(t)Ii(xti) + [x1 − g(0, ϕ(0))]t

+

n∑
i=1

Ni(t)(t− ti)[Ji(xti)− g(ti, xti + Ii(xti)) + g(ti, xti)]

+

∫ t

0
g(s, xs)ds+

1

Γ(α)

∫ t

0

∫ s

0
(s− τ)α−1Ax(τ)dτds (3.2)

+
1

Γ(α)

∫ t

0

∫ s

0
(s− τ)α−1f(τ, xτ ,Kx(τ))dw(τ)ds.

Applying the Laplace transform to Equation (3.2), we have

L{x(t)} =
λαφ(0)

λα+1 −A
+
λα−1[x1 − g(0, φ)]

λα+1 −A
+

m∑
i=1

e−λtiλα

λα+1 −A
Ii(xti)

+

m∑
i=1

e−λtiλα−1

λα+1 −A
[Ji(xti)− g(ti, xti + Ii(xti)) + g(ti, xti)]

+
λα

λα+1 −A

∫ ∞

0
e−λtg(t, xt)dt+

1

λα+1 −A

∫ ∞

0
e−λtf(t, xt,Kx(t))dw(t).

(3.3)

Apply the inverse Laplace transform to both sides of equation (3.3), we get

x(t) =Eq,1(At
q)φ(0) +

∫ t

0
Eq,1(As

q)[x1 − g(0, φ)]ds

+

m∑
i=1

Ni(t)Eq,1(A(t− ti)
q)Ii(xti)

+

m∑
i=1

Ni(t)

∫ t

ti

Eq,1(A(t− s)q)[Ji(xti)− g(ti, xti + Ii(xti)) + g(ti, xti)]ds

+

∫ t

0
Eq,1(A(t− s)q)g(s, xs)ds

+

∫ t

0
(t− s)q−1Eq,q(A(t− s)q)f(s, xs,Kx(s))dw(s),
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where q = 1 + α. Let Sq(t) = Eq,1(At
q) and Tq(t) = tq−1Eq,q(At

q) be defined as previously
expressed, we have

x(t) =Sq(t)φ(0) +

∫ t

0
Sq(s)[x1 − g(0, φ)]ds+

m∑
i=1

Ni(t)Sq(t− ti)Ii(xti)

+
m∑
i=1

Ni(t)

∫ t

ti

Sq(t− s)[Ji(xti)− g(ti, xti + Ii(xti)) + g(ti, xti)]ds

+

∫ t

0
Sq(t− s)g(s, xs)ds+

∫ t

0
Tq(t− s)f(s, xs,Kx(s))dw(s), t ∈ J.

Thus, the solution to problem (1.1) is as expressed in the equation (3.1).

Definition 3.1. A function x ∈ Gb(J,X) is called to be a solution of the equation (1.2) if
x0 = z0, x(·)|J ∈ Gb(J,X) and

x(t) = Sq(t)x0 +
∑
ti<t

Sq(t− ti)Ii(x(ti)) +

∫ t

0
Tq(t− s)h(s, x(s),Kx(s))dw(s), t ∈ J, (3.4)

where Sq(t) and Tq(t) have the same meanings as above.

Next, we will discuss the existence of mild solutions for impulsive fractional measure driven
differential equations with infinite delay. Initially, let ∥Sγ(t)∥L(X) ≤M , ∥Tγ(t)∥L(X) ≤ tγ−1MT ,
t > 0, γ ∈ (0, 2). For more details, refer to [29]. To facilitate the exposition, we will present
some of the assumptions that will be utilized in advance.

(F1) The following conditions will be satisfied by the function f : J × B ×X → X:
(i) The function f(·, x, y) is measurable for all (x, y) ∈ B ×X, f(t, ·, ·) is continuous for a.e.

t ∈ J .
(ii) There exist a function pf (t) ∈ HLSpw(J,R+), p > 1 and a positive constant d > 0, such

that
∥f(t, x, y)∥ ≤ pf (t)(∥x∥B + ∥y∥) + d, t ∈ J(x, y) ∈ B ×X.

(iii) For any bounded set V ⊂ G(J,X), there exist a function lf (t) ∈ HLSpw(J,R+), p > 1,
such that

β(f(t, Vt,KV )) ≤ lf (t)(β(Vt) + β(KV )), t ∈ J,

where Vt = {xt : x ∈ V } ⊆ B.
(F ′

1) The function f : J × B × X → X is continuous, and there exists a positive constant
Lf > 0 such that

∥f(t, ϕ1, ϕ2)− f(t, ψ1, ψ2)∥ ≤ Lf (∥ϕ1 − ψ1∥B + ∥ϕ2 − ψ2∥), t ∈ J.

(F2) The following conditions will be satisfied by the continuous function g : J × B → X:
(i) The function g(·, x) is measurable for all x ∈ B, g(t, ·) is continuous for a.e. t ∈ J .
(ii) There exists an integrable function pg(t) ∈ HLSpw(J,R+), p > 1, such that

∥g(t, x)∥ ≤ pg(t)∥x∥B, t ∈ J, x ∈ X.

(iii) For any bounded set V ⊂ G(J,X), there exists an integrable function lg(t) ∈ HLSpw(J,
R+), p > 1, such that

β(g(t, Vt)) ≤ lg(t)β(Vt), t ∈ J,
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where Vt = {xt : x ∈ V } ⊆ B.
(F ′

2) The function g : J × B → X is continuous, g(t, 0) = 0 and there exists a positive
constant Lg > 0 such that

∥g(t, x)− g(t, y)∥ ≤ Lg∥x− y∥B, t ∈ J.

(F3) The following conditions will be satisfied by the function h : J × B ×X → X:
(i) The function h(·, x, y) is measurable for all (x, y) ∈ B ×X, h(t, ·, ·) is continuous for a.e.

t ∈ J .
(ii) There exist a integrable function ph(t) ∈ HLSpw(J,R+), p > 1 and a positive constant

d > 0, such that

∥h(t, x, y)∥ ≤ ph(t)(∥x∥B + ∥y∥) + d, t ∈ J, (x, y) ∈ B ×X.

(iii) For any bounded set V ⊂ G(J,X), there exist a function lh(t) ∈ HLSpw(J,R+), p > 1,
such that

β(h(t, Vt,KV )) ≤ lh(t)(β(Vt) + β(KV )), t ∈ J,

where Vt = {xt : x ∈ V } ⊆ B.
(F ′

3) The function h : J × B × X → X is continuous, and there exists a positive constant
Lh > 0 such that

∥h(t, ϕ1, ϕ2)− h(t, ψ1, ψ2)∥ ≤ Lh(∥ϕ1 − ψ1∥B + ∥ϕ2 − ψ2∥), t ∈ J.

(F4) Ii, Ji : B → X (i = 1, 2, · · · , n) are continuous functions, there exist constants c1, c2 ≥
0, d1 > 0 and d2 > 0 such that

∥Ii(x)∥ ≤ c1∥x∥B + d1, ∥Ji(x)∥ ≤ c2∥x∥B + d2, i = 1, 2, · · · , n.

Theorem 3.2. Assuming that conditions (F1), (F2) and (F4) are satisfied, then the equation
(1.1) has at least one mild solution.

Proof. Let ϕ̂(t) : (−∞, b] → X be the function defined by

ϕ̂(t) =


ϕ(t), t ∈ (−∞, 0],

Sq(t)ϕ(0) +

∫ t

0
Sq(s)[x1 − g(0, ϕ)]ds, t ∈ J.

Clearly, supt∈J ϕ̂(t) ≤M(∥ϕ(0)∥+ b∥x1 − g(0, ϕ)∥) =Mb.
Assuming that the space S(b) = {y : (−∞, b] → X, y0 = 0, y|J ∈ Gb(J,X)} equipped with

the norm ∥y∥b = ∥y0∥B+supt∈J ∥y(t)∥ = supt∈J ∥y(t)∥. The operator F : S(b) → S(b) is defined
as follows:

Fy(t) =



∑
ti<t

Sq(t− ti)Ii(yti + ϕ̂ti) +
∑
ti<t

∫ t

ti

Sq(t− s)[Ji(yti + ϕ̂ti)

−g(ti, yti + ϕ̂ti + Ii(yti + ϕ̂ti)) + g(ti, yti + ϕ̂ti)]ds

+

∫ t

0
Sq(t− s)g(s, ys + ϕ̂s)ds

+

∫ t

0
Tq(t− s)f(s, ys + ϕ̂s,Ky(s) +Kϕ̂(s))dw(s), t ∈ J.

(3.5)
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Obviously, the definition of the operator F is meaningful in space S(b). Furthermore, by the
Lebesgue Dominated Convergence Theorem, phase space theory, and the given assumptions F1,
F2, F4, we can summarize that F is continuous [17, 30]. Let Kb = sup0≤t≤b κ3(t), L = ∥ϕ̂t∥B,
∥y∥t = sup0≤s≤t ∥y(s)∥, then ∥yt + ϕ̂t∥B ≤ ∥yt∥B + ∥ϕ̂t∥B ≤ Kb∥y∥t + L.

Step I. We begin by demonstrating that the set

Ω0 = {y ∈ S(b), y = λFy, λ ∈ (0, 1)},

is bounded. In fact, if there exists a λ ∈ (0, 1), such that y = λFy, y ∈ Ω0.
When t ∈ J0 = [0, t1], under conditions F1 and F2, we get

∥y(t)∥ ≤λ∥Fy(t)∥

≤M

∫ t

0
pg(s)∥ys + ϕ̂s∥Bds

+MT t
α
1

∫ t

0
[pf (s)(∥ys + ϕ̂s∥B + ∥Ky(s) +Kϕ̂(s)∥) + d]dw(s)

≤MT t
α
1d[w(t1)− w(0)]

+ [ML+MT t
α
1 (L+ t1k0Mb)]

∫ t1

0
[pg(s) + pf (s)]d(w(s) + s)

+ [M +MT t
α
1 (1 + κ1k0t1)]Kb

∫ t

0
[pg(s) + pf (s)]∥y∥sd(w(s) + s),

where k0 = sup(t,s)∈D k(t, s). For ∥y∥t = sup0≤s≤t ∥y(s)∥, we have

∥y∥t ≤MT t
α
1d[w(t1)− w(0)]

+ [ML+MT t
α
1 (L+ t1k0Mb)]

∫ t1

0
[pg(s) + pf (s)]d(w(s) + s) (3.6)

+ [M +MT t
α
1 (1 + κ1k0t1)]Kb

∫ t

0
[pg(s) + pf (s)]∥y∥sd(w(s) + s).

Using Lemmas 2.7 and 3.6, there exists a constant G0 > 0, independent of y and λ ∈ (0, 1),
then ∥y(t)∥ ≤ G0, t ∈ J0. From condition F4, we have

∥I1(yt1 + ϕ̂t1)∥ ≤ c1(KbG0 + L) + d1 =: φ1,

∥J1(yt1 + ϕ̂t1)∥ ≤ c2(KbG0 + L) + d2 =: ψ1.

When t ∈ J1, ỹ1 ∈ Gb(J1, X), we have

∥ỹ1(t)∥ ≤MT t
1+α
2 d+M [φ1 + b(ψ1 + 2N)]

+MTk0b
q(Mb + κ1KbG0)

∫ t2

0
[pg(s) + pf (s)]d(w(s) + s)

+ (M +MT t
α
1 )(L+KbG0)

∫ t1

0
[pg(s) + pf (s)]d(w(s) + s)

+ [M +MT t
α
2 (1 + κ1k0b)]Kb

∫ t

t1

[pg(s) + pf (s)] sup
t1≤τ≤s

∥ỹ1(τ)∥d(w(s) + s),
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where ∥g(t, xt)∥ ≤ N, (t, xt) ∈ J × Vt, and Vt ⊂ B is bounded.

sup
t1≤s≤t

∥ỹ1(s)∥ ≤MT t
1+α
2 d+M [φ1 + b(ψ1 + 2N)]

+MTk0b
q(Mb + κ1KbG0)

∫ t2

0
[pg(s) + pf (s)]d(w(s) + s)

+ (M +MT t
α
1 )(L+KbG0)

∫ t1

0
[pg(s) + pf (s)]d(w(s) + s)

+ [M +MT t
α
2 (1 + κ1k0b)]Kb

∫ t

t1

[pg(s) + pf (s)] sup
t1≤τ≤s

∥ỹ1(τ)∥d(w(s) + s).

Thus, there exists a constant G1 > 0 independent of ỹ1 and λ ∈ (0, 1), then ∥ỹ1(t)∥ ≤ G1, t ∈
J1 and ∥y(t)∥ ≤ G1, t ∈ J1.

Similarly, we can infer that there exists a constant Gi > 0, then ∥y(t)∥ ≤ Gi, t ∈ Ji, i =
1, 2, · · · , n. Let G = max{Gi : 0 ≤ i ≤ n}, we have ∥y(t)∥ ≤ G, t ∈ J and Ω0 is a bounded set.

Let R > G and ΩR = {x ∈ S(b) : ∥x∥b < R}. Therefore, 0 ∈ ΩR and ΩR is a bounded open
set, and when x ∈ ∂ΩR and λ ∈ (0, 1), we get x ̸= λFx.

Step II. F (ΩR) is equiregulated on J .

When θ0 ∈ J0 = [0, t1), we have

∥F (y)(θ)− F (y)(θ+0 )∥ ≤M

∫ θ

θ+0

pg(s)∥ys + ϕ̂s∥Bds

+MT t
α
1

∫ θ

θ+0

[pf (s)(∥ys + ϕ̂s∥B + ∥Ky(s) +Kϕ̂(s)∥) + d]dw(s)

≤MT t
α
1d[w(θ)− w(θ+0 )] +M(KbR+ L)

∫ θ

θ+0

pg(s)ds

+MT t
α
1 (R+ L)(k0t1 +Kb + 1)

∫ θ

θ+0

pf (s)dw(s).

From the given conditions, since w is a regular function, pg(s) is continuously integrable, and
pf (s) ∈ HLSpw(J,R+), we can conclude that when θ → θ+0 , we have ∥F (y)(θ)− F (y)(θ+0 )∥ → 0.
By employing the same approach, we can similarly demonstrate that ∥F (y)(θ−0 )−F (y)(θ)∥ → 0
as θ → θ−0 for every θ0 ∈ J0 = (0, t1].

When θ1 ∈ J0 = (t1, t2], we have

∥F (y)(θ)− F (y)(θ+0 )∥ ≤∥Sq(θ − t1)− Sq(θ
+
1 − t1)∥φ1

+M

∫ θ

θ+1

(ψ1 + 2N)ds+M

∫ θ

θ+0

pg(s)∥ys + ϕ̂s∥Bds

+MT t
α
2

∫ θ

θ+0

[pf (s)(∥ys + ϕ̂s∥B + ∥Ky(s) +Kϕ̂(s)∥) + d]dw(s)

≤∥Sq(θ − t1)− Sq(θ
+
1 − t1)∥φ1 +MT t

α
2d[w(θ)− w(θ+0 )]

+M

∫ θ

θ+1

(ψ1 + 2N)ds+M(KbR+ L)

∫ θ

θ+0

pg(s)ds
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+MT t
α
2 (R+ L)(k0t2 +Kb + 1)

∫ θ

θ+0

pf (s)dw(s).

Accordingly, we can deduce that when θ → θ+1 , we have ∥F (y)(θ) − F (y)(θ+1 )∥ → 0. By
employing the same approach, we can similarly demonstrate that ∥F (y)(θ−1 )− F (y)(θ)∥ → 0 as
θ → θ−1 for every θ1 ∈ J1 = (t1, t2].

Similarly, we can prove that for any θi ∈ Ji = (ti, ti+1], i = 1, 2, · · · , n, when θ → θ+i then
∥F (y)(θ)−F (y)(θ+i )∥ → 0 and ∥F (y)(θ)−F (y)(θ−i )∥ → 0 as θ → θ−0 for every θi ∈ Ji = (ti, ti+1].
So F (ΩR) is equiregulated on J .

Step III. Claim that F is continuous on ΩR.
Suppose {y(n)}∞n=1 ⊂ ΩR such that y(n) → x as n → ∞. Furthermore, from axiom H2, we

know that

∥y(n)t − yt∥B ≤ κ3(t) sup{∥y(n)(s)− y(s)∥ : 0 ≤ s ≤ t}+ κ2(t)∥y(n)0 − y0∥B
≤ Kb sup{∥y(n)(s)− y(s)∥ : 0 ≤ s ≤ t}
≤ Kb∥y(n) − y∥∞
→ 0 (n→ ∞), t ∈ [0, b].

Thus, by F1, F2 and F4, for t ∈ [0, b], we see that

g(t, y
(n)
t + ϕ̂t) → g(t, yt + ϕ̂t) as n→ ∞,

f(t, y
(n)
t + ϕ̂t,Ky

(n)
t +Kϕ̂t) → f(t, yt + ϕ̂t,Kyt +Kϕ̂t) as n→ ∞.

Moreover, for t ∈ [0, t1], we have

∥F (y)(n)(t)− F (y)(t)∥

≤M
∫ t

0
∥g(s, y(n)s + ϕ̂s)− g(s, ys + ϕ̂s)∥ds

+MT t
α
1

∫ t

0
∥f(s, y(n)s + ϕ̂s,Ky

(n)
s +Kϕ̂s)− f(s, ys + ϕ̂s,Kys +Kϕ̂s)∥dw(s).

Similarly, for t ∈ (t1, t2], we have

∥F (y)(n)(t)− F (y)(t)∥

≤KbMc1∥y(n) − y∥∞ +KbMc2

∫ t

t1

∥y(n) − y∥∞ds

+ 2KbM

∫ t

t1

(pg(s) + c1)∥y(n)t1
− yt1∥ds+M

∫ t

0
∥g(s, y(n)s + ϕ̂s)− g(s, ys + ϕ̂s)∥ds

+MT t
α
2

∫ t

0
∥f(s, y(n)s + ϕ̂s,Ky

(n)
s +Kϕ̂s)− f(s, ys + ϕ̂s,Kys +Kϕ̂s)∥dw(s).

Similarly, one can demonstrate that for any t ∈ (ti, ti+1], i = 1, 2, · · · , n, from the above in-
equalities and the dominated convergence theorem for the Henstock-Lebesgue-Stieltjes integral,
we infer that ∥F (y)(n)(t)− F (y)(t)∥ → 0 as n→ ∞.

Moreover, by Step II, it can shown that {F (y(n))}∞n=1 is equiregulated. Therefore, by Lemma
2.1, we get that {F (y(n))} converge uniformly to {F (y)}. Thus, F is a continuous operator.

Step IV. We demonstrate that all conditions of Lemma 2.8 are met.
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Let V ⊂ co({0} ∪ F (V )(t)) and the set V ⊂ ΩR be countable, we have

V (t) ⊂ co({0} ∪ F (V )(t)), t ∈ [0, b].

With conditions F1, F2, F4 satisfied, and given that operators Sq(t), Tq(t)(t ∈ J) are strongly

continuous, it is not difficult to prove that FṼ (t), t ∈ J i(i = 0, 1, 2, · · · , n) is equicontinuous. In
the following proof, we shall not differentiate between V |Ji and Ṽi (i = 1, 2, · · · , n), where V |Ji
is a subset of V on Ji(i = 0, 1, 2, · · · , n), and Ṽ is equicontinuous on J i, (i = 0, 1, 2, · · · , n).

When t ∈ J0, based on conditions F1(iii), F2(iii), Lemma 2.6, and the properties of non-
compactness measures, we get

β(V (t)) ≤ β((FV )(t))

≤ 2M

∫ t

0
lg(s)β(Vs)ds+ 2MT t

α
1

∫ t

0
lf (s)[β(Vs) + β(KV (s))]dw(s),

sup
0≤s≤t

β(V (s)) ≤ 2

∫ t

0
[Mlg(s) +MT t

α
1 (1 + κ1k0t1)lf (s)]β(Vs)d(w(s) + s)

≤ 2Kb

∫ t

0
[Mlg(s) +MT t

α
1 (1 + κ1k0t1)lf (s)] sup

0≤τ≤s
β(V (τ))d(w(s) + s).

Therefore, β(V (t)) = 0, t ∈ J0. The set V ⊂ G(J0, X) is relatively compact.
Since

β(I1(Vt1 + yt1)) = β(J1(Vt1 + yt1)) = 0,

β(g(t1, Vt1 + yt1)) = β(g(t1, Vt1 + yt1 + I1(Vt1 + yt1))) = 0.

When t ∈ J1, we get

sup
t1≤s≤t

β(V (s)) ≤ 2Kb

∫ t

t1

[Mlg(s) +MT t
α
1 (1 + κ1k0t2)lf (s)]

× sup
t1≤τ≤s

β(V (τ))d(w(s) + s).

Thus, β(V (t)) = 0, t ∈ J1. The set V ⊂ G(J1, X) is relatively compact.
Similarly, we can readily demonstrate that every set V ⊂ G(J i, X), i = 1, 2, · · · , n is relatively

compact. Therefore, the set V ⊂ S(b) is relatively compact. According to Lemma 2.8, we can
deduce that F has a fixed point y ∈ ΩR, and y + ϕ̂ is a mild solution to problem (1.1).

Theorem 3.3. Assuming that conditions (F ′
1), (F

′
2) and (F4) are satisfied, then the equation

(1.1) has a unique mild solution.

Proof. From conditions (F ′
1) and (F ′

2), we get

∥g(t, x)∥ ≤ Lg∥x∥B, β(g(t, Vt)) ≤ Lgβ(Vt), t ∈ J, x ∈ B,
∥f(t, x, y)∥ ≤ Lf (∥x∥B + ∥y∥) + sup

t∈J
∥f(t, 0, 0)∥, t ∈ J, x ∈ B, y ∈ X,

β(f(t, Vt,KV (t))) ≤ Lf [β(Vt) + β(KV (t))], V ⊂ Gb(J,X).

Hence, according to Theorem 3.2, we can deduce that equation (1.1) has at least one mild
solution.
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Assuming u ∈ ΩR and v ∈ ΩR are two fixed points of the operator F .
If t ∈ J0 = [0, t1], we get

∥u(t)− v(t)∥ = ∥Fu(t)− Fv(t)∥

≤MLg

∫ t

0
∥us − vs∥Bds

+MT t
α
1Lf

∫ t

0
(∥us − vs∥B + k0t1∥u(s)− v(s)∥)dw(s)

≤ [MLg +MT t
α
1Lf (1 + k0t1κ1)]Kb

∫ t

0
∥u− v∥sd(w(s) + s),

which can prove that u(t) = v(t), t ∈ J0, and ut1 = vt1 .
If t ∈ J1, we have

∥ũ(t)− ṽ(t)∥ = ∥Fũ(t)− F ṽ(t)∥

≤ [MLg +MT t
α
2Lf (1 + k0t2κ1)]Kb

∫ t

t1

sup
t1≤τ≤s

∥ũ(τ)− ṽ(τ)∥d(w(s) + s),

which can prove that ũ(t) = ṽ(t), t ∈ J1, u(t) = v(t), t ∈ J1, and ut2 = vt2 .
Similarly, we can readily demonstrate that u(t) = v(t), t ∈ Ji, i = 1, 2, · · · , n. Hence u(t) =

v(t), t ∈ J .

Theorem 3.4. Assuming that function h : J × B × X → X satisfies F3 and Ii : X → X(i =
1, 2, · · · , n) satisfies F4, then the problem (1.2) has at one mild solution.

Proof. The operator Φ : Gb(J,X) → Gb(J,X) is defined as follows

Φx(t) = Sq(t)x0 +
∑
ti<t

Sq(t− ti)Ii(x(ti)) +

∫ t

0
Tq(t− s)h(s, x(s),Kx(s))dw(s). (3.7)

The definition of Φ is valid and continuous. Now we prove that the set

Ω = {z ∈ S(b), z = λΦz, λ ∈ (0, 1)},

is bounded. In fact, if there exists a λ ∈ (0, 1), such that z = λΦz, z ∈ Ω. Let p∗h = sups∈J ph(s).
If t ∈ J0 = [0, t1], we get

∥z(t)∥ ≤ ∥Φz(t)∥

≤MT

∫ t

0
(t− s)α−1ph(s)(∥z(s)∥+ ∥Kz(s)∥+ d)dw(s)

≤MTα
−1bαd(w(t1)− w(0)) +MT p

∗
h

∫ t

0
[(t− s)α−1 + k0α

−1bα]∥z(s)∥dw(s).

(3.8)

Using Lemmas 2.7 and 3.8, there exists a constant G0 > 0, independent of z and λ ∈ (0, 1),
then ∥z(t)∥ ≤ G0, t ∈ J0. The proof process below is identical to that of Theorem 3.2, hence we
omit it.

Theorem 3.5. Assuming that conditions (F ′
3) and (F4) are satisfied, then the equation (1.2)

has a unique mild solution.

Proof. The proof process is similar to that of Theorem 3.3. Therefore, we have shown that
problem (1.2) has a unique mild solution.
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4. Application

Example 4.1. Consider the following impulsive fractional measure driven differential equations
with infinite delay of the form

Dα
t

[
u′t(t, x)−

∫ t

−∞

∫ π

0
b(s− t, η, x)u(s, η)dηds

]
=

∂2

∂x2
u(t, x) + (

∫ t

−∞
µ(t, s− t)u(s, x)ds+

∫ t

0
et−ru(r, x)dr)dw(t), t ∈ [0, 1] \ {ti},

u(t, 0) = u(t, π) = 0, t ∈ [0, 1],

u(θ, x) = φ(θ, x), θ ∈ (−∞, 0], x ∈ [0, π],

∂

∂t
u(0, x) = z(x), x ∈ [0, π],

∆u(ti, x) =

∫ ti

−∞
qi(s− ti)u(s, x)ds, i = 1, 2, · · · , n,

∆u′(ti, x) =

∫ ti

−∞
qi(s− ti)

u(s, x)

1 + |u(s, x)|
ds, i = 1, 2, · · · , n,

(4.1)

where J = [0, 1], Dα
t is Caputo fractional derivative of order α ∈ (0, 1), 0 < t1 < t2 < · · · < tn < 1

and z ∈ X,φ ∈ B.
Let the phase space B = PC0 × L2(ρ,X) in [23], with the norm

∥ψ∥B = |ψ(0)|+ (

∫ 0

−∞
ρ(s)|ψ(s)|2ds)

1
2 ,

where ρ is a positive Lebesgue integrable function. We take X = L2[0, π] and define the operator
A : D(A) ⊂ X → X by Ay = y′′ with domain D(A) = {y ∈ X : y′, y′′ ∈ X, y(0) = y(π) = 0}.
It is commonly recognized that A acts as the infinitesimal generator for a strongly continuous
cosine family (C(t))t∈R on X and ∥C(t)∥L(X) = 1.

Define g : J × B → X, f : J × B ×X → X and Ii, Ji : B → X, respectively, as

g(t, ϕ)(x) =

∫ 0

−∞

∫ π

0
b(θ, η, x)ϕ(θ, η)dηdθ,

f(t, ϕ,Bu(t))(x) =

∫ 0

−∞
µ(t, θ)ϕ(θ, x)dθ +Bu(t, x),

Ii(ϕ)(x) =

∫ 0

−∞
qi(θ)ϕ(θ, x)dθ, i = 1, 2, · · · , n,

Ji(ϕ)(x) =

∫ 0

−∞
qi(θ)

ϕ(θ, x)

1 + |ϕ(θ, x)|
dθ, i = 1, 2, · · · , n,

w(t) =



0, t ≤ 0,

t+
1

2
κ(t), 0 ≤ t ≤ 1− 1

2
,

· · ·

t+ (1− 1

n
)κ(t− (1− 1

n− 1
)), 1− 1

n− 1
< t ≤ 1− 1

n
, n > 2, n ∈ N,

· · ·
t+ 1, t = 1.
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Take,

κ(t) =

{
1, t > 0,

0, t ≤ 0.

Obviously, w is a nondecreasing and left continuous function, ϕ(θ, x) = ϕ(θ)(x), (θ, x) ∈
(−∞, 0] × [0, π], u(t, x) = u(t)(x) and Bu(t, x) =

∫ t
0 e

t−su(s, x)ds, k(t, s) = et−s. Thus, the
system (4.1) can be modeled as the abstract form given by (1.1). Assuming the system (4.1)
satisfies the following conditions:

(i) b(s, η, x), ∂b(s,η,x)∂x are measurable, b(s, η, 0) = b(s, η, π) = 0 and

Lg := max{[
∫ π

0

∫ 0

−∞

∫ π

0

1

ρ(s)
(
∂kb(s, η, x)

∂xk
)2dηdsdx]

1
2 : k = 0, 1} <∞.

(ii) µ ∈ C(R2,R) and d(t) = (
∫ 0
−∞ µ2(t, θ)ρ−1(θ)dθ)

1
2 ∈ C(J,R+).

(iii) qi ∈ C(R,R+) and ci = (
∫ 0
−∞ q2i (θ)ρ

−1(θ)dθ)
1
2 <∞, i = 1, 2, · · · , n.

(iv) qi ∈ C(R,R+) and di = (
∫ 0
−∞ q2i (θ)ρ

−1(θ)dθ)
1
2 <∞, i = 1, 2, · · · , n.

Moreover, g, I are bounded linear operators and ∥Ji(ϕ)∥ ≤ di∥ϕ∥B, i = 1, 2, · · · , n for
(t, ϕ,Bu(t)), (t, ψ,Bv(t) ∈ J × B ×X → X, we have

∥f(t, ϕ,Bu(t))− f(t, ψ,Bv(t))∥

≤ (

∫ π

0
(

∫ 0

−∞
µ(t, θ)[ϕ(θ, x)− ψ(θ, x)]dθ)2dx)

1
2

+ (

∫ π

0
(Bu(t, x)−Bv(t, x))2dx)

1
2

≤ (

∫ 0

−∞

µ2(t, θ)

ρ(θ)
dθ

∫ 0

−∞
ρ(θ)|ϕ(θ, ·)− ψ(θ, ·)|2L2dθ)

1
2 + |Bu(t)−Bv(t)|L

≤ d(t)∥ϕ− ψ∥B + ∥Bu−Bv∥
≤ Lf (∥ϕ− ψ∥B + ∥Bu−Bv∥),

where Lf = max{sup0≤t≤1 d(t), 1}. All conditions of Theorem 3.3 being satisfied, we can con-
clude that system (4.1) possesses at least one mild solution. We can take H = 1, M(t) =

γ
1
2 (−t) and K(t) = 1 + (

∫ 0
−t ρ(θ)dθ)

1
2 , t ≥ 0. When we set ρ(s) = e−s, q1(s) = s, we get

c1 = (
∫ 0
−∞ s2esds)

1
2 =

√
2. However,

[1 + (

∫ 0

−1
ρ(t)dt)

1
2 ][Lg +max{(

∫ 0

−∞
µ2(s)ρ−1(s)ds)

1
2 , 1}+

n∑
i=1

(ci + di)] > 1,

with the condition of being less than 1 no longer met, our findings diverge from the previously
known results.

Example 4.2. Consider the following impulsive fractional measure driven differential equations

D
1
2
t u(t, x) =

∂

∂x
u(t, x) + h(t, u(t, x), Bu(t, x))dw(t), t ∈ [0, 1] \ {t1},

u(t, 0) = u(t, π) = 0, t ∈ [0, 1],

∆u(t1, x) =
u(t1, x)

1 + |u(t1, x)|
, t1 =

1

2
, x ∈ [0, π],

u(0, x) = z0(x), x ∈ [0, π],

(4.2)



206 W. Liu & S. Xie

where D
1
2
t is the Caputo fractional derivative operator. Define

h(t, u(t), Bu(t))(x) =

√
2

π

e−t

et + e−t

[
u(t, x) +

∫ t

0
et−su(s, x)ds

]
, t ∈ [0, 1] \ {t1},

I1(u(t1))(x) =
u(t1, x)

1 + |u(t1, x)|
, t1 =

1

2
, x ∈ [0, π], u ∈ X.

Thus, the system (4.2) can be modeled as the abstract form given by (1.2) and we have

|h(t, u,Bu)− h(t, v, Bv)|L2 ≤
√

2

π
(|u− v|L2 + |Bu−Bv|L2),

t ∈ [0, 1], u, v ∈ X, |I1(u(t1))|L2 ≤ |u(t1)|L2 .

(4.3)

All conditions of Theorem 3.4 being satisfied, we can conclude that system (4.2) possesses
at least one mild solution. But

MTα
−1bαLh(1 + k0b)]b =

M

Γ(32)

√
π = 2 > 1,

with the condition of being less than 1 no longer met and I1(·) does not satisfy the Lipschitz
condition.

Remark 4.1. The results of this study demonstrate that for the infinite delay impulsive neutral
type second-order measure differential equation, the existence of mild solutions can be ascer-
tained without relying on the compactness conditions of the impulsive term, restrictive a priori
estimates, or noncompactness measure estimates.
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