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PERIODIC FLOWS IN SWITCHING DYNAMICAL SYSTEMS

THROUGH DISCRETE IMPLICIT MAPPINGS∗

Han Xu1,2 and Xilin Fu1,†

Abstract In this paper, we investigate the periodic flow in a switching dynamical sys-
tem through an implicit mapping method. By the given accuracy and the transport law,
discrete implicit mappings at switching points are obtained and the corresponding interpo-
lation points are achieved. Discrete implicit mappings at non-switching points are obtained
by the discretization of differential equations of the switching system and the corresponding
interpolation points are also determined. Then the periodic flow expressed by interpolation
points in one period is determined. A two-order impulsive system with a pulse at a fixed
time is presented as an example. The implicit mapping method may provide a plan for the
periodic flows in discontinuous dynamical systems.
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1. Introduction

Switching systems are a class of dynamical systems composed of multiple continuous or discrete
subsystems and switch between different subsystems by switching rules or conditions. Many
models such as chemical process control models [11], electrical control models [3], network control
models [26], traffic control models [28], robot control models [39], biological population models
[29] and autonomous driving models [22] can be depicted by switching systems. In the past
decades, great attention has been payed to periodic motions in switching systems. Periodic
motions in switching systems widely exist in operating modes of switching power converters
in electrical engineering [25], intermittent therapy in medicine [27], grazing management in
ecology [21], anti-lock braking systems in the automotive industry [8] and have quickly attracted
the attention of scholars because of the great significance in economics and science.

Many scholars were interested in the periodic motions of switching systems. Loparo and Asla-
nis [13, 14] determined the existence of closed trajectories in a class of linear switching systems
composed of two subsystems on the phase plane. State-space decomposition theorem and attain-
ability properties of the switching systems were presented. Peleties and Decarlo [23] generalized
above results to the switching dynamical systems composed of mth subsystems. Branicky [2,3]
developed the Bendixson Theorem and applied it to judge the existence of closed orbits in a
class of two-dimensional continuous switching systems. Savkin and Matveev [24] proved that a
class of switching server systems with one server and an arbitrary number of buffers had a set
of periodic trajectories that attracted all other trajectories of the systems. Yang and Chen [35]
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determined the existence of closed orbits of a switching system composed of a subsystem with
a saddle and a subsystem with a center (focus). Zhang etc. [37] constructed a dynamical circuit
model with periodic switching and determined the existence of a periodic flow of the switching
system with period-doubling bifurcation and saddle-node bifurcation. Zheng and Fu [38] inves-
tigated the dynamics of the periodic motion for switched van der Pol equation with impulsive
effect by the theory of mapping dynamics in switching systems. Switching sets and discrete
mappings were briefly reviewed. Periodicity of the flow of the switching system was analyzed
from the perspective of mapping structures. Llibre, Oliveira and Rodrigues [12] developed an
average theory and studied the existence and stability of periodic solutions in the Michelson
continuous and discontinuous piecewise linear differential equations by the average theory. Li
and Luo [10] obtained the analytical conditions for the existence of periodic solutions of a class
of second-order time-delayed discontinuous dynamical systems, and analytically predicted the
constraints of two kinds of periodic orbits of the systems. Makarenkov [20] determined the ex-
istence of stable limit cycles in a class of planar switching systems composed of two subsystems
and deduced the period estimation of the limit cycles. Zhang [36] established a typical switched
model alternating between a Duffing oscillator and van der Pol oscillator. The limit cycle of the
switched model was located by shooting methods. Wang and Guo [30] gave an algorithm for
computing the Lyapunov constants of a class of quadratic switching Liénard systems with three
switching lines and obtained a center condition of three limit cycles bifurcating from the focus.
Baymout and Benterki [1] determined an exact upper bound for the number of limit cycles of a
class of discontinuous piecewise differential systems in Double-struck capital R-3.

Luo [16] developed an implicit mapping method for periodic motions of a class of conti-
nous dynamical systems. By the implicit mapping method, mapping structures based on the
implicit mappings obtained by the discretization of differential equations of nonlinear dynami-
cal systems were employed to predict analytically the periodic flows of the dynamical systems.
Corresponding stability and bifurcations of the periodic motions were determined by eigenvalue
analysis. Guo and Luo [6] studied symmetric and asymmetric period-1 motions in a periodically
forced, time-delayed and hardening Duffing oscillator by the implicit mappings. Corresponding
stability and bifurcation of the period-1 motions of the time-delayed Duffing oscillator were de-
termined by eigenvalue analysis. Luo and Xing [17] investigated bifurcation trees of period-3
motions to chaos in a periodically forced, time-delayed hardening Duffing oscillator by the im-
plicit mapping method. Luo and Xing [18] determined the bifurcation trees for the stable and
unstable solutions of period-3 motions to chaos in a class of time-delayed, Duffing oscillators.
Xu and Luo [33] investigated amplitude-frequency characteristics of periodic motions in a class
of periodically forced van der Pol oscillators using the implicit mapping method. Stability and
bifurcation analysis of the periodic motions were completed through the eigenvalue analysis.
Nonlinear frequency-amplitude characteristics of the periodic motions were analyzed from the
finite Fourier series analysis. Xu, Chen and Luo [32] presented bifurcation trees of period-1 to
period-2 motion in a kind of nonlinear rotor systems by the implicit mapping method and the
amplitude - frequency characteristics of the periodic motions were determined. Xu and Luo [34]
studied bifurcation trees of period-1 motion to chaos in a flexible nonlinear rotor system through
the implicit mapping method. Corresponding stability and bifurcation of the periodic motions
were discussed by eigenvalue analysis. Stable and unstable periodic motions on the bifurca-
tion tree in the flexible rotor system were achieved. Guo and Luo [4] determined symmetric
and asymmetric periodic motions of a nonlinear oscillator with electromagnetic resonant shunt
tuned mass damper inerter through the implicit mapping method. Guo and Luo [7] confirmed
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analytical bifurcation trees of period-3 motions to chaos in a periodically forced nonlinear-spring
pendulum through the implicit mapping method. Xing and Luo [31] presented the period-1 mo-
tions to twin spiral homoclinic orbits in the Rossler system and predicted the period-1 motions
varying with a system parameter semi-analytically through the implicit mapping method. Guo
and Luo [5] studied the periodic motions in a 5D Lorenz system by the discrete mappings. A
bifurcation tree was given to demonstrate the stable orbits and unstable motions.

So far, the implicit mapping method was mostly used to study the periodic motions of con-
tinuous dynamical systems. As far as we know, the periodic motions of discontinuous dynamical
systems were rarely investigated by the implicit mapping method except that Luo and Zhu [19]
investigated periodic motions in a periodically forced Duffing oscillator through the implicit
mapping method.

Hence in this paper, the periodic flow in a switching dynamical system is determined by the
implicit mapping method. The remaining contents of this paper consist of three parts. In Section
2, general concepts of switching systems are given and the periodic flow in a switching dynamical
system is determined by the implicit mapping method. Through the transport mappings and
the given accuracy, discrete implicit mappings are constructed at the switching points and the
corresponding interpolation points are achieved. Discrete implicit mappings at the non-switching
points are obtained by the discretization of differential equations of the switching system and
the corresponding interpolation points are also determined. Then the periodic flow expressed
by interpolation points in one period is determined. In Section 3, a two-order impulsive system
with a pulse at a fixed time is presented as an example. In Section 4, our main result and further
work are presented in conclusion.

2. Preliminary knowledge and the periodic flow of a switching dynamical sys-
tem

2.1. Preliminary knowledge

In this paper, we need the following definitions [15].

Definition 2.1. A dynamical system composed of many subsystems and corresponding
switching rules is called a switching system. In mathematics, it is generally expressed as a
Cri−continuous system on the open domain Ωi ⊂ Rn

Ẋ(i) = F (i)(X(i), t, p(i)), X(i) = (x
(i)
1 , x

(i)
2 , · · · , x(i)n )T ∈ Ωi, t ∈ [tk−1, tk], (2.1.1)

and

Ẋ(i)(tk−1) = X
(i)
k−1. (2.1.2)

The time is t and X(i) =
dX(i)

dt
. p(i) = (p

(i)
1 , p

(i)
2 , · · · , p(i)m )T ∈ Rm is a parameter vector. k ∈ N∗,

whereN∗ is the set of all natural numbers. The dynamical system in Eq. (2.1.1) has a continuous
flow as

x(i)(t) = Φ(i)(X
(i)
k−1, t, p

(i)),

where X
(i)
k−1 = Φ(i)(X

(i)
k−1, tk−1, p

(i)) for i = 1, 2, · · · ,m. We give the following hypotheses of the
ith subsystem to study the properties of the switching system with multiple subsystems.

(H1) There are F (i)(X(i), t, p(i)) ∈ Cri and Φ(i)(X
(i)
k , t, p(i)) ∈ Cri + 1 on Ωi for t ∈ [tk−1, tk];
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(H2) There are ∥F (i)∥ ≤ k
(i)
1 and ∥Φ(i)∥ ≤ k

(i)
2 on Ωi for t ∈ [tk−1, tk], where k

(i)
1 and k

(i)
2 are

known constants;

(H3) There is X(i) = Φ(i)(t) /∈ ∂Ωi for t ∈ [tk−1, tk];

(H4) The switching of two subsystems has time continuity.

To investigate the switching system, a set of dynamical systems in finite time intervals will be
introduced first. From such a set of dynamical systems, the dynamical subsystems in a resultant
switching system can be selected.

Definition 2.2. From dynamical systems in Eq. (2.1.1), a set of dynamical systems on the
open domain Ωi in the time interval tk ∈ [tk−1, tk] for i = 1, 2, · · ·m is defined as

G ≡ {Si|i = 1, 2, · · · ,m}, (2.1.3)

where

Si =

Ẋ(i) = F (i)(X(i), t, p(i)) ∈ Rn

∣∣∣∣∣∣∣∣∣
X(i) ∈ Ωi ⊂ Rn, p(i) ⊂ Rm,

X(i)(tk−1) = X
(i)
k−1, t ∈ [tk−1, tk],

k ∈ N∗

 .

From Assumptions (H1)-(H4), the subsystem possesses a finite solution in the finite time
interval and such a solution will not reach the corresponding domain boundary. From the set of
subsystems, the corresponding set of solutions for such subsystems can be defined as follows.

Definition 2.3. For the ith dynamical subsystems in Eq. (2.1.1) with an initial condition

(2.1.2), there is a unique solution X(i)(t) = Φ(i)(X
(i)
k−1, t, p

(i)), where t ∈ [tk−1, tk], k ∈ N∗,
i = 1, 2, · · · , m. a set of solutions for the ith subsystem in Eq. (2.1) with an initial condition
(2.1.2) on the open domain Ωi is defined as

S = {θ(i)| i = 1, 2, · · · ,m},

where
θ(i) = {X(i)(t)| X(i)(t) = Φ(i)(X

(i)
k−1, t, p

(i)), t ∈ [tk−1, tk], k ∈ N∗}.

Nextly we will investigate the periodic flow of a switching dynamical system of two subsys-
tems by the implicit mapping method.

2.2. The periodic flow of a switching dynamical system

Theorem 2.1. Consider a switching systemẊ = F (X, t, p), X ∈ Ω ⊂ Rn, p ∈ Rm, t ̸= σ, t ∈ [t0, t0 + T ],

g(X(t), X(t+), p) = 0, t = σ.
(2.2.1)

The vector function F (X, t, p) is continuous and ∥F (X, t, p)∥ ≤ L on the open domain Ω for
Ω ⊂ Rn, where L is a positive constant. p = (p1, p2, · · · , pm)T ∈ Rm is a parameter vector. The
system in Eq. (2.2.1) has a periodic flow X(t) with finite norm ∥X∥ and a period T . t = σ is
the only switching time. The periodic flow X(t) is continuous on the left and discontinuous on
the right at the point of t = σ on the interval [t0, t0 + T ]. g(X(t), X(t+), p) is the transport law
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at the switching time t = σ. Then there is a set of discrete time tk(k = 0, 1, · · · , N) with N → ∞
during one period T, and the corresponding solution X(tk) and vector field F (X(tk), tk, p) are
exact. Assuming that a discrete node Xk is on the approximate solution of the periodic flow
satisfying ∥X(tk) − Xk∥ ≤ εk and ∥F (X(tk), tk, p) − F (Xk, tk, p)∥ ≤ δk for given accuracy
εk > 0 and δk > 0. If the switching time is not on the interval [tk−1, tk], there is a mapping
Pk : Xk−1 → Xk (k = 1, 2, · · · , N), namely

Xk = PkXk−1, with gk(Xk−1, Xk, p) = 0, k = 1, 2, · · · , N, (2.2.2)

where gk(Xk−1, Xk, p) is an implicit vector function.
For any small εm > 0 and δm > 0, there are ∥X(σ+) − Xm∥ ≤ εm and ∥F (X(σ+), σ, p) −

F (Xm, σ, p)∥ ≤ δm. If the switching time is at the point of tm, namely tm = σ, where m ̸= k and
m < N, there is an implicit mapping Pm : Xm−1 → Xm, i.e.,

Xm = PmXm−1, gm(Xm−1, Xm, p) = 0, (2.2.3)

where gm(Xm−1, Xm, p) is an implicit vector function, Xm−1 and Xm are the approximation of
X(tm−1) and X(σ) respectively.

Consider a mapping structure as

P = PN ◦ PN−1 ◦ · · · ◦ Pm+1 ◦ Pm ◦ Pm−1 ◦ · · · ◦ P2 ◦ P1 : X0 → XN .

For XN = PX0, if there is a set of points X∗
k computed by

gk(X
∗
k−1, X

∗
k , p) = 0, k = 1, 2, · · · ,m− 1,m+ 1, · · · , N,

gm(X∗
m−1, X

∗
m, p) = 0,

X∗
0 = X∗

N ,

then X∗
m is the approximation of the point X(σ+), and the points X∗

k (k = 0, 1, 2, · · · , m−1,m+
1, · · · , N) are approximations of points X(tk) in the periodic solution.

Proof. Because the system in Eq. (2.2.1) has a periodic flow X(t) with finite norm ∥X∥ and
a period T , there is a set of discrete time tk(k = 0, 1, · · · , N) with (N → ∞) on the interval
[t0, t0 + T ], where t0 = 0, tN = T and tk = tk−1 + hk.

(1) If the switching time t = σ is not on the interval [tk−1, tk], Eq. (2.2.1) is equivalent to the
following equation

X(t) = X(tk−1) +

∫ t

tk−1

F (X, t, p)dt, (2.2.4)

where t ∈ [tk−1, tk]. For the given accuracy δk > 0, there is an approximate function Rk(t, p) =

F (
1

2
[X(tk−1)+X(tk)], tk−1+

h

2
, p) on the interval [tk−1, tk] satisfying the inequality ∥Rk(t, p)−

F (X, t, p)∥ ≤ δk. For t ∈ [tk−1, tk], Eq. (2.2.4) is approximately expressed as

X(t) = X(tk−1) +

∫ t

tk−1

[Rk(t, p) + o(δk)]dt,

X̄(t) = X̄(tk−1) +

∫ t

tk−1

Rk(t, p)dt
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and

X̄(tk) = X̄(tk−1) +

∫ tk

tk−1

Rk(t, p)dt. (2.2.5)

Let X̄(tk−1) = Xk−1 and X̄(tk) = Xk. For the given accuracy εk−1 > 0 and εk > 0 under
∥X(tk−1)−Xk−1∥ ≤ εk−1 and ∥X(tk)−Xk∥ ≤ εk, Eq. (2.2.5) gives

Xk = Xk−1 + ḡk(Xk−1, Xk, p), ḡk(Xk−1, Xk, p) =

∫ tk

tk−1

Rk(t, p)dt. (2.2.6)

Thus, a discrete mapping
Pk : Xk−1 → Xk, Xk = PkXk−1 (2.2.7)

is obtained by the implicit vector function

gk(Xk−1, Xk, p) = Xk −Xk−1 −
∫ tk

tk−1

Rk(t, p)dt = 0.

From the discrete mapping, two points X(tk−1) and X(tk) for the time interval [tk−1, tk] can be
approximated by Xk−1 and Xk respectively. Hence ∥F∥ ≤ L on the open domain Ω, where L is
a positive constant, we have

∥F (X(tk−1), tk−1, p)− F (Xk−1, tk−1, p)∥ ≤ L∥X(tk−1)−Xk−1∥ ≤ L · εk−1 = δk−1,

∥F (X(tk), tk, p)− F (Xk, tk, p)∥ ≤ L∥X(tk)−Xk∥ ≤ L · εk = δk.

(2) If the switching time t = σ is at the point of tm, namely tm = σ, there is

g(X(tm), X(t+m), p) = 0. (2.2.8)

For t ∈ [tm−1, tm],

X(t) = X(tm−1) +

∫ t

tm−1

F (X, t, p)dt (2.2.9)

and

X(tm) = X(tm−1) +

∫ tm

tm−1

F (X, t, p)dt. (2.2.10)

By Eq. (2.2.8) and Eq. (2.2.10), we have

g(X(tm−1) +

∫ tm

tm−1

F (X, t, p)dt,X(t+m), p) = 0. (2.2.11)

For the given accuracy δm > 0, there is an approximate function Rm(t, p) = F (
1

2
[X(tm−1) +

X(tm)], tm−1+
h

2
, p) on the interval [tm−1, tm] satisfying the inequality ∥Rm(t, p)−F (X, t, p)∥ ≤

δm. For t ∈ [tm−1, tm], Eq. (2.2.11) can be approximated as

g(X(tm−1) +

∫ tm

tm−1

[Rm(t, p) + o(δm)]dt, X(t+m), p) = 0,
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g(X̄(tm−1) +

∫ tm

tm−1

Rm(t, p)dt, X̄(t+m), p) = 0. (2.2.12)

Let X̄(tm−1) = Xm−1 and X̄(t+m) = Xm. For the given accuracy εm−1 > 0 and εm > 0 under
∥X(tm−1)−Xm−1∥ ≤ εm−1 and ∥X(t+m)−Xm∥ ≤ εm, Eq. (2.2.12) can be expressed by

gm(Xm−1 +

∫ tm

tm−1

Rm(t, p)dt, Xm, p) = 0, (2.2.13)

where the points Xm and Xm−1 are approximations of points X(t+m) and X(tm−1) respectively.
So a discrete mapping Pm : Xm−1 → Xm, i.e.,

Xm = PmXm−1 (2.2.14)

can be obtained by the implicit vector function (2.2.13). The vector function F (X, t, p) satisfies
the following inequalities

∥F (X(tm−1), tm−1, p)− F (Xm−1, tm−1, p)∥ ≤ L∥X(tm−1)−Xm−1∥ ≤ L · εm−1 = δm−1,

∥F (X(t+m), tm, p)− F (Xm, tm, p)∥ ≤ L∥X((t+m))−Xm∥ ≤ L · εm = δm.

For t ∈ (tm, tm+1], Eq. (2.2.1) can be transformed into

X(t) = X(tm+1) +

∫ t

tm+1

F (X, t, p)dt. (2.2.15)

When t → t+m, Eq. (2.2.15) is equivalent to

lim
t→t+m

X(t) = X(tm+1) + lim
t→t+m

∫ t

tm+1

F (X, t, p)dt. (2.2.16)

Since F (X, t, p) is a continuous vector function on the open domain Ω for Ω ⊂ Rn, we have

lim
t→t+m

∫ t

tm+1

F (X, t, p)dt =

∫ tm

tm+1

F (X, t, p)dt.

Hence Eq. (2.2.16) can be transformed into the following equation

X(tm+1) = X(t+m) +

∫ tm+1

tm

F (X, t, p)dt. (2.2.17)

For a small δm+1 > 0, if there is an approximate function Rm+1(t, p) = F (
1

2
[X(tm)+X(tm+1)],

tm +
h

2
, p) satisfying the inequality

∥Rm+1(t, p)− F (X, t, p)∥ ≤ δm+1,

for t ∈ (tm, tm+1], Eq. (2.2.17) can be approximately expressed as

X̄(tm+1) = X̄(t+m) +

∫ tm+1

tm
Rm+1(t, p)dt. (2.2.18)



236 H. Xu & X. Fu

Let X̄(tm+1) = Xm+1. For any small εm+1 > 0, under ∥X(tm+1)−Xm+1∥ ≤ εm+1, Eq. (2.2.18)
gives

Xm+1 = Xm +

∫ tm+1

tm
Rm+1(t, p)dt, (2.2.19)

where two points Xm and Xm+1 are approximations of points X(t+m) and X(tm+1) respectively.
An implicit mapping Pm+1 : Xm → Xm+1, i.e.,

Xm+1 = Pm+1Xm, (2.2.20)

can be obtained by the implicit vector function

gm+1(Xm, Xm+1, p) = Xm+1 −Xm −
∫ tm+1

tm
Rm+1(t, p)dt = 0. (2.2.21)

The vector function F (X, t, p) satisfies the following inequalities

∥F (X(tm+1), tm+1, p)− F (Xm+1, tm+1, p)∥ ≤ L∥X(tm+1)−Xm+1∥ ≤ L · εm+1 = δm+1.

Once the discrete mappings in Eqs. (2.2.7), (2.2.13) and (2.2.20) exist, then the periodic flow
of the switching system (2.2.1) can be formed by

P = PN ◦ PN−1 ◦ · · · ◦ Pm+1 ◦ Pm ◦ Pm−1 ◦ · · · ◦ P2 ◦ P1 : X0 → XN ,

i.e.,

P1 : X0 → X1 ⇒ g1(X0, X1, p) = 0,

P2 : X1 → X2 ⇒ g2(X1, X2, p) = 0,
...

Pm−1 : Xm−2 → Xm−1 ⇒ gm−1(Xm−2, Xm−1, p) = 0,

Pm : Xm−1 → Xm ⇒ gm(Xm−1, Xm, p) = 0,

Pm+1 : Xm → Xm+1 ⇒ gm+1(Xm, Xm+1, p) = 0,
...

PN : XN−1 → XN ⇒ gN (XN−1, XN , p) = 0.

(2.2.22)

With the periodic condition, we have

X0 = XN . (2.2.23)

Solving Eqs. (2.2.22) and (2.2.23) gives X∗
k and X∗

m, i.e.,

gk(X
∗
k−1, X

∗
k , p) = 0, (k = 1, 2, · · · ,m− 1,m+ 1, · · · , N),

gm(X∗
m−1, X

∗
m, p) = 0,

gm+1(X
∗
m, X∗

m+1, p) = 0,

X∗
0 = X∗

N .

(2.2.24)
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The periodic flow of the system can be determined by X∗
m and X∗

k , where X∗
m is approximation

of the point X(t+m), and the points X∗
k (k = 0, 1, 2, · · · ,m−1,m+1, · · · , N) are approximations

of points X(tk) of the periodic solution.

(3) If the switching time t = σ is on the interval (tk−1, tk), we can choose the discrete point
ti = σ, where i ̸= k − 1, k and i < N, then the investigation is the same with case (2). The
theorem is proved.

If the system in Eq. (2.2.1) has two fixed switching time points, we can also investigate the
periodic flow through the implicit mapping method in Theorem 2.2.1, The discrete implicit map-
pings at the switching time points can be constructed by the given accuracy and the transport
laws. Discrete implicit mappings at non-switching points can be obtained by the discretization
of differential equations of the switching system. The corresponding interpolation points are
obtained by the implicit mapping structure made up of the discrete implicit mappings. The
periodic flow expressed by the interpolation points in one period can be determined.

3. An example

Consider an impulsive system as

ẋ = y, t ̸= 1, t ∈ [0, 6],

ẏ = 2 cos t− y + 0.01x, t ̸= 1, t ∈ [0, 6],

x(t+) = x(t) + e1x(t), t = 1,

y(t+) = y(t) + e2y(t), t = 1,

(3.1)

where the impulse parameters e1 = 0.2 and e2 = 0.1802. Let X(t) = (x(t), y(t))T . The vector
function F (X, t, p) = (y, 2 cos t − y + 0.01x)T is continuous on Ω = [−1, 2.5] × [−1.5, 1.5] for
Ω ⊂ Rn. The analytical solution of Eq. (3.1) satisfying the conditions x(1) = 1.251, y(1) = 1.271
on the interval [0, 1] can be expressed byx

y

 =

 1.1082e0.0099t + 0.3315e−1.0099t + 0.9415 cos t− 191.2623 sin t

0.01097e0.0099t − 0.3348e−1.0099t + 1.0094 cos t− 191.2526 sin t

 . (3.2)

The analytical solution of Eq. (3.1) satisfying the conditions x(1+) = 1.5012 and y(1+) = 1.5
on the interval (1, 6] can be expressed byx

y

 =

 0.9415 cos t− 191.2623 sin t+ 1.2674

1.0094 cos t− 191.2526 sin t+ 161.8936

 . (3.3)

The analytical solution of Eq. (3.1) on the interval [0, 1] and (1, 6] can be sketched in Figure
1. By Figure 1, we can determine the system in Eq. (3.1) has a periodic flow X(t) = (x(t), y(t))T

with finite norm ∥x∥ and a period T = 6. t = 1 is the only impulsive time. The periodic flow
X(t) is continuous on the left and discontinuous on the right at the point of t = 1 on the interval
[0, 6]. Then we will study the periodic solution in the system by the implicit mapping method.
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There is a set of discrete time t0 < t1 < · · · < tk < · · · < tN on the interval [0, 6], where
t0 = 0, tN = 6 and tk = tk−1 + h.

(1) If the impulsive time is not on the interval [tk−1, tk], Eq. (3.1) is integrated by t as follows
x(tk) = x(tk−1) +

∫ tk

tk−1

y(t)dt, t ∈ [tk−1, tk],

y(tk) = y(tk−1) +

∫ tk

tk−1

[2 cos t− y(t) + 0.01x(t)]dt.

(3.4)

Let
P

(1)
k (t, p) = 0.5h[y(tk−1) + y(tk)]

and
P

(2)
k = 2h cos(tk−1 + 0.5h)− 0.5h[y(tk−1) + y(tk)] + 0.005h[x(tk−1) + x(tk)],

where the vector functions P
(1)
k (t, p) and P

(2)
k (t, p) are approximations of functions y(t) and

2 cos t− y+0.01x on the interval t ∈ [tk−1, tk] respectively. Then Eq. (3.4) can be changed into
g
(1)
k (t, p) = xk − xk−1 −

yk−1 + yk
2

h = 0, t ∈ [tk−1, tk],

g
(2)
k (t, p) = yk − yk−1 − 2h cos(tk−1 +

h

2
) +

h

2
(yk−1 + yk)− 0.005h(xk−1 + xk) = 0,

(3.5)
where Xk−1 = (xk−1, yk−1)

T and Xk = (xk, yk)
T . The points Xk−1 and Xk are approximations

of points X(tk−1) and X(tk) respectively. gk(t, p) = (g
(1)
k (t, p), g

(2)
k (t, p))T is a vector function

connecting Xk−1 with Xk. An implicit mapping

Pk : Xk−1 → Xk, Xk = AkXk−1 +Dk, k = 1, 2, · · · , N (3.6)

can be determined by the implicit vector functions (3.5), where

Dk =
1

1 + 0.5h− 0.0025h2

h2 cos(tk−1 + 0.5h)

2h cos(tk−1 + 0.5h)

 ,

and

Ak =
1

1 + 0.5h− 0.0025h2

1 + 0.5h+ 0.0025h2 h

0.01h 1− 0.5h+ 0.0025h2

 .

(2) If the impulsive time is at the point of tm, namely tm = 1, by the switching conditions and
Eq. (3.1), we have

x(t+m) = 1.2x(tm−1) +

∫ tm

tm−1

1.2y(t)dt, t ∈ [tm−1, tm],

y(t+m) = 1.1802y(tm−1) +

∫ tm

tm−1

1.1802[2 cos t− y(t) + 0.01x(t)]dt.

(3.7)

Let P
(1)
m (t, p) = 0.5[y(tm−1)+y(tm)] and P

(2)
m (t, p) = 2 cos(tm−1+0.5h)−0.5[y(tm−1)+y(1)]+

0.005h[x(tm−1)+x(tm)]. The vector functions P
(1)
m (t, p) and P

(2)
m (t, p) are the approximations of
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functions y(t) and 2 cos t− y+0.01x on the interval t ∈ [tm−1, tm] respectively. Then Eq. (3.10)
can be changed into

g
(1)
m (t, p) = xm − 1.2xm−1 − 0.6h[ym−1 + y(tm)] = 0,

g
(2)
m (t, p) = ym − 1.1802ym−1 − 2.3604h cos(tm−1 + 0.5h)

+ 0.5901h[ym−1 + y(tm)]− 0.005901h[xm−1 + x(tm)]

= 0,

(3.8)

where Xm−1 = (xm−1, ym−1)
T and Xm = (xm, ym)T . The points Xm−1 and Xm are approx-

imations of points X(tm−1) and X(t+m). gm(t, p) = (g
(1)
m (t, p), g

(2)
m (t, p))T is an implicit vector

function connecting Xm−1 with Xm. An implicit mapping

Pm : Xm−1 → Xm, Xm = AmXm−1 +Dm, (3.9)

can be determined by (3.8), where

Am =

 1.2 0.6h

0.005901h 1.1802(1− 0.5h)


and

Dm =

 0.6hym

1.1802h[2 cos(tm−1 + 0.5h)− 0.5y(1) + 0.005x(1)]

 .

For t ∈ (tm, tm+1], Eq. (3.1) is integrated by t as follows
x(t) = x(tm+1) +

∫ t

tm+1

y(t)dt, t ∈ (tm, tm+1],

y(t) = y(tm+1) +

∫ t

tm+1

[2 cos t− y(t) + 0.01x(t)]dt.

(3.10)

Let t → t+m, then Eq. (3.10) can be expressed as
x(t+m) = x(tm+1) +

∫ tm

tm+1

y(t)dt, t ∈ (tm, tm+1],

y(t+m) = y(tm+1) +

∫ tm

tm+1

[2 cos t− y(t) + 0.01x(t)]dt.

(3.11)

Let

P
(1)
m+1(t, p) = 0.5[y(tm+1) + y(tm)]

and

P
(2)
m+1(t, p) = 2 cos(tm + 0.5h)− 0.5[y(tm+1) + y(tm)] + 0.005h[x(tm+1) + x(tm)],



240 H. Xu & X. Fu

where the vector functions P
(1)
m+1(t, p) and P

(2)
m+1(t, p) are approximations of functions y(t) and

2 cos t−y(t)+0.01x(t) respectively on the interval t ∈ (tm, tm+1]. So Eq. (3.11) can be expressed
as 

g
(1)
m+1 = xm+1 − xm − 0.5h[y(tm) + ym+1] = 0, t ∈ (tm, tm+1],

g
(2)
m+1 = ym+1 − ym − 2h cos(tm + 0.5h) + 0.5h[y(tm) + ym+1]

−0.005h[x(tm) + xm+1]

= 0,

(3.12)

where the points Xm and Xm+1 are approximations of points X(t+m) and X(tm+1), gm+1(Xm,

Xm+1, p) = (g
(1)
m+1, g

(2)
m+1)

T and gm+1(Xm, Xm+1, p) is a vector function connecting Xm with
Xm+1. An implicit mapping

Pm+1 : Xm → Xm+1, Xm+1 = Am+1Xm +Dm+1 (3.13)

can be determined by Eq. (3.12), where

Am+1 =
1

1 + 0.5h− 0.0025h2

1 + 0.5h 0.5h

0.005h 1


and

Dm+1 =
1

1 + 0.5h− 0.0025h2

 [0.0025x(1) + cos(1 + 0.5h)]h2 + 0.5hy(1)

0.0025h2y(1) + 2h cos(1 + 0.5h)− 0.5hy(1) + 0.005hx(1)

 .

(3) If the impulsive time is on the interval (tk−1, tk), we can choose the discrete point ti = 1,
where i ̸= k − 1, k and i < N. Then the study is same with the second situation.

By Eqs. (3.6), (3.9) and (3.13), the periodic flow of the impulsive system can be formed by

P = PN ◦ PN−1 ◦ · · · ◦ Pm+1 ◦ Pm ◦ Pm−1 ◦ · · · ◦ P2 ◦ P1 : X0 → XN , (3.14)

namely
XN = AX0 +D, (3.15)

where

A = AN ·AN−1 · · ·Am+1 ·Am ·Am−1 · · ·A2 ·A1,

D = AN ·AN−1 · · ·Am+1 ·Am ·Am−1 · · ·A2 ·D1

+AN ·AN−1 · · ·Am+1 ·Am ·Dm−1 · · ·A3 ·D2

+ · · ·+AN ·AN−1 · · ·Am+1 ·Dm +AN ·AN−1

· · ·AmDm+1 + · · ·+ANDN−1 +DN .

Let h = 0.1, we have

A =

1.2597 1.2366

0.0124 0.0153

 , D =

−0.8861

0.6735

 .
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By Eq. (3.15) and the periodic condition

X0 = XN , (3.16)

we have x0 = 0.1465, y0 = 0.6858. Then we can obtain the following interpolation points on the
interval [0, 6]

X0(0.1465, 0.6858), X1(0.2213, 0.8109), X2(0.3080, 0.9223), X3(0.4051, 1.0193),

X4(0.5111, 1.1016), X5(0.6246, 1.1687), X6(0.7441, 1.2205), X7(0.8680, 1.2566),

X8(0.9946, 1.2772), X9(1.1226, 1.2823), X10(1.5003, 1.5014), X11(1.6371, 1.4655),

X12(1.7807, 1.4054), X13(1.9177, 1.3334), X14(2.048, 1.2500), X15(2.1671, 1.1559),

X16(2.2775, 1.0519), X17(2.3770, 0.9389), X18(2.4649, 0.8178), X19(2.5403, 0.6898),

X20(2.6025, 0.5560), X21(2.6512, 0.4178), X22(2.6859, 0.2763), X23(2.7064, 0.1329),

X24(2.7125,−0.0111), X25(2.7042,−0.1541), X26(2.6818,−0.2950),

X27(2.454,−0.4323), X28(2.5956,−0.5647), X29(2.5328,−0.6909),

X30(2.4577,−0.8097), X31(2.3713,−0.9200), X32(2.2742,−1.0206),

X33(2.1677,−1.1107), X34(2.0527,−1.1892), X35(1.9304,−1.2556),

X36(1.8022,−1.3090), X37(1.6693,−1.3491), X38(1.5331,−1.3754),

X39(1.3949,−1.3876), X40(1.2563,−1.3858), X41(1.1185,−1.3698),

X42(0.9830,−1.3399), X43(0.8512,−1.2964), X44(0.7244,−1.2397),

X45(0.6039,−1.1704), X46(0.4909,−1.0892), X47(0.3866,−0.9969),

X48(0.2920,−0.8945), X49(0.2081,−0.7829), X50(0.1358,−0.6634),

X51(0.0758,−0.5370), X52(0.0287,−0.4051), X53(−0.0050,−0.2690),

X54(−0.0250,−0.1300), X55(−0.0309, 0.0105), X56(−0.0209, 0.1510),

X57(−0.0008, 0.2901), X58(0.0350, 0.4266), X59(0.0843, 0.5589),

X60(0.1465, 0.6858).

The approximate periodic solution of Eq. (3.1) connecting with such discrete points on the
interval [0, 6] can be sketched in Figure 2. The analytical solution of Eq. (3.1) on the interval
[0, 1] and (1, 6] can be sketched in Figure 1.

The approximate periodic solution of Eq. (3.1) on the interval [0, 6] expressed by interpo-
lation points and the analytical solution of Eq. (3.1) on the interval [0, 1] and (1, 6] can be
sketched by Figure 3.

By Figure 3, we can determine the approximate periodic solution expressed by interpolation
points and the analytical solution of Eq. (3.1) overlap highly on the interval [0, 6]. The approx-
imate periodic solution expressed by interpolation points is enough accurate and effective for
the investigation of the periodic flow of an impulsive differential system. The implicit mapping
method can be further applied to general nonlinear switching systems.

In recent years, the existence of periodic motion of Van der Pol oscillators with pulses has
been studied in [19]. The method presented in this paper can be used to give the approximate
solution of periodic flow satisfying the given accuracy, which is meaningful in the physical world.
We will take this work forward in the future. The implicit mapping method in this paper can
also be applied to the study of periodic flow in the practical problem model of switching systems
with time switching.
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Figure 1. The red curve crossing the point S(1.251, 1.271) depicts the analytical solution of Eq. (3.1) on
the interval [0, 1] satisfying the conditions x(1) = 1.251 and y(1) = 1.271; The green curve crossing the point
T (1.5012, 1.5) depicts the analytical solution of Eq. (3.1) satisfying the conditions x(1+) = 1.5012 and y(1+) = 1.5
on the interval (1, 6].
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Figure 2. Blue dots connecting with short lines depict the approximate periodic solution of Eq. (3.1) on the
interval [0, 6].

4. Conclusion

In this paper, the periodic flow of a switching dynamical system is investigated through the
implicit mapping method. Using the transport laws and the given accuracy, we constructed
discrete implicit mappings at the switching points and the corresponding interpolation points
are obtained. Discrete implicit mappings at the non-switching time are obtained by the dis-
cretization of differential equations of the switching system and the corresponding interpolation
points are also given. The mapping structure based on discrete implicit mappings is employed
for the periodic flow in the switching dynamical system. Then the periodic flow expressed by
interpolation points in one period is determined. A two-order impulsive system with a pulse



Periodic flows in switching dynamical systems 243

-0.5 0 0.5 1 1.5 2 2.5 3

x

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

S(1.251,1.271)

T(1.5003,1.5014)

S(1.251,1.271)

T(1.5003,1.5014)

Figure 3. Overlap of the approximate periodic solution of Eq. (3.1) and the analytical solution of Eq. (3.1).

at a fixed time is presented as an example. The method presented in this paper is suitable for
switching systems with finite fixed switching time. On this basis, switching systems with arbi-
trary switching time with a known probability distribution can be further considered. In this
case, it is necessary to find the random law of the switching time according to the characteristics
of the known probability distribution, and construct the corresponding implicit mapping on the
random switching time. We will continue to work on this in the future.
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