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USING HOMOTOPY MULTI-HIERARCHICAL ENCODER
REPRESENTATION FROM TRANSFORMERS (HMHERT) FOR TIME
SERIES CHAOS CLASSIFICATION

Di Yu! and Xue Yang?t

Abstract The Transformer architecture, renowned for its exceptional capacity in process-
ing long-sequence data, inspires our framework that leverages its self-attention mechanism
to classify time series through relational analysis between sequence elements. In this arti-
cle, we propose a Homotopy Multi-Hierarchical Encoder Representation from Transformers
(HMHERT), for chaotic/non-chaotic sequence classification. Empirical investigations into
the linear combination coefficients of multi-head attention reveal that constrained homo-
topy coefficients significantly enhance model performance, with homotopy constrained con-
figurations outperforming their unconstrained coefficient counterparts. Through systematic
comparative analysis of Confusion Matrix, classification accuracy, F1-scores, and Matthews
Correlation Coefficient (MCC), HMHERT exhibits significantly enhanced generalization per-
formance, outperforming conventional models including Time-Delayed Reservoir Computing
(RC), Fully Connected Neural Network (FCNN), Long Short Term Memory (LSTM), and
Convolutional Neural Network (CNN) by 0.5097-0.9204 across MCC metrics. Furthermore,
compared to the baseline Transformer encoder architecture, HMHERT achieves performance
improvement, demonstrating the critical role of our proposed architectural modifications in
chaotic pattern recognition.
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1. Introduction

In the field of nonlinear science, the “butterfly effect” is a widely recognized concept that
transcends academic disciplines and captures the public’s imagination. First introduced by
Lorenz [22] during his weather forecasting research, it vividly demonstrates the sensitive de-
pendence of deterministic dynamical systems on initial conditions. This seminal insight sparked
extensive research into chaos theory, which later became the cornerstone of nonlinear science,
with applications in weather prediction, celestial mechanics, economics, and biology.

Chaotic phenomena exhibit complex behaviors such as bifurcations, strange attractors, and
multi-stability, which prompt the development of tools to identify and classify chaos. The Lya-
punov exponent remains a classical metric but suffers from limitations, such as misclassifying
quasi-periodic signals as chaotic [3]. In contrast, Shannon entropy requires predefined thresholds,
introducing subjectivity [3]. Early studies explored entropy-based measures, such as topological
sequence entropy [4] and the entropy of planar curves [2]. Recent advancements have shifted
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toward leveraging artificial neural networks for chaos classification. Carroll [5] proposed a RC
approach for chaotic signal discrimination, employing time-delayed training signals to capture
temporal dependencies in chaotic systems. Liedji et al. [18,19] demonstrated effective classifica-
tion of hyper-chaotic, chaotic, and regular signals through a single-node delayed RC architecture.
The model has a correct rate of regular signal classification of more than 95% and a correct rate
of chaotic signal classification of more than 99%. Under the standard mapping data training,
the generalization classification accuracy rate of the Lorenz system reached 74.42% of the model.
Boullé et al. [3] developed a large-kernel CNN for chaotic signal classification, eliminating the
need for prior knowledge of complex system dynamics while exhibiting exceptional generaliza-
tion capabilities in cross-system classification tasks. Mukhopadhyay and Banerjee [24] addressed
the challenge of distinguishing chaotic from stochastic dynamical systems under varying noise
conditions by transforming time series into time-frequency spectrograms and threshold-free re-
currence texture images, leveraging CNNs for discrimination. Szczesna et al. [30] established a
comprehensive dataset of dynamical system time series and implemented both LSTM networks
and CNNs for chaotic data classification. These studies address the classification challenge of dis-
tinguishing chaotic from non-chaotic dynamics in time series analysis, with non-chaotic subtypes
selectively operationalized across studies as combinations of periodic, aperiodic, quasi-periodic,
and stochastic dynamics rather than encompassing all categories.

To overcome these challenges, we turn our attention to the Transformer model introduced
by Vaswani et al. [31] in 2017. This architecture employs self-attention mechanisms to process
sequential data, excelling in tasks that require long-range dependency modeling and parallel
computation. Its applications now extend beyond NLP to fields including image processing [14],
biology [1], chemistry [32], mechanics [11], and time series forecasting [35]. The release of Chat-
GPT by OpenAl in 2022 represents a pivotal advancement in the evolution of large language
models. This achievement is underpinned by the Transformer architecture, which serves as the
foundational framework for the model. The development of ChatGPT builds upon OpenAl’s ear-
lier contributions, notably the introduction of a semi-supervised learning approach in 2018, which
laid the groundwork for subsequent innovations in this domain [26]. In the same year, Google |9]
introduced the Bidirectional Encoder Representations from Transformers, which leverages un-
masked self-attention mechanisms to enable bidirectional contextual modeling. In subsequent
years, Transformer-based models have been further refined and adapted to address specific chal-
lenges. For instance, the Informer model, proposed by Zhou et al. [37] in 2021, optimized the
Transformer architecture for long-sequence time series forecasting by mitigating issues such as
quadratic time complexity and high memory demands. Geneva and Zabaras [12] extended these
advancements to dynamical systems, employing Koopman embeddings to enhance predictive ac-
curacy. However, the effectiveness of Transformer-based models for long-term forecasting has
been questioned, as evidenced by Zeng et al.’s study [34], which demonstrated that simple lin-
ear models could outperform Transformer-based approaches on real-world datasets in multi-step
forecasting tasks. Zhornyak et al. [36] showcased the application of Transformer architectures
for inferring bifurcation diagrams of dynamical systems from noisy data, further expanding the
scope of these models.

In the optimization research of Transformer model, improving the attention mechanism is an
important direction to improve the performance of the model. Scholars have proposed a variety
of innovative solutions for different application scenarios, forming a multi-dimensional technol-
ogy evolution path. Taking cross-modal modeling as the starting point, the X-Linear attention
module proposed by Pan et al. [25] effectively captures the interaction between cross-modal or
unimodal features by introducing bilinear pooling technology. By stacking multiple layers of
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X-Linear modules, the scheme can further establish high-order feature interactions, which shows
significant advantages in image description generation tasks. In terms of computational efficiency
optimization, the Shifted Window Self-Attention developed by Liu et al. [21] reduces computa-
tional complexity through local window calculations and adopts a window shifting strategy to
achieve cross-window information interaction. This method significantly improves computational
efficiency while ensuring the expressiveness of the model. The BiFormer model proposed by Zhu
et al. [38] introduces Bi-Level Routing Attention. Its innovation lies in the design of a dynamic
sparse attention mechanism: First, the feature map is divided into several regions, and the top k
most relevant neighbors of each region are retained based on regional correlation, and then fine-
grained token-level attention calculations are performed. This hierarchical screening mechanism
reduces computational complexity while maintaining the ability to model long-distance depen-
dencies. In terms of innovation in the attention mechanism architecture, the Agent Attention
designed by Han et al. [13] creatively introduces agent tokens as intermediaries between queries
and key-value pairs in the traditional attention framework. This hybrid architecture effectively
combines the high expressiveness of Softmax attention and the computational efficiency of linear
attention. In view of the particularity of visual features, Sun et al. [29] proposed Histogram
Self-Attention, which made a breakthrough in using image pixel intensity as the basis for feature
organization: First, the histogram intervals are divided by intensity value, and then the atten-
tion calculations within and across intervals are performed. This feature reorganization strategy
based on statistical characteristics shows stronger semantic perception ability in image segmen-
tation tasks. In terms of model light-weighting, the Single-Head Vision Transformer developed
by Yun and Ro [33] adopts a hybrid attention architecture: Single-Head Self-Attention is used
in specific channels to replace the traditional multi-head mechanism, while integrating local and
global features. This design effectively reduces memory consumption while maintaining model
performance. Su et al. [28] integrated recursive graphs with Transformer to extract temporal
features from two different branches, where the Transformer takes a transposed form to compre-
hensively analyze the relationship between multiple variables in the time series. Compared with
traditional machine learning and deep learning methods, this model achieves higher prediction
accuracy.

Incorporating diverse technologies and theories into neural networks has become a prevalent
approach for enhancing model performance. Among these advancements, multi-scale techniques
represent a well-established and mature methodology for improving neural networks. By ac-
counting for dynamic changes across different temporal resolutions, multi-scale methods have
demonstrated efficacy in various domains, including medical image segmentation [27], time series
analysis [7], image recognition [6, 10] and engineering detection [8]. When coupled with self-
attention, multi-scale methods bolster the Transformer’s ability to handle data spanning multiple
scales, thereby improving predictive accuracy [15,20,23]. Furthermore, Li and Li [16, 17| intro-
duced the homotopy theory into neural network architectures, combining activation functions
in a manner inspired by homotopy theory, resulting in a notable improvement in the predictive
capability of neural networks. This innovation opens new avenues for enhancing neural network
designs.

In this study, we introduce HMHERT, a novel framework to address chaotic system clas-
sification challenges. This framework integrates multi-head attention mechanisms inspired by
homotopy theory, enabling multi-hierarchical analysis to capture hierarchical relationships in
time series data. HMHERT tackles the complexities of chaotic system classification by capturing
hierarchical relationships in time series data. The remainder of this paper is structured as follows:
Section 2 reviews the Transformer encoder and details our proposed enhancements; Section 3
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provides an in-depth introduction to the five categories of data, encompassing both chaotic and
non-chaotic types; and Section 4 examines the impact of homotopy coefficients on the proposed
method, compares the classification performance of various artificial neural networks with that
of the proposed approach, and explores the selection of homotopy coefficients as well as the
influence of homotopy theory on the model’s performance.

2. Transformer and homotopy theory

The Transformer model, introduced by Vaswani et al. [31] in 2017, is a deep learning architec-
ture based on the self-attention mechanism. Unlike traditional neural networks, the Transformer
model is centered around the self-attention mechanism, enabling efficient processing of long se-
quences and offering strong parallelization capabilities. The Transformer model was originally
developed to address NLP tasks. In these tasks, the input sentences typically vary in length.
Even when sentences exhibit identical character/word counts, tokenization heterogeneity in-
evitably induces divergent dimensions in their embedded vector sequences. In this study, we
employ Transformer models to address the task of chaotic classification in time series data. In
this task, we keep the input sequence with the same length. Each token represents an individ-
ual numerical element within the sequence, where linear projection layers replace conventional
embedding layers to transform raw input tokens into feature representations. In our framework,
the input sequence undergoes linear projection to derive latent features while maintaining strict
dimensional consistenc across temporal positions.

2.1. Encoder of Transformer

Given time series data X = [x1,..., Tk, ...,2L] € R%, where L is the sequence length, z, is the k
th time series signal. In NLP tasks, language input sequences cannot be directly processed by
the model; they must first pass through an embedding layer to be transformed into a suitable
representation for computational operations. In contrast, in the chaotic classification task, we
employ a linear layer f to obtain the sequence S.

f(X)=8:RE = REXD (2.1)

where d is an embedding dimension. Within the classical Transformer framework, position
encoding information should be incorporated after obtaining the sequence S. In NLP tasks,
position encoding plays a critical role as it enables Transformer models to capture the sequential
order of elements. However, in the chaotic classification task proposed in this study, we compared
the classification performance of models with and without position encoding and observed no
significant differences. As a result, position encoding information is omitted in the Transformer-
based models employed in this study. Consequently, the generated time series S is directly fed
into the self-attention mechanism. The computation method for the self-attention mechanism is
as follows [31]:

. QKT
Attention(Q, K, V) = softmax | ——= | V, (2.2)

Vi,
where Q € REexdr K € REx*dk and V e REV*k represent the query, key, and value matrices,
with dj representing the dimension of the key vectors. The core of the Transformer model is
composed of an encoder and a decoder. In numerous studies, encoders and decoders can used
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to be employed independently due to variations in task requirements. Generally, the encoder is
preferred for classification tasks, while the decoder is used for prediction tasks.

Similar to CNNs, both the encoder and decoder are constructed by stacking multiple identical
blocks. Each block consists of a multi-head attention mechanism, a fully connected layer, and
layer normalization, with a residual connection structure. The definition of multi-head attention
is as follows [31]:

MultiHead (@, K, V') = Concat(heady, - - - ,headh)WO, (2.3)

where head; = Attention(QWjQ, K WjK , VWJV). This study focuses on the Transformer’s encoder
for classification tasks. The core architecture consists of three identical stacked blocks, each with
a multi-head attention mechanism (using two attention heads). A fully connected layer with 256
neurons is used in place of the word embedding layer, and positional encoding is omitted.

2.2. Homotopy multi-hierarchical encoder representation from Transformer

We focus on the encoder component of the Transformer model and aim to enhance its classifica-
tion performance by refining its self-attention mechanism. Drawing inspiration from multi-scale
studies in dynamic systems, we aspire for the new model to analyze sequences at different hierar-
chical levels. Furthermore, successful applications of homotopy theory in improving neural net-
work predictive capabilities have also motivated our work. By integrating these two approaches,
we propose a novel multi-head attention mechanism, which is defined as follows:

1
New MultiHead(Q, K, V) = Z h; * Concat(head?, - - - ,headﬁl)WO", (2.4)
i=0

where head;j’ = Attention(QiW]Q’i,KiW]K’i,ViW]‘/’i). Here, Q° € RL@o*d and Q' € R™*%
represent the query, K0 € RY%0*d% and K' € R™*% represent the key, V0 € R¥o*9 and
V1 e Rm*de represent the value. Where hg + hy = 1, hg > 0 and h; > 0 denotes the homotopy
coefficient. dj denotes the dimension of the key vectors. This multi-head attention mechanism,
which we call “Homotopy Multi-Hierarchical Multi-Head Attention Mechanism”, is connected in
a homotopy manner by two distinct multi-head attention mechanisms, as shown in Figure 1.
The Scaled Dot-Product Attention [31] in Figure 1 is the same as the classic Transformer. This
homotopy coefficient can either be predetermined before training or learned during the training
process. The two multi-head attention mechanisms are capable of analyzing data at different
hierarchical levels and can also operate at distinct temporal scales to analyze the input sequence.

The new multi-head attention mechanism simultaneously imposes new requirements on the
input data. Given time series data X = [x1,..., 2k, ..., 2] € REX™  where L is the sequence
length, m is multi-hierarchical coefficient, zj is the kth time series signal. When m > 1, X can
be utilized for analysis as multi-scale data. we employ a linear layer f to obtain the sequence S:

f(X) =5 : RF™ = REXmXE, (2.5)

where d is an embedding dimension.

The encoder incorporating the homotopy multi-hierarchical multi-head attention mechanism
is referred to as HMHERT, and its structure is illustrated in Figure 2. Within identical param-
eter configuration domains, HMHERT maintains architectural alignment with the Transformer
encoder, preserving structural consistency across shared components.
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Figure 1. Homotopy multi-hierarchical multi-head attention.
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Figure 2. HMHERT-model architecture.
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In this study, we investigate the model’s generalization ability from one dataset to another.
The dynamic systems of these two datasets are different. To ensure the model is not influenced
by varying numerical magnitudes from different dynamical systems, we normalize all data to a
range between 0 and 1.

3. Dynamical systems

In the course of this study, we consider classifying the data into two distinct categories: Chaotic
data and non-chaotic data. Chaotic data refers to data that exhibits complex, unpredictable
behavior within deterministic nonlinear dynamical systems. Such data types are often triggered
by minute variations in the initial conditions within the system, observable even in fully deter-
ministic frameworks. Conversely, non-chaotic data denote those data sets that do not exhibit
the aforementioned chaotic characteristics and can be further subdivided into periodic data,
quasi-periodic data, non-periodic data, and randomized data in this paper. Periodic data are
characterized by a consistent pattern of repetition at fixed intervals; quasi-periodic data, while
appearing periodic, vary in the length of their cycles over time; non-periodic data refers to data
from continuous dynamical systems that lack any discernible repetitive patterns. Additionally,
we consider completely random data to further increase the complexity of data classification
tasks, aiming to evaluate the classification performance of neural networks. Szczesna et al. [30]
provided a series of data to validate the model’s ability to classify chaos. The data types con-
sidered in this study are mostly derived from their work.

3.1. Periodic systems

We explore three types of oscillators within periodic systems: The undamped oscillator, the
damped oscillator, and the rising oscillator. The undamped oscillator model is based on classical
mechanics, particularly Newton’s laws and Hamiltonian and Lagrangian mechanics, describing
ideal oscillatory systems without friction or energy dissipation. This is represented by:

T = ay,
o (3.1)
y = bzx.

The parameters a and b influence the system’s frequency, period, and stability. If ab > 0, the
system may become unstable; if ab < 0, it tends toward stability. We set a = 0.5 and b = —0.5,
resulting in periodic and stable system. This system is denoted as OSC. Unlike other systems,
the time interval here is set to 0.25 instead of 0.1. The system’s trajectory is shown in Figure 3.

The damped oscillator accounts for friction or damping in real-world scenarios, characterized
by decreasing amplitude over time until oscillation ceases. Its governing equations are:

T =y,

3.2
y=ax+by+c (32)

Here, a affects stability and oscillatory behavior, b determines the rate of energy dissipation
or gain (influencing damping or rising), and ¢ represents a constant external force. When b < 0,
the system is a damped oscillator; a smaller b means faster energy dissipation and a quicker
decrease in amplitude. When b > 0, it becomes an rising oscillator, where amplitude increases
under external forces.
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Figure 3. Trajectory of OSC: (a) phase-space plot, (b) time-domain plot.

For the damped oscillator (DOSC), parameters are set to a = —0.2, b = —0.08, and ¢ = 0.01;
its trajectory is illustrated in Figure 4. For the rising oscillator (IOSC), parameters are a = —0.2,
b = 0.08, and ¢ = 0.01; its trajectory is shown in Figure 5.
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Figure 4. Trajectory of DOSC: (a) phase-space plot, (b) time-domain plot.

3.2. Quasi-periodic systems

Quasi-periodic systems exhibit behavior that closely approximates periodicity but never exactly
repeats, leading to complex, non-repetitive patterns. The governing equations are:

x = cos(a1t + xo) + cos(at + xo), (3.3)
x = sin(a1t + xo) + cos(ast + x¢). (3.4)
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Figure 5. Trajectory of IOSC: (a) phase-space plot, (b) time-domain plot.

Parameters a; and as determine the oscillation frequencies. When their ratio a1 /as is irra-
tional, the system exhibits increasingly complex dynamics due to interactions between different
frequencies, preventing precise repetition over time.

We consider two quasi-periodic systems, Eq. (3.3) and Eq. (3.4), denoted as QPS_1 and
QPS 2 respectively, where the initial condition is xyp = 27, and with parameters (aj,a2) =
(7/50,1/50) and ((2 ++/5)/30,1/15) respectively. Their trajectories are shown in Figures 6 and
7.
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Figure 6. Trajectory of QPS 1: Time-domain plot.
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Figure 7. Trajectory of QPS_2: Time-domain plot.

3.3. Non-periodic systems

We consider a class of non-periodic, non-chaotic continuous dynamical systems with no periodic
behavior or repeating patterns, even over long time scales. Over time, the system traces a space
curve governed by:

T = a1x + a2y,
Uy = bix + bay, (3.5)

Z=c1x+ c2z.

We examine two such systems, denoted as DS 1 and DS 2, with model parameters listed
in Table 1. Their trajectory diagrams are shown in Figures 8 and 9.

Table 1. Model parameters for DS 1 and DS_ 2.

DS 1 DS 2
(a1,a3)  (—0.01,0.01) (—0.05,0.01)
(b1,by)  (—0.001,-0.01) (—0.001,—0.01)
(c1,¢2)  (0.05,—0.03) (0.05, —0.08)

3.4. Chaotic systems

We explore chaotic dynamical systems that exhibit unpredictable behavior despite deterministic
initial conditions and laws. Edward Lorenz’s 1963 discovery of sensitive dependence on initial
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Figure 8. Trajectory of DS 1: (a) phase-space plot, (b) time-domain plot.
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Figure 9. Trajectory of DS _2: (a) phase-space plot, (b) time-domain plot.

conditions in a simplified atmospheric convection model led to the “Lorenz Attractor”, a milestone
in chaos theory. The governing equations are:

T =—0ox+ oy,
y=pr—y—zxz, (3.6)
z=—PBz+zy.

In Lorenz’s model, x, y, and z represent convective turnover rate, horizontal temperature
variation, and vertical temperature variation, respectively, or coordinates in a three-dimensional
phase space. Parameters o (Prandtl number), p (Rayleigh number), and § define the system’s
dynamics. We use classical chaotic parameters o = 10, p = 28, § = 8/3, making the Lorenz
system classically chaotic, denoted as CHA 1. Its trajectory is shown in Figure 10.

The Rossler system, introduced by Otto Réssler in 1976, is a nonlinear system with a chaotic
attractor exhibiting a twisted, disk-like structure. Its trajectories display fractal structures,
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Figure 10. Trajectory of CHA 1: (a) phase-space plot, (b) time-domain plot.

making it a classic model for studying chaos. The governing equations are:

T=-Y—Z,
j =2+ ay, (3.7)
Z=b+z(x —c).

Parameters a, b, and ¢ determine the system’s dynamics: a affects feedback strength of y, b
influences the baseline offset of z, and ¢ controls nonlinear feedback of z. We set a = 0.2, b = 0.2,
¢ = 5.7, defining CHA 2. Its trajectories are shown in Figure 11.
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Figure 11. Trajectory of CHA 2: (a) phase-space plot, (b) time-domain plot.

The Rucklidge attractor, introduced by Ken Rucklidge during magnetohydrodynamics stud-
ies, exhibits complex behaviors including periodic windows and chaos. Its governing equations
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are:

T =—kx+ Ay —yz,
y=uz, (3.8)

z:—z+y2.

Parameter k acts as a damping coefficient for z, while A controls linear coupling between z
and y. We set k = 2, A = 6.7, defining CHA 3. Its trajectories are shown in Figure 12.

a b
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Figure 12. Trajectory of CHA 3: (a) phase-space plot, (b) time-domain plot.

We also consider pure random numbers, as both random and chaotic data can appear dis-
ordered and unpredictable, making them hard to distinguish. We focus on normally distributed
random numbers, labeled Ran 1 and Ran_ 2, generated with different random seeds.

4. Experiments and results

In the subsequent phase, we will perform a series of experiments to ascertain the ability of the
proposed method in accurately discriminating between signals exhibiting chaotic features. In
this study, we compare the ability of HMHERT with other different methods to distinguish
between chaotic and non-chaotic data. The non-chaotic data include periodic, quasi-periodic,
non-periodic, and stochastic datasets.

The experimental data set is partitioned into three distinct subsets: The training set, the ver-
ification set, and the test set. The training set is employed for model training, the verification set
aids in optimal model selection during the training process, and the test set assesses the model’s
accuracy. During the generalization ability test, we use the generalization test set to evaluate
the generalization ability of all models. The generalization test set is also composed of periodic,
quasi-periodic, non-periodic, random and chaotic data. Compared with the experimental data
set, their governing equations are different.

In this work, we generate the experimental data set and the generalization test set using
the Runge-Kutta method of simulation. The details of these diverse data types are presented
in the third section, elaborating on the dataset’s dynamic equations and parameters, along with
their respective identifiers. The experimental data set consists of the chaotic data (CHA 2),
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periodic data (DOSC), quasi-periodic data (QPS_ 1), non-periodic data (DS_1), and random
data(Ran_1). Among them, 60% of the experimental dataset is classified as training set, 20% as
validation set and 20% as testing set. Additional datasets, such as IOSC, QPS 2 and so on, serve
as generalization test set to evaluate the generalization capabilities of the proposed model. We
generated multiple sample sets, each containing 10,000 samples, for each dynamic system based
on the information provided in Section 3. The initial conditions differ across sample sets. The
number of features in each sample set corresponds to the number of variables in the respective
dynamic system. In the experimental dataset, each dynamic system is represented by 20 sample
sets, whereas the generalization test dataset comprises 200 sample sets for each dynamic system.
This structured delineation not only provides clarity on the dataset’s composition but also ex-
plains the methodology for testing and validating the model across diverse data scenarios. In the
experiments, each sample set is partitioned into one-dimensional sequences of length 100 to serve
as input to the neural network model. Because the number of features varies with the number of
variables in each dynamic system, the resulting number of sequences differs across sample sets.
The experimental data set comprises 20,000 samples, 30% of which consist of chaotic data, while
the generalization test set contains 300,000 samples with chaotic instances accounting for 40%
of the total collection.

To evaluate the performance of the proposed method, we consider accuracy as the assessment
metric, defined as:

TC+TNC

TC+TNC+ FC+ FNC’

where T'C' is the number of chaotic samples correctly classified as chaotic, F'C' is the number of
non-chaotic samples misclassified as chaotic, TINC'is the number of non-chaotic samples correctly
classified as non-chaotic, F NC is the number of chaotic samples misclassified as non-chaotic. This
metric quantitatively measures the method’s ability to accurately distinguish between chaotic
and non-chaotic samples.

Accuracy = (4.1)

However, when confronted with distributional asymmetry between chaotic and non-chaotic
classes in the dataset, employing classification accuracy as the primary performance metric be-
comes problematic because it tends to be expressed as classification performance of the model
for overrepresented classes in the data. To mitigate this diagnostic limitation, we consider the
F1l-score and MCC respectively. Although the Fl-score metric traditionally emphasizes classi-
fication performance for a single class, our experimental framework adopts a dual-perspective
approach by evaluating separate F1-scores for both chaotic and non-chaotic categories, formally

defined as follows:
Precision * Recall

Fl=2 4.2
Precision + Recall’ (4.2)

where Precision represents the proportion of actually chaotic (or non-chaotic) samples predicted
to be chaotic (or non-chaotic), Recall indicates the proportion predicted to be chaotic (or non-
chaotic) in samples that are actually chaotic (or non-chaotic).

In contrast, MCC provides a balanced evaluation of classification performance by holistically
incorporating predictive outcomes across both classes. Formally defined as:

TCxTNC - FC*FNC

MCC = : (4.3)
V(TC + FC)(TC + FNC)(TNC + FC)(TNC + FNO)

MCC yields values bounded within the interval (—1,1), where values approaching 1 indicate
superior classification efficacy. In our experimental framework, model performance is rigorously
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evaluated through a joint assessment of classification metrics derived from both the experimental
data set and generalization test set, ensuring robustness validation across distinct data regimes.

4.1. Classification performance dependence on the effect of homotopy in multi-
hierarchical multi-head attention mechanisms

In this section, we will evaluate the impact of the homotopy coefficient within the multi-
hierarchical multi-head attention mechanism on the classification performance of the HMHERT.
In order to more intuitively study impact of variations in the homotopy coefficient within the
multi-hierarchical multi-head attention mechanism on model classification performance, we con-
ducted an experiment where the homotopy coefficient was fixed prior to model training. For
simplicity, the same homotopy coefficient was applied across all layers of the model, with the
results presented in the Table 2.

During the training phase, we set the maximum number of training iterations to 8000 and
the learning rate to 10~7. The loss function is illustrated in Figure 13. We selected the best
model based on its classification results on the validation set, and subsequently tested this model
on the test set and the generalization test set.

As illustrated in Figure 13, the training loss function of the HMHERT decreases progressively
with the number of training epochs, regardless of variations in the homotopy coefficients within
the multi-hierarchical multi-head attention mechanism. In the later stages of training, the loss
function continues to show a downward trend, indicating that the model still has potential for
further optimization. A comparison of the training and validation loss function in the figure
reveals that both decrease concurrently, indicating that the HMHERT performs well on both the
training and validation datasets without exhibiting signs of overfitting.

Table 2. The classification results of the HMHERT under varying homotopy coefficients within the multi-
hierarchical multi-head attention mechanism are presented, providing a detailed representation of its classification
performance under different indicators.

(ho, hn) (0.,0.9) (02,08 (0.3.0.7) (0.4.0.6) (0.50.5) (0.60.4) (0.7.0.3) (0.8,0.2) (0.9,0.1)
Accuracyyeg 97.83% 98.00% 97.75%  97.10%  97.75%  97.80%  97.18%  97.98%  96.48%
Fliest, chaos 0.9640 0.9667  0.9626 0.9515 0.9625 0.9633 0.9527 0.9665 0.9407

Flest, non-chaos 0.9844  0.9857  0.9839 0.9793 0.9839 0.9843 0.9799 0.9855 0.9749
MCCest 0.9485  0.9525  0.9465 0.9308 0.9465 0.9476 0.9326 0.9521 0.9157

ACCUracy goperalization ~ 95-02%  94.75%  96.19%  94.19%  95.92%  94.85%  95.62%  95.94%  95.30%
Flyeneralization, chaos 09354 0.9320  0.9517  0.9250  0.9483  0.9337  0.9443  0.9482  0.9400
Flgeneralization, non-chaos 09594 0.9573  0.9685  0.9526  0.9663  0.9579  0.9639  0.9665  0.9614
MCClyeneralization 0.8966  0.8009  0.9204 0.8789  0.9148  0.8928  0.9085  0.9153  0.9020

As shown in the Table 2, regardless of the specific homotopy coefficient, the Transformer
model with the homotopy multi-hierarchical multi-head attention mechanism consistently exhib-
ited outstanding classification performance, with classification accuracy on the test set reaching
approximately 98% in most cases, and generalization accuracy on the generalization test set
exceeding 94%. MCC exhibited comparable trends to classification accuracy across experimen-
tal datasets. Through Fl-score analysis, we observed that HMHERT demonstrated superior
performance in classifying non-chaotic dynamics compared to chaotic dynamics. Parametric
sensitivity studies revealed significant performance variations under different hyper-parameter
configurations. Notably, on the test set, HMHERT achieved peak performance across all four
classification metrics (accuracy, Fl-score and MCC) at hg = 0.2, h; = 0.8, whereas optimal gen-
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Figure 13. The training loss function and validation loss function results of the HMHERT’s multi-hierarchical
multi-head attention mechanism under different homotopy coefficients are presented. The x-axis represents the
training epochs, while the y-axis denotes the value of the loss function. The y-axis is plotted on a logarithmic

scale.
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eralization performance on the generalization test set occurred at hg = 0.3, hy = 0.7. Conversely,
configurations with hg = 0.4, hy = 0.6 and hg = 0.9, h; = 0.1 exhibited suboptimal classification
efficacy in both test and generalization scenarios. These results suggest that the model is highly
sensitive to variations in the homotopy coefficient within the multi-hierarchical multi-head atten-
tion mechanism, underscoring the importance of selecting an appropriate homotopy coefficient
or optimization algorithm.

4.2. Comparison of neural networks

In the previous section, we examine the impact of homotopy coefficients within the multi-
hierarchical multi-head attention mechanism on the HMHERT. In this section, we compare
the neural networks mentioned in Section 3 with classical neural networks such as Time-Delayed
RC, FCNN, LSTM, CNN by evaluating their classification performance in terms of Confusion
Matrix, accuracy, Fl-score and MCC. The classification results for the HMHERT are based on
the outcomes in Table 2, specifically when hg = 0.3 and h; = 0.7. The training process follows
the same methodology as outlined in the previous section. The results are presented in Table 3.
The loss function is illustrated in Figure 14.

As shown in Figure 14, the training and validation loss functions for LSTM network, CNN,
and the HMHERT decrease simultaneously. This indicating that these three neural networks
perform well on both the training and validation sets without signs of overfitting. However, the
training and validation loss functions for CNN exhibit oscillations in the later stages of training,
suggesting that the learning rate for CNN might be slightly too high, and could benefit from a
reduction in the later training stages. The loss function for LSTM network is higher than that
of CNN and the HMHERT, implying that its classification accuracy is likely lower than CNN
and the HMHERT, with CNN’s accuracy expected to be slightly higher than the HMHERTs.
For the FCNN, although both the training and validation loss functions decrease, there is a
noticeable separation during the early and middle stages, with the validation loss being lower
than the training loss. This suggests that the training set is more complex than the validation
set for this model. In the later stages, the validation and training loss functions converge and
stabilize, indicating that further training could lead to overfitting. Regarding the encoder of
Transformer, although both the training and validation loss functions decrease, the training loss
decreases at a much faster rate than the validation loss, suggesting the onset of overfitting.

As shown in Table 3, on the test dataset, the FCNN model exhibits the lowest classification ac-
curacy at only 68.43% and MCC at only 0.0208. This means that FCNN’s classification ability is
not much different from random classification, suggesting that the model fails to learn meaningful
discriminative patterns for the given task. In terms of the confusion matrix, FCNN misclassifies
most chaotic signals as non-chaotic. Time-Delayed RC classifies all signals as non-chaotic. Al-
though its accuracy is slightly higher than FCNN, its MCC is lower. The experimental results
demonstrate that the LSTM network exhibits inferior classification performance compared to the
CNN, the encoder of the Transformer, and the HMHERT model. Specifically, the classification
accuracies of CNN, the encoder of Transformer, and HMHERT are 99.63%, 99.25%, and 97.75%,
respectively, while their MCC values are 0.9911, 0.9823, and 0.9465, respectively. These metrics
collectively indicate that CNN, the encoder of Transformer, and HMHERT achieve exceptional
classification performance. Furthermore, the Fl-score analysis reveals that these three mod-
els exhibit comparable classification efficacy in distinguishing between chaotic and non-chaotic
categories.

However, on the generalization test dataset, only Transformer-based models perform well,
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Figure 14. The training loss function and validation loss function results of different neural networks are
presented (Time-Delayed RC is different from other neural network training methods, so there is no loss function
diagram). The x-axis represents the training epochs, while the y-axis denotes the value of the loss function. The
y-axis is plotted on a logarithmic scale.

Time-Delayed RC, FCNN, LSTM network, and CNN model achieves generalization classification
accuracies no greater than 72%. Furthermore, their MCC values are below 0.42, with the Time-
Delayed RC exhibiting an exceptionally low MCC of only 0.0000. These findings collectively
demonstrate that these three models are inadequate for generalization classification tasks, as
they fail to capture meaningful discriminative patterns required for robust performance.

In summary, among the FCNN, LSTM network, and CNN models, the CNN demonstrates
good classification performance on the data it has been trained on but lacks generalization
capability. The LSTM network has weaker classification performance compared to the CNN,
and the FCNN performs poorly in both respects. We also confirmed that adjusting the learning
rate between le~7 and le™* does not improve the classification performance or generalization
classification performance of the FCNN, LSTM network, and CNN models.

Both encoder of Transformer and HMHERT models show excellent classification performance
on the test dataset, comparable to the CNN, but they significantly outperform the CNN in terms
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Table 3. The classification results of different neural networks are presented, providing a detailed representation
of its classification performance under different indicators.

Time-Delayed RC FCNN LSTM CNN  Encoder of Transformer HMHERT

TN Ctest 2800 2669 2725 2798 2773 2753
FCiest 0 131 75 2 27 47
TClest 0 68 771 1187 1197 1157
F N Clest 1200 1132 429 13 3 43
Accuracy e 70.00% 68.43% 87.40% 99.63% 99.25% 97.75%
Fliest, chaos 0.0000 0.0972 0.7537 0.9937 0.9876 0.9626
Fliest, non-chaos 0.8235 0.8087 0.9154 0.9973 0.9946 0.9839
MCClest 0.0000 0.0208 0.6909 0.9911 0.9823 0.9465
TN Cieneralization 180000 175649 134594 139474 178003 175732
F Cyeneralization 0 4351 45406 40526 1997 4268
T Coeneralization 0 3278 79886 48188 100573 112828
FN Cgeneralization 120000 116722 40114 71812 19427 7172
ACCUracY generatisation 60.00% 59.64% T1.49%  62.55% 92.86% 96.19%
Flgeneralization, chaos 0.0000 0.0514  0.6514  0.4618 0.9037 0.9517
Flgeneralization, non-chaos 0.7500 0.7437  0.7589  0.7129 0.9432 0.9685
M C Cgeneralization 0.0000 0.0098  0.4107  0.1894 0.8541 0.9204

of generalization capability, with accuracies of 92.86% and 96.19%, respectively. This indicates
that these models are not only capable of accurately classifying training data but also pos-
sess strong generalization abilities. Between encoder of Transformer and HMHERT, the latter
demonstrates superior generalization ability, mainly. The evaluation on the generalization test
set demonstrates that HMHERT achieves a 3.33% improvement in classification accuracy and a
46.64% reduction in classification error rate compared to the encoder of the Transformer. Fur-
thermore, HMHERT exhibits a 0.0663 increase in MCC relative to the Transformer encoder, high-
lighting its enhanced capability to maintain robust classification performance under cross-domain
evaluation conditions. These findings suggest that the homotopy multi-hierarchical multi-head
attention mechanism significantly enhances the generalization classification performance of the
Transformer encoder.

4.3. Research on the relationship in the multi-hierarchical mechanism of
Transformer

In neural networks, parameters are typically learned from the dataset during training. In previ-
ous experiments, when exploring the homotopy coefficients in the multi-hierarchical multi-head
attention mechanism of the HMHERT, the homotopy parameters were directly specified. In the
following experiments, we further investigate the multi-hierarchical multi-head attention mecha-
nism of the HMHERT. In Experiment 1, the multi-hierarchical multi-head attention mechanism
of the HMHERT remains based on homotopy, the coefficients are randomly assigned. In Exper-
iment 2, the multi-hierarchical multi-head attention mechanism is still based on homotopy, but
the homotopy coefficients are learned from the data. In Experiment 3, the multi-hierarchical
multi-head attention mechanism is unrestricted, and the homotopy coefficients are fully learned
from the data. The results of these three experiments are compared with those of the baseline
experiment, in which the homotopy coefficients were directly specified. The experimental results
are shown in Table 4, and the training and validation loss functions are depicted in Figure 15.
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Figure 15. The results of the training and validation loss functions for the HMHERT under different training
methods are presented. Additionally, the training and validation loss function results when the multi-hierarchical
multi-head attention mechanism is unrestricted are also provided. The x-axis represents the training epochs,
while the y-axis denotes the value of the loss function. The y-axis is plotted on a logarithmic scale.

As shown in Figure 15, the loss function curves for the four experiments are generally similar,
with no evidence of overfitting. The primary difference lies in the rate of decrease in the loss
functions. However, Experiment 3 shows the smallest decline, while Experiments 1 and 2 exhibit
similar rates of decrease. The baseline experiment demonstrates the largest reduction in the loss
function, indicating that it fits the training data well while maintaining strong performance on
the validation set.

Table 4. The classification results of different experiments are presented, providing a detailed representation of

its classification performance under different indicators.

Baseline experiment

Experiment 1

Experiment 2 Experiment 3

Accuracyeg
Fltest, chaos
F‘ltest7 non-chaos
M CCtest
AccuraCYgeneralization

F lgeneralization, chaos

F 1general'1zation7 non-chaos

M CCgeneralization

97.75%
0.9626
0.9839
0.9465
96.19%
0.9517
0.9685
0.9204

96.88%
0.9476
0.9777
0.9254
95.93%
0.9483
0.9664
0.9150

96.78%
0.9455
0.9771
0.9228
95.78%
0.9457
0.9654
0.9122

95.58%
0.9264
0.9684
0.8948
94.53%
0.9304
0.9549
0.8857

As shown in 4, the baseline experiment achieves the highest classification accuracy and MCC
on the test set, followed by Experiments 1 and 2, with Experiment 3 having the lowest accu-
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racy and MCC, consistent with the observations from Figure 15. In the generalization test, the
classification accuracy and MCC of the baseline experiment and Experiment 1 are comparable.
However, the coefficients in the baseline experiment were determined through extensive test-
ing, and as the number of attention layers in the HMHERT increases, directly specifying these
homotopy coeflicients becomes increasingly challenging. In Experiment 3, the classification ac-
curacy on the test set falls below 96%, and its generalization accuracy is also lower than that
of the other experiments. Notably, in both the test set and generalization test set, a result that
stands in stark contrast to the performance of its counterparts in other experimental configura-
tions. Additionally, Experiment 3 is more prone to encountering “NaN” results during training.
These findings highlight the critical role that homotopy play in the multi-hierarchical multi-head
attention mechanism.

5. Discussion

In this study, we introduced the HMHERT model, derived from the homotopy multi-hierarchical
multi-head attention mechanism based on homotopy theory, to enhance the performance of deep
learning models in complex classification tasks. By integrating the principles of homotopy theory
into the model’s architecture, we aimed to investigate its influence on model generalization and
classification performance, particularly in the context of chaotic data distributions.

Through a series of three meticulously designed experiments, we demonstrated the superior-
ity of the HMHERT model over traditional neural network architectures. Experimental results
indicate that the generalization ability of the model in chaotic classification tasks is highly sen-
sitive to the homotopy coefficient, achieving optimal performance when the coefficient is set
to (0.3,0.7). When compared to traditional neural network models such as Time-Delayed RC,
FCNN, LSTMs, CNNs, and Transformer encoders, the HMHERT model demonstrated slightly
lower test classification performance than CNNs and Transformer encoders. However, HMHERT
significantly outperformed all other models in terms of generalization classification performance.
A variant of the HMHERT model, which retained its multi-hierarchical structure but removed
the homotopy constraint, exhibited substantially weaker performance in classification chaos, un-
derscoring the importance of both the homotopy constraint and the multi-hierarchical structure
in enhancing the classification capabilities of the Transformer encoder for chaotic data.

Further investigation into the selection of homotopy parameters revealed that models using
randomly assigned or data-trained parameters performed similarly, albeit slightly below the op-
timal model with directly specified parameters. This finding suggests new directions for training
deeper models.

These experimental results demonstrate that homotopy theory provides a robust theoreti-
cal foundation for improving the design and generalization capabilities of deep learning mod-
els. Specifically, the HMHERT model’s enhanced performance in generalization tasks highlights
the practical utility of integrating homotopy principles into neural architectures. Future re-
search could focus on optimizing the homotopy coefficient and adapting the Homotopy Multi-
Hierarchical multi-head attention mechanism to diverse neural networks, broadening its appli-
cability. Additionally, a deeper theoretical exploration into the mechanisms by which homotopy
theory enhances model generalization could yield valuable insights to guide the development of
next-generation neural networks.

In conclusion, this study underscores the potential of homotopy theory to advance deep learn-
ing research by offering a novel theoretical perspective for neural network design. By continuing
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to investigate this approach, researchers may develop more robust and efficient models capable
of addressing challenges in increasingly complex domains.
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