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A NOVEL RIEMANNIAN CONJUGATE GRADIENT METHOD WITH

ITERATION COMPLEXITY GUARANTEES∗
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Abstract Conjugate gradient methods are important first-order optimization algorithms
both in Euclidean spaces and on Riemannian manifolds. However, while various types of
Riemannian conjugate gradient methods have been studied, the iteration complexity analy-
sis remains unknown. This paper proposes a novel Riemannian conjugate gradient method
for nonconvex problems with an iteration complexity guarantee. In particular, we introduce
a novel restart condition, leading to a function decrease at each iteration. Our method con-
verges to an ϵ-stationary point with an iteration complexity of O(ϵ−2). To the best of our
knowledge, this is the first Riemannian conjugate gradient method with iteration complexity
guarantees. Numerical experiments on Rayleigh-quotient and Brockett-cost-function min-
imization problems demonstrate the efficiency and practical applicability of the proposed
method.

Keywords Iteration complexity, restart condition, Riemannian conjugate gradient meth-
ods, Riemannian optimization.

MSC(2010) 65K05, 58C05, 90C30.

1. Introduction

This paper focuses on the following manifold optimization problem

min
x∈M

f(x), (1.1)

where M is a Riemannian manifold, f : M → R is a continuously differentiable and nonconvex
function. Given a tolerance ϵ ∈ (0, 1), our goal is to compute an ϵ-approximate stationary point,
that is, a vector x ∈ M satisfies

∥gradf(x)∥x ≤ ϵ, (1.2)

where gradf is the Riemannian gradient of f that will be defined in the next section, ∥·∥x denotes
the Riemannian norm. Manifold optimization has recently drawn a lot of attention because of its
success in a variety of important applications, including low-rank tensor completion [38], inverse
eigenvalue problems [43], distributed learning [10, 11, 22], etc. A framework of Riemannian
optimization has two stages in each iteration: (i) Find a tangent vector as the search direction
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or the trial step; (ii) Invoke a retraction that maps a tangent vector to a point on the manifold.
Many classical optimization methods for smooth optimization problems in Euclidean space have
been successfully generalized to the problems on Riemannian manifolds [3,5,12,20]. The reader
is referred to [4, 19,33] for a comprehensive review.

For conjugate gradient (CG) methods on Riemannian manifolds to solve problem (1.1), we
call them Riemannian conjugate gradient (RCG) methods. Compared to gradient-type meth-
ods, RCG methods demonstrate a faster convergence rate for nonconvex smooth problems.
Furthermore, they are more suitable for efficiently addressing large-scale problems compared to
second-order methods like the Newton method and the quasi-Newton method. Several types of
RCG methods have been proposed recently [32,35,40,44,45], validating the numerical efficiency
of RCG methods across diverse applications. It should be noted that current RCG methods
only have asymptotic convergence analysis, such as global convergence [34, 36] and superlinear
convergence rate [37]. They fail to obtain non-asymptotic convergence results, i.e., the iteration
complexity analysis remains unknown, despite their numerical superiority over gradient-type
methods [46].

In Euclidean space, the restart condition is widely employed in CG methods to enhance
computational efficiency. When the CG direction satisfies the restart condition (indicating
that it is not a descent direction), it is substituted with the gradient direction. Recent research
[8,21,25] demonstrates that CGmethods with a well-defined restart condition can derive iteration
complexity results. These restart conditions typically encompass a descent condition and a
bounded angle condition. Despite the extensive study of restart conditions in Euclidean space,
RCG methods with restart conditions in Riemannian manifolds remain relatively unexplored.
Inspired by the iterative complexity analysis process of the CG method in Euclidean space, this
paper conducts a complexity analysis of the algorithm based on a novel restart condition of the
RCG.

1.1. Contributions

This paper aims to design a restart condition and integrate it into an RCG method to establish
the iteration complexity results. The main contributions are outlined as follows:

• We propose an RCG method with a novel restart condition. This condition allows us to
establish the iteration complexity result. Moreover, to enhance the performance in prac-
tical implementations, we utilize the Riemannian Barzilai-Borwein (BB) step-size along
with a non-monotone line-search strategy.

• To obtain the iteration complexity of our method, we first provide a crucial descent lemma,
which ensures a decrease in function value at every iteration. Consequently, we show that
the proposed algorithm finds an ϵ-stationary point of (1.1) with the iteration complexity
result of O(ϵ−2).

• Furthermore, the empirical validation of the proposed RCG methods through numerical
experiments involving the Rayleigh-quotient minimization problem and the Brockett-cost-
function minimization problem underscores their efficiency and practical applicability.

1.2. Related works

The RCG method analyzes iteration complexity by constructing restart conditions, which is gen-
eralized from the CG method in Euclidean space. In [37], Smith proposed using the exponential
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map and parallel transport to generalize the optimization methods from Euclidean space to a
Riemannian manifold. Absil et al. [1] proposed the utilization of retraction to approximate the
exponential retraction and vector transport to approximate parallel transport. Although the
theoretical foundation of RCG methods has been established, further development is ongoing.
Recent research on the RCG method has employed the inverse retraction [44]. RCG methods
have been applied to the unit sphere with respect to p-norms, where p > 1 [35], the symplectic
Stiefel manifold [40], and the Grassmann manifolds [45]. These studies investigate the geometry
of various manifolds and employ several geometric tools for Riemannian optimization. Fur-
thermore, a novel general framework that unifies existing RCG methods has been proposed by
Sato [32, 34]. Extensive analysis is conducted on the global convergence properties of several
specific types of algorithms.

To ensure the global convergence of RCG methods, both a line-search strategy and a descent
direction are necessary. Similar to the line-search method in Euclidean space, the step-size can
be obtained through a curvilinear search on the manifold, such as the Armijo non-monotone
search proposed by Sachs and Sachs [30]. Moreover, the search direction needs to satisfy the
descent condition under certain line-search rules. In particular, each iteration needs to satisfy
the sufficient descent condition [31]. However, in CG methods, the search direction is not nec-
essarily a descent direction in every iteration. Instead, a proper restart strategy [29](restarting
means discarding the previous search direction and choosing a new one) is critical in the CG
approach. For example, Chan-Renous-Legoubin and Royer [21] proposed a CG method based on
a simple line-search paradigm and a modified restart condition. These two ingredients allow for
monitoring the descent properties of the search direction and obtaining the iterative complexity
results of the proposed method.

In addition to global convergence, iteration complexity (i.e., the number of iterations, and
evaluations of f and its Riemannian gradient when the algorithm reaches an approximate criti-
cality satisfying (1.2)) is related to the actual efficiency of the algorithm and is also a significant
area of research focus [23, 24]. Such iteration complexity bounds are standard in Euclidean
optimization. Around the same time, they have been generalized to Riemannian optimization
algorithms. In particular, Zhang and Sra [42] give the iteration complexity of deterministic and
stochastic (sub)gradient methods for optimizing smooth and nonsmooth g-convex functions.
Bento et al. [2] analyze the iteration-complexity of gradient, subgradient and proximal point
methods in the Riemannian setting. Boumal et al. [6] consider the nonconvex problem on the
Riemannian manifold, and give the iteration complexity of Riemannian gradient descent and
Riemannian trust-region methods. Therefore, currently, only the iterative complexity of the
gradient descent method on manifolds has obtained theoretical results. Providing a complexity
analysis of Riemannian gradient-type methods remains a challenging endeavor. To our knowl-
edge, no results have been published for the RCG method. In this paper, we concentrate on the
iteration complexity analysis for the RCG method.

1.3. Organization

The paper is organized as follows. Preliminaries on RCG methods are given in Section 2. In
Section 3, we describe our framework based on a modified restart condition. Complexity results
for this framework are obtained and discussed in Section 4. In Section 5, we then conduct
a numerical study of our proposed method involving two Riemannian optimization problems.
Conclusions are made in the last Section 6.
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2. Preliminaries

2.1. Riemannian optimization

An n-dimensional smooth manifold M is defined as an n-dimensional topological manifold
equipped with a smooth structure, ensuring that every point has a neighborhood that can
be diffeomorphic to an n-dimensional Euclidean space. Intuitively, the tangent space TxM at
a point x on the manifold M represents the collection of tangent vectors associated with all
curves passing through x. Mathematically,

Definition 2.1 (Tangent vector [1]). A tangent vector ξx to a manifold M at a point x is a
mapping from ℘xM to R such that there exists a curve γ on M with γ(0) = x, satisfying

ξxu := γ̇(0)u =
d(u(γ(t)))

dt

∣∣∣∣
t=0

,∀u ∈ ℘xM,

where ℘xM denotes the set of smooth real-valued functions f defined in a neighborhood of x in
M.

The Riemannian manifold M is endowed with a smoothly varying inner product ⟨·, ·⟩x :
TxM × TxM → R on the tangent space TxM at each x ∈ M. Additionally, the norm of
ξx ∈ TxM is defined as ∥ξx∥x :=

√
⟨ξx, ξx⟩x. The Riemannian gradient gradf(x) ∈ TxM of a

function f at point x is the unique tangent vector satisfying

⟨gradf(x), ξ⟩x = Df(x)[ξ], ∀ξ ∈ TxM,

where Df(x)[ξ] represents the derivative of f(γ(t)) at t = 0, and γ(t) denotes any curve on the
manifold satisfying γ(0) = x and γ̇(0) = ξ. If M is a compact Riemannian manifold embedded
in Euclidean space, it follows that gradf(x) = PTxM(∇f(x)), where ∇f(x) is the Euclidean
gradient, PTxM is the projection operator onto the tangent space TxM.

Definition 2.2 (Retraction [1]). A smooth mapping R : TM → M is called a retraction on a
manifold M if its restriction at x, denoted as Rx : TxM → M, satisfies

• Rx(0x) = x, where 0x denotes the zero element of TxM.

• With the canonical identification T0xTxM ≃ TxM, Rx satisfies

DRx(0x) = idTxM,

where idTxM denotes the identity mapping on TxM.

The retraction operator R plays a crucial role in manifold optimization by efficiently pulling
points x ∈ M back from the tangent space TxM onto the manifold M [19]. In addition, another
important concept in Riemannian manifolds is the vector transport operator T .

Definition 2.3 (Vector transport [1]). A smooth mapping

TM⊕ TM → TM : (η, ξ) 7→ Tη(ξ)

is called a vector transport on a manifold M, where ⊕ denotes the Whitney sum

TM⊕ TM = {(ξx, ηx) : ξx, ηx ∈ TxM, x ∈ M}.

if it satisfies
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• There exists a retraction R, known as the retraction associated with T , such that Tη(ξ) ∈
TRx(η)M for all x ∈ M, and for all η, ξ ∈ TxM.

• T0xξ = ξ for all ξ ∈ TxM.

• Tη(aξ + bζ) = aTη(ξ) + bTη(ζ) for all a, b ∈ R, and for all η, ξ, ζ ∈ TxM.

2.2. Riemannian conjugate gradient method

In this subsection, we provide a review of the RCG method for problem (1.1). The RCG
techniques are iterative optimization schemes formulated as follows

xk+1 = Rxk
(αkηk), (2.1)

where R is the retraction operator on manifold M, the search direction ηk ∈ TxM is considered
a descent direction if ⟨gradf(xk), ηk⟩xk

< 0 holds, and αk > 0 denotes a step-size typically
determined via a line-search. Many studies concentrate on analyzing monotone line-search
strategies [26], ensuring no increase in the values of the objective function in successive iterations.

In this paper, we consider non-monotone step-size rules [15]. One of the most widely used
rules for selecting αk is the non-monotone line-search condition proposed by Zhang and Hager
[41], which aims to find the smallest non-negative integer jk such that

f(Rxk
(αkηk)) ≤ Ck + ρτkθ

jk ⟨gk, ηk⟩xk
, (2.2)

for all k ≥ 0, ρ, θ ∈ (0, 1), where Ck is the convex combination between Ck−1 and f(xk), defined
as Ck = φkCk−1+(1−φk)f(xk), with φk ∈ [0, 1] for all k ensuring convergence. Another widely
used non-monotone condition in the literature is Grippo’s non-monotonic strategy [16], which
ensures that

f(Rxk
(αkηk)) ≤ max

0≤i≤m(k)
[f (xk−i)] + ρτkθ

jk ⟨gk, ηk⟩xk
, (2.3)

holds for all k ≥ 0, where m(0) = 0 and 0 ≤ m(k) ≤ min{m(k − 1) + 1, N} for N ∈ N fixed.
The RCG direction involves combining local information (i.e. the negative gradient at the

current point) with the previous direction, which can be defined as follows{
η0 = −gradf(x0),

ηk+1 = −gradf(xk+1) + βk+1Tαkηk(ηk),
(2.4)

where βk+1 is often called the conjugate parameter, T is the vector transport defined in Definition
2.3. A commonly used vector transport is the differentiated retraction with R

T R
η (ξ) = DRx(η)[ξ] =

d

dt
Rx(η + tξ)

∣∣∣∣
t=0

,

and consequently, we have

T R
αkηk

(ηk) = DRxk
(αkηk)[ηk] =

d

dt
Rxk

(tkηk)

∣∣∣∣
t=αk

. (2.5)

In (2.4), βk+1 is given by generalizations of the formulas in Euclidean space, including the
Fletcher–Reeves (FR) [14], Dai–Yuan (DY) [9], Polak–Ribière–Polyak (PRP) [27,28], Hestenes–
Stiefel (HS) [18], and Hager–Zhang (HZ) [17] formulas

βFR
k+1 =

∥gk+1∥2xk+1

∥gk∥2xk

, βDY
k+1 =

∥gk+1∥2xk+1〈
gk+1, T R

αkηk
(ηk)

〉
xk+1

− ⟨gk, ηk⟩xk

,
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βPRP
k+1 =

⟨gk+1, yk+1⟩xk+1

∥gk∥2xk

, βHS
k+1 =

⟨gk+1, yk+1⟩xk+1〈
gk+1, T R

αkηk
(ηk)

〉
xk+1

− ⟨gk, ηk⟩xk

,

βHZ
k+1 = βHS

k+1 − µ
∥yk+1∥2xk+1

〈
gk+1, T R

αkηk
(ηk)

〉
xk+1

(
〈
gk+1, T R

αkηk
(ηk)

〉
xk+1

− ⟨gk, ηk⟩xk
)2
, (2.6)

where yk+1 := gk+1 − T R
αkηk

(gk). The choice of the formula for the parameter βk+1 gives rise to
various RCG methods.

It is important to note that regardless of the chosen variant, an RCG method may produce
iterates where ⟨gradf (xk+1) , ηk+1⟩xk+1 ≥ 0, indicating no guarantee for a decrease in the
direction ηk+1. A common approach to address this issue is to redefine the search direction
as ηk+1 = −gradf (xk+1), a process known as restarting. Nevertheless, to the best of our
knowledge, there is no literature discussing the iterative complexity of the RCG approach. In
the next section, we propose an alternative to this restart condition that provides complexity
results for the RCG method.

3. Riemannian conjugate gradient method with modified restart
condition

In this section, we describe an RCG method with a modified restart condition. In our framework,
we build on the restarting idea by monitoring the value of ⟨gradf (xk) , ηk⟩xk

and that of ∥ηk∥xk
.

The detailed algorithm is described in Algorithm 1.
At every iteration, we perform an Armijo non-monotone line-search (3.1) to compute a step-

size that yields a suitable decrease in the objective function, where the initial step is set to be
the BB step-size given as follows

τ̄k :=
⟨sk−1, sk−1⟩xk

| ⟨sk−1, yk−1⟩xk
|
, (3.5)

where sk−1 = αk−1 · Tαk−1ηk−1
(ηk−1) , yk−1 = grad f (xk) + α−1

k−1 · sk−1 and Tαk−1ηk−1
:

Txk−1
M 7→ Txk

M. In addition, vk is the term that controls the degree of non-monotonicity
of the proposed Algorithm 1. One of the core ideas of non-monotone rules is to allow the it-
erates to escape from local minima and increase the probability of finding a global minimum.
This term depends on k, which means that we can adjust it at each iteration. Notice that by
selecting vk = Ck − f(xk) in Algorithm 1, we recover the Zhang and Hager’s non-monotone rule
(2.2). Similarly, choosing vk = max

0≤i≤m(k)
[f (xk−i)]−f(xk), we obtain the Grippo’s non-monotone

condition (2.3). The same argument applies to the rest of the non-monotone strategies.
Once the new point has been computed, we evaluate the gradient at the next iterate, as

well as the parameter βk+1, which is typically chosen from one of the formulas (2.6). Both the
gradient and the parameter are then used to define the new search direction ηk+1, and we know
that it is crucial for the RCG direction ηk+1 to satisfy the restart conditions for complexity
analysis. Therefore, the key ingredient to Algorithm 1 is the modified restart condition (3.4),
which determines whether the RCG direction is kept for the next iteration. If iteration k does
not end with a restart for any k ≥ 0, we have

⟨gk+1, ηk+1⟩xk+1
≤ −σ ∥gk+1∥1+p

xk+1
and ∥ηk+1∥xk+1

≤ κ ∥gk+1∥qxk+1
. (3.6)
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Algorithm 1 RCG with modified restart condition.

Require: x0 ∈ M, ρ ∈ (0, 1), σ ∈ (0, 1], κ ≥ 1, p, q ≥ 0.
1: Set η0 = −g0 := −gradf(x0).
2: for k = 0, 1, 2, · · · do
3: Compute the initial step-size τk = max{τmin,min{τmax, τ̄k}}, where τ̄k is defined by (3.5)

and τmin < τmax.
4: Choose the non-monotone term vk ≥ 0.
5: Find the smallest non-negative integer jk such that

f(Rxk
(τkθ

jkηk)) < [f(xk) + vk] + ρτkθ
jk ⟨gk, ηk⟩xk

. (3.1)

6: Set αk = τkθ
jk and compute the next point

xk+1 = Rxk
(αkηk). (3.2)

7: Set gk+1 = gradf(xk+1) and choose a parameter βk+1 from (2.6).
8: Compute the conjugate direction ηk+1 as follows

ηk+1 = −gk+1 + βk+1Tαkηk(ηk). (3.3)

9: If the restart condition

⟨gk+1, ηk+1⟩xk+1
≥ −σ∥gk+1∥1+p

xk+1
or ∥ηk+1∥xk+1

≥ κ∥gk+1∥qxk+1
(3.4)

holds, restart the algorithm by setting ηk+1 = −gk+1.
10: end for

This means that the RCG direction satisfies both a descent condition and a bounded angle
condition. Note that (3.6) can be viewed as a generalization of the following condition (obtained
for p = q = 1 ):

⟨gk+1, ηk+1⟩ ≤ −σ ∥gk+1∥2 and ∥ηk+1∥ ≤ κ ∥gk+1∥ .

This condition is typical of gradient-related directions and has been instrumental in obtaining
complexity guarantees for gradient-type methods [7]. Our algorithm has been endowed with
additional parameters p and q, which enhance its flexibility and adaptability to the specified
problem.

4. Complexity analysis

In this section, we derive a complexity result for our restarted variant of the RCG method.
Section 4.1 provides the necessary assumptions as well as intermediate results, while Section
4.2 establishes and discusses complexity bounds on the number of iterations necessary for our
Algorithm 1.

4.1. Decrease lemma

We make the following assumptions regarding the objective function of problem (1.1).
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Assumption 4.1. The objective function f : M → R is continuously differentiable and its
gradient gradf is L-Lipschitz continuous for L > 0.

Assumption 4.2. There exists flow : M → R such that f(x) ≥ flow for every x ∈ M.

Denote

N =
{
k ∈ N | ⟨gk, ηk⟩xk

≤ −σ ∥gk∥1+p
xk

and ∥ηk∥xk
≤ κ ∥gk∥qxk

}
,

R = N \ N .
(4.1)

For k ≥ 1, our algorithm explicitly checks whether k ∈ N . If k ∈ R, the restarting process is
triggered, and the search direction becomes the negative gradient. Hence, we classify k ∈ R as
the index of a restarted iteration, while k ∈ N represents a non-restarted iteration. Depending
on the nature of each iteration, we can establish an upper bound on the number of backtracking
steps required to compute a suitable step-size. Let us first focus on the non-restarted iterations,
as their proof encompasses that of the restarted iterations.

Lemma 4.1. Let Assumption 4.1 hold, and let k ∈ N such that ∥gk∥xk
> 0. Then, the line-

search process (3.1) terminates after at most ⌊j̄N ,k + 1⌋ iterations, where

j̄N ,k :=

[
logθ

(
2(1− ρ)σ

κ2Lτmax

)
∥gk∥1+p−2q

xk

]
+

. (4.2)

Moreover, the resulting decrease at the k-th iteration satisfies

f (xk)− f(Rxk
(αkηk)) > cN min

{
∥gk∥1+p

xk
, ∥gk∥2(1+p−q)

xk

}
− vk, (4.3)

where

cN := ρσmin

{
τmin,

2(1− ρ)τminσθ

κ2Lτmax

}
. (4.4)

Proof. Since R is a retraction, we have

D(f ◦Rxk
)(0xk

)[ηk] =
d

dt
f(Rxk

(tηk))

∣∣∣∣
t=0

=Df(xk)[DRxk
(0xk

)[ηk]]

=Df(xk)[ηk]

= ⟨gk, ηk⟩xk
.

It follows from Taylor’s theorem of f at xk that there exists a constant L such that

f(Rxk
(αkηk))− f(xk) ≤ f(Rxk

(αkηk))− f(Rxk
(0xk

))

= αk ⟨gk, ηk⟩xk
+

∫ αk

0
(D(f ◦Rxk

)(tηk)[ηk]−D(f ◦Rxk
)(0xk

)[ηk])dt

≤ αk ⟨gk, ηk⟩xk
+

∫ αk

0
|D(f ◦Rxk

)(tηk)[ηk]−D(f ◦Rxk
)(0xk

)[ηk]|dt

≤ αk ⟨gk, ηk⟩xk
+

1

2
Lα2

k ∥ηk∥
2
xk

. (4.5)
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If the decrease condition (3.1) holds for αk = τk, then the bound (4.2) holds. Moreover,
combining (3.1) with the definition of N in (4.1) gives

vk + f (xk)− f(Rxk
(αkηk)) > −ρτk ⟨gk, ηk⟩xk

≥ ρστmin ∥gk∥1+p
xk

,

hence (4.3) also holds. Now suppose that the line-search condition (3.1) fails for some αk = τkθ
jk

with j ∈ N. It follows from (4.5) that

vk + ραk ⟨gk, ηk⟩xk
≤f(Rxk

(αkηk))− f(xk)

≤αk ⟨gk, ηk⟩xk
+

1

2
Lα2

k ∥ηk∥
2
xk

≤αk ⟨gk, ηk⟩xk
+

κ2L

2
α2
k ∥gk∥

2q
xk

,

where the last inequality comes from (4.1). Then we have that

κ2L

2
α2
k∥gk∥2qxk

≥ vk − (1− ρ)αk ⟨gk, ηk⟩xk
≥ vk + (1− ρ)αkσ∥gk∥1+p

xk
, (4.6)

where the second inequality is due to that k ∈ N . This implies that

αk ≥ 2vk
κ2Lαk

∥gk∥−2q
xk

+
2(1− ρ)σ

κ2L
∥gk∥1+p−2q

xk
≥ 2(1− ρ)σ

κ2L
∥gk∥1+p−2q

xk
.

Since αk = τkθ
jk ≤ τmaxθ

jk , it follows from (4.6) that jk ≤ j̄N ,k. As a result, the line-search
process must terminate after jk ≤ ⌊j̄N ,k + 1⌋ iterations, where j̄N is defined in (4.2). Moreover,
since the line-search does not terminate after jk − 1 iterations, we have

θjk−1 ≥ 2(1− ρ)σ

κ2Lτmax
∥gk∥1+p−2q

xk
,

which is equivalent to

αk = τkθ
jk ≥ 2(1− ρ)τminθσ

κ2Lτmax
∥gk∥1+p−2q

xk
.

Consequently, the function decreases at iteration k satisfies

vk + f (xk)− f(Rxk
(αkηk)) >− ραk ⟨gk, ηk⟩xk

≥2ρ(1− ρ)τminθσ
2

κ2Lτmax
∥gk∥2(1+p−q)

xk

≥cN ∥gk∥2(1+p−q)
xk

.

Hence (4.3) also holds in this case, where cN is defined as (4.4).
We now consider the restarted iterations. In that case, the search direction satisfies a prop-

erty analogous to that defining non-restarted iterations in (4.1) with σ = κ = 1 and p = q = 1.
A reasoning identical to that used in the proof of Lemma 4.1 leads to the following result.

Lemma 4.2. Let Assumption 4.1 hold, and let k ∈ R such that ∥gk∥xk
> 0. Then, the line-

search process terminates after at most j̄R + 1 iterations, where

j̄R =

[
logθ

(
2(1− ρ)

Lτmax

)]
+

. (4.7)
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Moreover, the resulting decrease at the k-th iteration satisfies

f (xk)− f(Rxk
(αkηk)) > cR ∥gk∥2xk

− vk, (4.8)

where

cR = ρmin

{
τmin,

2(1− ρ)τminθ

Lτmax

}
. (4.9)

Proof. Since k ∈ R, the search direction is given by ηk = −gk, which satisfies

⟨gk, ηk⟩xk
= −∥gk∥2xk

, ∥ηk∥xk
= ∥gk∥xk

. (4.10)

If the decrease condition (3.1) holds for αk = τk, then the bound (4.7) holds. Moreover, com-
bining (3.1) with (4.10) gives

vk + f(xk)− f(Rxk
(αkηk)) > −ρτk ⟨gk, ηk⟩xk

≥ ρτmin ∥gk∥2xk
,

hence (4.8) also holds. Now suppose that the line-search condition (3.1) fails at some step.
Then, from the Taylor expansion inequality (4.5) and (4.10) yields

vk − ραk∥gk∥2xk
≤ f(Rxk

(αkηk))− f(xk) ≤ −αk∥gk∥2xk
+

L

2
α2
k∥gk∥2xk

. (4.11)

Then we have that
L

2
α2
k∥gk∥2xk

≥ (1− ρ)αk∥gk∥2xk
.

This implies that αk ≥ 2(1−ρ)
L . Since αk = τkθ

jk ≤ τmaxθ
jk , it follows from (4.11) that jk ≤ j̄R,k.

Therefore, the line-search process terminates in at most jk ≤ ⌊j̄R,k + 1⌋ steps, where j̄R is
defined in (4.7). Moreover, since the line-search does not terminate after jk − 1 iterations, we
have

θjk−1 ≥ 2(1− ρ)

Lτmax
,

which is equivalent to

αk = τkθ
jk ≥ 2(1− ρ)τminθ

Lτmax
.

Consequently, the function decreases at iteration k satisfies

vk + f(xk)− f(Rxk
(αkηk)) ≥ ραk∥gk∥2xk

≥ 2ρ(1− ρ)τminθ

Lτmax
∥gk∥2xk

≥ cR∥gk∥2xk
.

Hence, the decrease condition (4.8) follows, where cR is defined as (4.9).

The results of Lemmas 4.1 and 4.2 are instrumental to bound the number of iterations
necessary to reach an approximate stationary point.

4.2. Main results

With respect to {vk}+∞
k=0 that controls the amount of the non-monotonicity, we shall consider

the following assumption.

Assumption 4.3.
∑+∞

k=0 vk < +∞.
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Our main result is a bound on the number of iterations performed by the algorithm prior to
reaching an ϵ-stationary point. This bound also applies to the number of gradient evaluations.

Theorem 4.1. Let Assumptions 4.1, 4.2, 4.3 hold, and 1 + p − q ≥ 0. Then, the number of
iterations (and objective gradient evaluations) required by Algorithm 1 to reach a point satisfying
(1.2) is at most

Kϵ :=

⌊
f (x0)− flow +M

cRϵ2
+

f (x0)− flow +M

cN ϵmax{1+p,2(1+p−q)}

⌋
. (4.12)

Proof. Let K ∈ N be such that ∥gradf (xk)∥ > ϵ for any k = 0, . . . ,K − 1. Following our
partitioning (4.1), we define the index sets

NK := N ∩ {0, . . . ,K − 1}, RK := R∩ {0, . . . ,K − 1}.

For any k ∈ NK , the result of Lemma 4.1 applies, and we have

f (xk) + vk − f(Rxk
(αkηk)) ≥cN min

{
∥gk∥1+p

xk
, ∥gk∥2(1+p−q)

xk

}
≥cN ϵmax{1+p,2(1+p−q)}.

On the other hand, if k ∈ RK , applying Lemma 4.2 gives

f (xk) + vk − f(Rxk
(αkηk)) ≥ cR ∥gk∥2xk

≥ cRϵ
2.

We now consider the sum of function changes over all k ∈ {0, . . . ,K − 1}. By Assumption
4.2, we obtain∑

k∈NK

cN ϵmax{1+p,2(1+p−q)} +
∑

k∈RK

cRϵ
2

≤
∑

k∈NK

[f (xk) + vk − f(Rxk
(αkηk))] +

∑
k∈RK

[f (xk) + vk − f(Rxk
(αkηk))]

≤
K−1∑
k=0

[f (xk)− f(Rxk
(αkηk))] +

K−1∑
k=0

vk

≤f (x0)− f (xK) +
K−1∑
k=0

vk

≤f (x0)− flow +
K−1∑
k=0

vk.

According to Assumption 4.3, there exists M > 0 such that
∑K−1

k=0 vk ≤ M < +∞, then∑
k∈NK

cN ϵmax{1+p,2(1+p−q)} +
∑

k∈RK

cRϵ
2 ≤ f (x0)− flow +M.

Since the left-hand side consists of two sums of positive terms, the above inequality implies that

f (x0)− flow +M >
∑

k∈NK

cN ϵmax{1+p,2(1+p−q)},
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which is equivalent to

|NK | < f(x0)− flow +M

cN ϵmax{1+p,2(1+p−q)} ,

and
f (x0)− flow +M >

∑
k∈RK

cRϵ
2,

which is equivalent to

|RK | < f (x0)− flow +M

cRϵ2
.

Using |NK |+ |RK | = K finally yields

K <
f (x0)− flow +M

cR
ϵ−2 +

f (x0)− flow +M

cN
ϵ−max{1+p,2(1+p−q)}.

Hence K ≤ Kϵ.
Note that the complexity bound of Theorem 4.1 also guarantees global convergence of the

algorithmic framework, since it holds for ϵ arbitrarily close to 0. More precisely, it is possible to
show that

lim inf
k→∞

∥gradf (xk)∥xk
= 0,

which is a typical convergence result for RCG using line-search.
By combining the result of Theorem 4.1 with that of Lemmas 4.1 and 4.2, we can also provide

an evaluation complexity bound of Algorithm 1.

Corollary 4.1. Under the assumptions of Theorem 4.1, suppose further that 1 + p − 2q = 0.
Then, the number of function evaluations required by Algorithm 1 to reach a point satisfying
(1.2) is at most ⌊[

logθ

(
2(1− ρ)σ

κ2Lτmax

)]
+

+ 1

⌋
Kϵ,

where Kϵ is defined in (4.12).

Proof. Since 1 + p− 2q = 0, we have

∀k ∈ N , j̄N ,k =

[
logθ

(
2(1− ρ)σ

κ2Lτmax

)]
+

,

hence this quantity is independent of the iteration index k. Moreover,

max

{[
logθ

(
2(1− ρ)σ

κ2Lτmax

)]
+

, j̄R

}
=

[
logθ

(
2(1− ρ)σ

κ2Lτmax

)]
+

.

Since κ ≥ 1 and σ ≤ 1. As a result, any iteration requires at most⌊[
logθ

(
2(1− ρ)σ

κ2Lτmax

)]
+

+ 1

⌋
.

function evaluations. Combining this number with the result of Theorem 4.1 completes the
proof.

Figure 1 displays the choices of p and q satisfying the condition 1 + p ≤ 2, as these choices
lead to a more favorable complexity bound for non-restarted iterations. Opting for p values
between 0 and 1 implies that the bound ranges between ϵ−2 and ϵ−1, suggesting that the overall
number of iterations could potentially outperform that of gradient descent. In the worst case,
this approach attains a prescribed tolerance ϵ > 0 with complexity of O(ϵ−2).
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Figure 1. Possible complexity values for different values of p and q satisfying 1 + p− 2q = 0 and 1 + p− q ≥ 0.

5. Numerical experiments

This section compares the performances of the existing RCG methods with those of the proposed
methods. We solve two types of Riemann optimization problems (Problems 5.1 and 5.2) on
several manifolds and objective functions. All experiments use a Huawei Matebook 14 (2021)
with a 2.42 GHz Intel Core i5, 16 GB. The algorithms were written in Python 3.7.6 with the
NumPy 1.19.0 package, the Matplotlib 3.2.2 package and Pymanopt 0.2.6rc1 package [39].

Problem 5.1 is the Rayleigh-quotient minimization problem on the unit sphere [31]. In the
experiments, we set n = 10 and generate a matrix A ∈ Sn

++ with randomly chosen by randn(n).

Problem 5.1. For A ∈ Sn
++,

min f(x) = x⊤Ax,

s.t. x ∈ Sn−1 := {x ∈ Rn : ∥x∥ = 1},

where Sn
++ denotes the set of all symmetric positive-defnite matrices.

Problem 5.2 is the Brockett-cost-function minimization problem on a Stiefel manifold [31].
In the experiments, we set (n, p) = (20, 5) and N := diag(1, 2, · · · , p). The matrix A = M⊤M
and M is generated randomly by randn(n).

Problem 5.2. For A ∈ Sn
++, and N = diag(µ0, · · · , µp)(0 ≤ µ0 ≤ · · · ≤ µp),

min f(X) = tr(X⊤AXN),

s.t. X ∈ St(p, n) := {X ∈ Rn×p : X⊤X = Ip},

where Sn
++ denotes the set of all symmetric positive-defnite matrices.

We solved the above two problems 100 times with each algorithm, that is, 200 times in total.
If the stopping condition

∥gradf(Xk)∥Xk
< 10−6
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was satisfied, we determined that a sequence had converged to an optimal solution. For numerical
comparison, we calculate a performance profile [13] for each algorithm to show the advantages
of our algorithms.

The performance profile Ps : R → [0, 1] is defined as follows: Let P and S be the set of
problems and solvers, respectively. For each p ∈ P and s ∈ S, we denote

tp,s := (iterations or time required to solve problem p by solver s).

Furthermore, we define the performance ratio rp,s as

rp,s :=
tp,s

mins′∈S tp,s′

and define the performance profile, for all τ ∈ R, as

Ps(τ) :=
#{p ∈ P : rp,s ≤ τ}

#P
,

where #P denotes the number of elements of a set P.
To compare the numerical performance of the Restart RCG (p = 1) by Algorithm 1, Armijo

RCG [31], and Strong Wolfe RCG [31] in practice, we proceed as follows. First, set the Restart
RCG with p = 1, and compare the performance profiles of the FR, DY, PRP, and HZ formulas
given in (2.6) using Figure 2. Second, report the numerical results of the above three algorithms
in Figure 3. Finally, compare the results for Problem 5.1 with n = 10, 20, 50, 100, 1000, and
Problem 5.2 with (n, p) = (10, 5), (20, 5), (50, 10), (100, 10), (1000, 50) and N := diag(1, 2, · · · , p),
which are summarized in Tables 1, 2, 3, and 4 to enhance the persuasiveness of the results.
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τ(iteration)
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(a) iteration
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(b) elapsed time

Figure 2. Performance profiles of each algorithm versus the number of iterations (a) and the elapsed time (b)
by Algorithm 1 using the FR, DY, PRP, and HZ methods from (2.6).

Figure 2 (a) and (b) display the performance profiles of each algorithm in terms of the
number of iterations and the elapsed time, respectively, obtained using Algorithm 1 with the
FR, DY, PRP, and HZ methods. The results indicate that the FR method solved the most
problems, comparable to the number solved by the PRP method. It is clear that the DY and
HZ methods are not compatible with Algorithm 1. Overall, the Restart RCG (p = 1) with the
FR method exhibits superior performance.
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(a) iteration (b) elapsed time

Figure 3. Performance profiles of FR methods versus the number of iterations (a) and elapsed time (b) by
Algorithm 1 using the modified restart condition, the Amrijo RCG and the Strong Wolfe RCG.

Figure 3 (a) and (b) illustrate the performance profiles of the FR methods in terms of
the number of iterations and the elapsed time, respectively, obtained using Algorithm 1 with
modified restart condition, the Amrijo RCG and the Strong Wolfe RCG. We can observe that
the Restart RCG (p = 1) solves more problems than the other two algorithms in fewer iterations
and less time. Therefore, our proposed Restart RCG (p = 1) has good numerical performance.

Table 1. Numerical results of our algorithm using the FR, DY, PRP, and HZ methods from (2.6) on Problem
5.1 with different n.

n
FR DY PRP HZ

iter time iter time iter time iter time

10 106 0.099 1244 1.166 110 0.101 139 0.134

20 155 0.145 641 0.621 182 0.173 305 0.299

50 562 0.543 2780 2.747 722 0.715 1717 1.681

100 681 1.063 5583 8.850 750 1.188 5069 8.705

1000 4639 28.044 10000 52.056 4902 26.365 10000 52.843

Table 2. Numerical results of our algorithm using the FR, DY, PRP, and HZ methods from (2.6) on Problem
5.2 with different n and p.

(n, p)
FR DY PRP HZ

iter time iter time iter time iter time

(10, 5) 568 0.656 1150 1.344 844 0.983 1951 2.426

(20, 5) 670 0.782 2424 2.952 1076 1.188 2204 2.516

(50, 10) 8462 9.092 10959 11.897 11279 12.357 59785 67.687

(100, 10) 20705 26.496 30077 40.906 21472 27.338 94539 126.551

(1000, 50) 19449 1000.027 18049 1000.015 18590 1000.042 17595 1000.023

Tables 1 and 2 show the experimental results of our algorithm using the FR, DY, PRP, and
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HZ methods on Problems 5.1 and 5.2 with different n and p. We can observe that Restart RCG
(p = 1) with FR method performs best in most cases, while on larger problems, the performance
of several different β is comparable.

Table 3. Numerical results of our algorithm compared with other algorithms on Problem 5.1 with different n.

n
Restart RCG (p = 1) Armijo RCG Strong Wolfe RCG

iter/restart time iter time iter time

10 103/64 0.0979 439 0.4557 308 0.4557

20 213/131 0.2009 495 0.4870 1508 2.3085

50 415/249 0.3987 900 0.9155 1549 2.3761

100 610/345 1.0157 2610 5.2304 2136 6.0333

1000 6949/3688 28.3746 5528 36.6770 3641 29.1726

Table 4. Numerical results of our algorithm compared with other algorithms on Problem 5.2 with different n
and p.

(n, p)
Restart RCG (p = 1) Armijo RCG Strong Wolfe RCG

iter/restart time iter time iter time

(10, 5) 580/369 0.569 1161 1.529 1108 1.857

(20, 5) 1164/730 1.428 2157 3.730 3631 8.733

(50, 10) 7819/4941 9.532 10151 20.521 15633 40.121

(100, 10) 42107/26866 52.693 49471 105.715 62339 163.262

(1000, 50) 17926/10463 1000.030 5488 1000.083 7312 1000.086

Table 5. Numerical efficiency on large-scale Problems 5.1 and 5.2. AST: Average Step Time (seconds), LST%:
Line-Search Time Percentage.

Restart RCG (p = 1) Armijo RCG Strong Wolfe RCG

AST LST% AST LST% AST LST%

Problem 5.1

n = 1000
0.0039 68.7% 0.0065 78.9% 0.0074 81.8%

Problem 5.2

(n, p) = (1000, 50)
0.0557 83.9% 0.1822 96.3% 0.1367 94.9%

Tables 2 and 3 present the numerical results of our algorithm compared with other algorithms
on Problems 5.1 and 5.2 with different n and p. It is observed that the average percentage of
restarted iterations for the two problems are 58.79% and 63.31% respectively. That is, half of the
RCG directions are not of descent type, for which we employed a restart procedure to improve
the computational efficiency. Thereby, the Restart RCG (p = 1) outperforms the Armijo RCG
and the Strong Wolfe RCG.

Remark 5.1. In large-scale problems, although the Restart RCG method requires slightly
more iterations, its concise iterative structure avoids frequent function and gradient evaluations
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associated with complex line search procedures. As shown in Table 5, it achieves a lower line-
search time percentage compared to the Armijo and Strong Wolfe variants, thereby maintaining
competitive total runtime. This demonstrates its practical effectiveness and efficiency in large-
scale optimization scenarios.

All in all, the results obtained in the figures and tables are consistent, indicating that the
proposed method the Restart RCG (p = 1) by Algorithm 1 enhances the efficiency and practical
applicability of solving Rayleigh-quotient and Brockett-cost-function minimization problems.

6. Conclusion

In this paper, we presented a novel RCG method with a modified restart condition, enhanc-
ing its performance by utilizing the Riemannian BB step-size along with a non-monotone
line-search strategy. Theoretically, we proved that the algorithms take at most O(ϵ−2) +
O(ϵ−max{1+p,2(1+p−q)}) iterations to find an ϵ-critical point, where p, q > 0. In particular, when
p = q = 1, the complexity reduces to O(ϵ−2), matching the iteration complexity result of the
Riemannian gradient method. To our knowledge, this is the first RCG method with iteration
complexity guarantees. Our experiments on the Rayleigh quotient minimization problem and
the Brockett cost function minimization problem show that the proposed RCG method is em-
pirically verified and improves the efficiency and practical applicability of solving the problem.

As a topic for future research, it would be interesting to investigate iteration complexity
estimates even when {vk} is not convergence. Additionally, the modified restart condition in
the algorithm can also be extended to the strong Wolfe line-search.
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