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STABILIZATION OF A PARABOLIC PDE SANDWICHED

BY TWO NONLINEAR ODES

Qian Gao1,†, Bao Shi1 and Xiaodong Zhang2

Abstract This paper is devoted to the stabilization of a class of nonlinear parabolic ODE-

PDE-ODE systems constituting by a parabolic equation sandwiched by two nonlinear ODEs.

Different from the related literature where both the two ODE subsystems are linear time

invariant (LTI) or only the ODE subsystem proximal to the control input is nonlinear but

that distal to the input is LTI, serious nonlinearities are contained in the system under

investigation since both the two ODE subsystems (no matter proximal or distal to the input)

are all nonlinear which lead to the incapability of the control schemes on this topic. To

solve the control problem, a novel control framework is established by smartly combining

infinite-dimensional backstepping method with the the finite-dimensional one. Specifically,

three steps of backstepping transformations are subsequently introduced for the system,

which include two finite-dimensional ones respectively for the distal and proximal ODE

subsystems and an infinite-dimensional one for the PDE subsystem. Then, a new target

system is obtained under the backstepping transformations while a state-feedback controller

is explicitly designed. Finally, by recursive analysis from the target system, desirable stability

of the resulting closed-loop system is obtained, i.e., all the states of the resulting closed-loop

system are bounded and converge to zero ultimately. A simulation example is provided to

validate the effectiveness of the proposed theoretical results.

Keywords ODE-PDE-ODE systems, nonlinearity, backstepping, stabilization, distributed

parameter systems.
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1. Introduction

In practice, many dynamic systems are insufficient to be described by pure partial differential

equations (PDEs) or ordinary differential equations (ODEs) but must be by a composite one

that involves both PDEs and ODEs (see e.g., [2,5,7–10,13–16,18,19,21,23,26–30]). Such as the

overhead crane with flexible string and payload [21], the tubular chemical reactor with actuator

or sensor dynamics [9], etc. For such systems, the resolution of certain control problems requires

a skilful incorporation of the schemes from both these two types of systems. However, strong

coupling of these two subsystem with distinctive characteristics usually brings huge obstacles

in control design and analysis. Thus, many interesting control problems in this field remain

unsolved and deserve investigation.
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Over the past two decades, stabilization of the composite PDE and ODE systems in different

setups has received extensive attention (see e.g., [2,5,7,9,10,13–16,18,19,23,26,28–30]). As the

previous works on this topic, works [2, 9, 10, 13, 18, 26, 29, 30] consider one setup that cascaded

PDE-ODE systems, where a LTI ODE system is actuated by different classes of PDE actuators,

such as the first-order hyperbolic equation, diffusion equation, reaction-diffusion equation and

wave equation. Latterly, works [5, 7, 14, 23] consider the counteraction from the PDE actuator

to the controlled ODE which leads to heavy interactions of the subsystems and hence results

in a more general setup, i.e., coupled PDE-ODE systems. Note that an infinite-dimensional

backstepping method has been used to the explicit design of the feedback controller for the

systems with above setups. Another representative setup in the field is cascaded ODE-PDE

system where a PDE is actuated by an ODE actuator. Specifically, in [19], Lyapunov direct

method is used for a Burger’s equation with first-order dynamic boundary condition (which

implies a first-order actuator). In [15] and [28], infinite-dimensional backstepping method is used

for a reaction-diffusion equation with first- and high-order linear actuator dynamics, respectively.

In [16,17], two steps of backstepping which involves one infinite- and then one finite-dimensional

backstepping transformations is used for reaction-diffusion equation with high-order nonlinear

actuator dynamics.

Recently, stabilization has drawn much investigation for sandwiched ODE-PDE-ODE sys-

tems which are more general than the PDE-ODE or ODE-PDE ones mentioned above. For

such systems with different setups, multiple control methods are proposed for the stabilization

controller design. Specifically, one step infinite-dimensional backstepping method is adopted

in [1, 20] for two classes of simple hyperbolic ODE-PDE-ODE systems, where both the two

ODE subsystems are LTI while that proximal to control input must be one-dimensional. Once

the ODE subsystems proximal to control input are multi-dimensional but lower-triangular, two

steps of backstepping transformations involving an infinite- and a finite-dimensional ones are

subsequently used in [12, 24, 25] for ODE-PDE-ODE systems with PDE subsystems being de-

scribed by a 2 × 2 hyperbolic equations and diffusion equation, respectively. In [3, 4], multiple

steps of infinite-dimensional backstepping transformations joint with decoupling transformations

are used for hyperbolic and parabolic ODE-PDE-ODE systems with more general form where

both the two ODEs are LTI multi-dimensional systems without being lower-triangular. It is

necessary to point out that, the aforementioned results are severely restricted by the strong

assumptions that all the ODE subsystems must be LTI. However, nonlinearities usually (or even

ineluctably) exist in practical dynamic systems which render the incapability of the traditional

control methods. Then, a natural and nontrivial control problem arises, that is, for a sand-

wiched ODE-PDE-ODE system with serious nonlinearities, how does one design a stabilizing

controller?

Towards the problem just raised, only one work (i.e., [6]) is found to make some progress but

limited by the system nonlinearities. Specifically, in [6], multi-step infinite-dimensional back-

stepping method is used for hyperbolic and parabolic ODE-PDE-ODE systems with nonlinear

actuator dynamics (which imply a nonlinear ODE subsystem proximal to the control input)

but the distal ODE subsystem must be LTI. Remark the fact that all the existing results for

ODE-PDE-ODE systems (as well as the PDE-ODE ones as special cases) require the distal

ODE subsystem to be LTI, which has been a huge and essential obstacle of the application of

the existing schemes. Once the distal ODE subsystem is nonlinear, the existing control schemes
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would be ineffective. Thus, a powerful control scheme requires to be developed in this field.

This paper is devoted to make remarkable progress on the problem raised above by con-

sidering the stabilization of a class of nonlinear parabolic ODE-PDE-ODE systems. Notably,

both the two ODE subsystems are nonlinear while heavily coupled with the parabolic equation

in-domain and at one boundary, respectively. Then, existing methods in the related literature

are ineffective. For this, a novel control framework is established by a skilful combination of

the infinite- and finite-dimensional backstepping methods. Specifically, a series of state trans-

formations are firstly introduced for the distal ODE and PDE subsystems, respectively. By

finite-dimensional backstepping method, a new PDE-ODE subsystem (i.e., (ξ, v) given by (3.11)

below) is obtained by the smart choice of the virtual controls in recursive step. Then, for the new

PDE subsystem (i.e., v subsystem), an infinite-dimensional backstepping transformation and its

inversion are adopted to change system (ξ, v, Z) into a new one (i.e., (ξ, w, Z)). Finally, for

the newly obtained system, finite-dimensional backstepping method is used again under another

series of state transformations, which recursively derives the controller while leads to the final

target system (i.e., system (ξ, w, ζ) given by (3.16) joint with (4.1) below) . With the help of the

further dynamics of the target system, a recursive analysis step is given to show the stability of

the final target system which implies that of the original system.

The remainder of the paper is organized as follows. Section 2 formulates the control problem.

Section 3 gives the procedure of control design while Section 4 gives the performance analysis

of the resulting closed-loop system. Section 5 provides a numerical example to validate the

effectiveness of the theoretical results. Section 6 concludes the paper with some remarks. This

paper ends with an appendix which collects some useful inequalities and the detailed proof of

some propositions as well as some important claims.

Notation. Throughout the paper, the following notations are used. Let R and Rn denote

the set of all the real numbers and the n-dimensional real space, respectively. For a vector

ξ = (ξ1, · · · , ξn)T, let ξ[i] = (ξ1, · · · , ξi)T, ξT denote its transpose and |ξ| denote its Euclidean

norm. For a function w(x) : [0, 1] → R, let ∥w∥ =
√∫ 1

0 w2(x)dx. For a real-valued time-varying

function f(t), f ∈ Lp means
(∫∞

0 |f(t)|pdt
) 1

p < ∞ with p ≥ 1 and particularly f ∈ L∞ means

supt≥0 |f(t)| < ∞. Let ℓp denote the function which belongs to Lp.

2. Problem formulation

In this paper, we consider stabilization of the following systems which are constituted of a

parabolic equation sandwiched by two nonlinear ODEs:

Ẋi(t) = Xi+1(t) + fi(X[i]), i = 1, · · · , n− 1,

Ẋn(t) = u(0, t) + fn(X),

∂tu(x, t) = ∂2
xu(x, t) + λu(x, t) + ε(x)X,

∂xu(0) = 0, u(1) = Z1,

Żj(t) = Zj+1(t) + gj
(
Z[j]

)
, j = 1, · · · ,m− 1,

Żm(t) = U(t) + gm(Z),

(2.1)
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where (x, t) ∈ [0, 1] × [0,+∞), X = X[n] ∈ Rn, Z = Z[m] ∈ Rm, u ∈ R are system states, U is

control input of the entire system, λ > 0 is a positive constant, ε(x) is a matrix functions with

appropriate dimension and ε(2i−1)(0) = 0, i = 1, 2, · · · , fi and gj are nonlinear functions which

satisfy Assumption 2.1 below. Remark that the above system is of practical significance since

it can be degenerated to a class of lower-triangular nonlinear systems or a reaction-diffusion

equation which describe most of the dynamics in chemistry and mechanism, while the whole

system can describe the dynamics of a chemical reactor with both finite-dimensional nonlinear

actuator dynamics [3, 6].

Assumption 2.1. For i = 1, · · · , n and j = 1, · · · ,m, the following inequalities hold∣∣fi(X[i])
∣∣ ≤ σf

i∑
k=1

|Xk|,
∣∣gj(Z[j])

∣∣ ≤ σg

i∑
k=1

|Zk|, (2.2)

with σf , σg being some positive constants.

The control objective of the paper is to design a state-feedback controller such that all the

closed-loop system states are bounded while the original system states, i.e., u, X and Z converge

to zero.

The following twofold aspects show the distinctive characteristics of system (2.1) while ana-

lyze the ineffectiveness of the existing schemes:

(i)(i)(i) More serious nonlinearities are involved than the sandwiched ones in [1,3,4,6,12,20,24,25].

Since both the two ODE subsystems (distal or proximal to the control input) in system

(2.1) are nonlinear, the controller cannot be designed by merely using (one- or multiple-

step) infinite-dimensional backstepping transformation as in [1, 3, 4, 6, 20]. Moreover, the

compensation of nonlinearities is required which makes the control design and performance

analysis more difficult than those of [12,24,25].

(ii)(ii)(ii) More complicated configuration is contained than the PDE-ODE and ODE-PDE systems

in [2, 5, 7, 9, 10, 13–16, 18, 19, 23, 26, 28–30]. The sandwiched configuration of system (2.1)

involves an additional ODE subsystem (distal or proximal to the control input) than the

PDE-ODE and ODE-PDE ones in the literature. This, together with the nonlinearities

therein, brings essential technique obstacles of the traditional control schemes in the liter-

ature.

3. Control design

This section presents the procedure of control design. Seeing from equation (2.1) that the investi-

gated system possesses lower-triangular structure since u(0, t) and Z1 can be respectively viewed

as the inputs of the distal ODE subsystem and the PDE subsystem while both the X and Z sub-

systems are lower-triangular. Motivated by such structure, the controller is explicitly designed

by a combination of the finite- and infinite-dimensional backstepping methods. Specifically, the

control procedure is divided into three parts. First, a finite-dimensional backstepping design is

given for the distal ODE subsystem (i.e., X-subsystem). Then, an infinite-dimensional backstep-

ping design is subsequently given for the distal ODE-PDE subsystem (i.e., (X,u)-subsystem).

Finally, the control procedure ends with a finite-dimensional backstepping for the whole system

(i.e., (X,u, Z)-system).
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3.1. Stabilization of X-subsystem

In this subsection, a finite-dimensional backstepping step is provided for the X-subsystem. For

this, the following pivotal state transformation is first introduced for system (2.1):

ξ1 = X1, ξi = Xi − τi−1, v (x, t) = u(x, t)−N(x)ξ, i = 2, · · · , n, (3.1)

where ξ = (ξ1, · · · , ξn)T, v are the new system states, τi’s are the virtual control inputs to be

determined later, N(x) is given as follows:

N(x) = [hn 0] exp

([
0 λI −G

I 0

]
x

)I
0

 , (3.2)

with hn = (hn,1, hn,2, · · · , hn,n) and

G =



h1,1 1

h2,1 − q1,1 h2,2 − q1,2 1
...

...
. . . 1

hn,1 − qn−1,1 hn,2 − qn−1,2 · · · hn,n − qn−1,n


,

hi,j and qi,j being some constants to be given in the following derivations. Remark that N(x)

given above satisfies the following equations which will be used later
N ′′(x) +N(x)(λI −G) = 0,

N ′(0) = 0,

N(0) = hn.

(3.3)

Then, a recursive step is given as follows.

Step 1. We first choose Lyapunov function V1 = 1
2ξ

2
1 . Then, computing V̇1 along the solutions

of system (2.1) by noting ξ1f1 ≤ σfξ
2
1 with σ1 being certain positive constant, we have

V̇1 = ξ1 (X2 + f1) = ξ1 (ξ2 + τ1 + f1) ≤ ξ1 (ξ2 + τ1 + σfξ1) .

By choosing

τ1 = − (c1 + σf ) ξ1 ≜ h1,1ξ1,

we directly have {
ξ̇1 = ξ2 + τ1 + f1 = ξ2 + h1,1ξ1 + f1,

V̇1 ≤ −c1ξ
2
1 + ξ1ξ2.

(3.4)

Step 2. V2 = V1 +
1
2ξ

2
2 . As preparation, τ̇1 is first given as follows:

τ̇1 = h21,1ξ1 + h1,1ξ2 + h1,1f1 We then choose
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≜ q1,1ξ1 + q1,2ξ2 + q′1,1f1.

Then, V̇2 is given along the solutions of system (2.1) and using (3.4), i.e.,

V̇2 ≤−c1ξ
2
1 + ξ1ξ2 + ξ2 (X3 + f2 − τ̇1)

=−c1ξ
2
1 + ξ1ξ2 + ξ2

(
ξ3 + τ2 + f2 − q1,1ξ1 − q1,2ξ2 − q′1,1f1

)
. (3.5)

By Assumption 2.1 and using Young’s inequality, the following estimations are obtained
−q′1,1ξ2f1 ≤ |q′1,1|σf |ξ2ξ1| ≤

1

2
ξ21 +

1

2
|q′1,1|2σ2

fξ
2
2 ,

ξ2f2 ≤ σfξ2 (|ξ1|+ |ξ2 + h1,1ξ1|)

≤ 1

2
ξ21 + σf

2ξ22 + σf · ξ22 + σ2
fh

2
1,1ξ

2
2 ,

which gives

ξ2
(
−q′1,1f1 + f2

)
≤ ξ21 +

(
σf

2 + σf + σ2
fh

2
1,1 +

1

2
|q′1,1|2σ2

f

)
ξ22

≜ ξ21 + σ2ξ
2
2 .

Substituting above inequality into (3.5) and then choosing

τ2 = −c2ξ2 − ξ1 + q1,1ξ1 + q1,2ξ2 − σ2ξ2 ≜ h2,1ξ1 + h2,2ξ2,

we have 
ξ̇2 = ξ3 + τ2 − τ̇1 + f2 = ξ3 +

2∑
i=1

(h2,i − q1,i) ξi − q′1,1f1 + f2,

V̇2 ≤ − (c1 − 1) ξ21 − c2ξ2
2 + ξ2ξ3.

(3.6)

Step k (3, · · · , n− 1). Suppose that the first k− 1 steps have been completed. Then, we obtain

the following virtual control

τk−1 =
k−1∑
i=1

hk−1,iξi, (3.7)

which gives that 
ξ̇k−1 = ξk +

k−1∑
i=1

(hk−1,i − qk−2,i) ξi −
k−2∑
i=1

q′k−2,ifi + fk−1,

V̇k−1 ≤ −
k−1∑
i=1

(ci − (k − i− 1)) ξ2i + ξk−1ξk,

and hence

τ̇k−1 =

k−1∑
i=1

hk−1,i

ξi+1 +

i∑
j=1

(hi,j − qi−1,j) ξj −
i−1∑
j=1

q′i−1,jfj + fi


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≜
k∑

i=1

qk−1,iξi +

k−1∑
i=1

q′k−1,ifi.

Choose Vk = Vk−1 +
1
2ξ

2
k. Then, computing V̇k along the solutions of (2.1) leads to

V̇k = V̇k−1 + ξk (ξk+1 + τk + fk − τ̇k−1)

≤−
k−1∑
i=1

(ci − (k − 1− i)) ξ2i + ξk−1ξk

+ξk

(
ξk+1 + τk + fk −

k∑
i=1

qk−1,iξi −
k−1∑
i=1

q′k−1,ifi

)
.

By Assumption 2.1 and using Young’s inequality, the following estimation is obtained

ξk

(
fk −

k−1∑
i=1

q′k−1,ifi

)
≤

k−1∑
i=1

ξ2i + σkξ
2
k,

which leads to that

V̇k ≤−
k−1∑
i=1

(ci − (k − i)) ξ2i + ξk

(
ξk−1 + ξk+1 + τk −

k∑
i=1

qk−1,iξi + σkξk

)
. (3.8)

Then, by choosing the following virtual control

τk =−ckξk − ξk−1 +

k∑
i=1

qk−1,iξi − σkξk ≜
k∑

i=1

hk,iξi,

we obtain that 
ξ̇k = ξk+1 +

k∑
i=1

(hk,i − qk−1,i) ξi −
k−1∑
i=1

q′k−1,ifi + fk,

V̇k ≤ −
k∑

i=1

(ci − (k − i)) ξ2i + ξkξk+1.

(3.9)

Step n. Choose Vn = Vn−1 + 1
2ξ

2
n. Letting x = 0 in the last equality of (3.1) and noting

N(0) = hn (given by (3.2)) leads to that u(0) = v(0) +N(0)ξ. Then, by the similar derivation

as those of (3.8), we obtain that

V̇n ≤−
n−1∑
i=1

(ci − (n− i)) ξ2i − cnξ
2
n

+ξn

(
ξn−1 + v(0, t) +N(0)ξ −

n∑
i=1

qn−1,iξi + σnξn + cnξn

)
.

By letting

N(0)ξ =−ξn−1 +
n∑

i=1

qn−1,iξi − (cn + σn) ξn
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=
n−2∑
i=1

qn−1,iξi + (qn−1,n−1 − 1) ξn−1 + (qn−1,n − cn − σn) ξn

≜
n∑

i=1

hn,iξi

= hnξ,

with N(0) = hn, we obtain that
ξ̇n = v(0) +

n∑
i=1

(hn,i − qn−1,i) ξi −
n−1∑
i=1

q′n−1,ifi + fn,

V̇n ≤ −
n∑

i=1

(ci − (n− i)) ξ2i + ξnv(0).

(3.10)

3.2. Stabilization of (X, u)-subsystem

In this subsection, an infinite-dimensional backstepping step is used for the subsequent control

design for the stabilization of (X,u)-subsystem. First, as preparation, by transformation (3.1),

(X,u)-subsystem is changed into a new one, i.e., (ξ, v)-subsystem whose dynamics are given in

the following proposition with detailed proof being postponed in Part A of Appendix at the end

of the paper.

Proposition 3.1. By transformation (3.1) with the choice of τi given above, the following new

system is obtained:

ξ̇ = Gξ +Ψ(Hξ) +Bv(0),

∂tv = ∂2
xv + λv −N(x)Ψ(Hξ) + ε(x)Hξ −N(x)Bv(0),

∂xv(0) = 0,

v(1) = Z1 −N(1)ξ,

(3.11)

where G has been given before, B = (0, · · · , 0, 1)T ∈ Rn and

Ψ =



f1

f2 − q′1,1f1
...

fn −
n−1∑
i=1

q′n,if1


,

H =



1 0 · · · · · · 0

h1,1 1 · · · · · · 0

h2,1 h2,2 1 · · · 0
...

...
. . . · · ·

...

hn−1,1 hn−1,2 · · · hn−1,n−1 1


.
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Then, we give the following infinite-dimensional backstepping transformation and its inver-

sion: 
w(x) = v(x)−

∫ x

0
κ(x, y)v(y)dy,

v(x) = w(x) +

∫ x

0
ι(x, y)w(y)dy,

(3.12)

where κ(x, y) =
∑+∞

i=0 Ki(ξ, η), ι(x, y) =
∑+∞

i=0 Li(ξ, η) with ξ = x+ y, η = x− y and

K0 = L0 = −λ

4
(ξ + η) +

∫ η

0
N(ξ)Bdξ,

Ki+1 =
λ

2

∫ η

0

∫ τ

0
Ki(τ, s)dsdτ +

λ

4

∫ ξ

η

∫ τ

0
Ki(τ, s)dsdτ

− 1

2

∫ η

0

∫ 2η−s

s
N(

τ − s

2
)Ki(τ, s)dτds,

Li+1 = −λ

2

∫ η

0

∫ τ

0
Li(τ, s)dsdτ − λ

4

∫ ξ

η

∫ τ

0
Li(τ, s)dsdτ.

(3.13)

Remark that the detailed expressions of κ and ι have been given in [22] (by letting ε = 1,

b = q = 0, f(x) ≡ 0, λ(x) ≡ λ, g(x) = −N(x)B therein). Moreover, the following properties

hold for κ and ι which will be used later: 1○ They are smooth with respect to x, y on [0, 1].

2○ Their partial derivatives with respective to x, y in various orders are uniformly bounded for

0 ≤ y ≤ x ≤ 1, i.e., there exists an positive constant C such that

sup
0≤y≤x≤1

|∂i
x∂

j
yκ(x, y)| ≤ C, sup

0≤y≤x≤1
|∂i

x∂
j
yι(x, y)| ≤ C, ∀i, j = 0, 1, · · · . (3.14)

3○ κ satisfies the following equations
∂2
xκ(x, y)− ∂2

yκ(x, y) = λκ(x, y),

∂yκ(x, 0) = −N(x)B +

∫ x

0
κ(x, y)N(y)Bdy,

κ(x, x) = −λx

2
.

(3.15)

By infinite-dimensional backstepping transformation (3.12), system (3.11) is changed into a

new one which is given in the following proposition. Its proof has been postponed to part B of

Appendix for readability.

Proposition 3.2. System (3.11) is changed into the following new one by (3.12):
ξ̇ = Gξ +Ψ(Hξ) +Bw(0, t),

∂tw = ∂2
xw +Φ(x, ξ),

∂xw(0) = 0,

w(1) = Z1 − χ,

(3.16)
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with 

Φ =

(∫ x

0
κ(x, y)N(y)dy −N(x)

)
Ψ(Hξ)

−
(∫ x

0
κ(x, y)ε(y)dy − ε(x)

)
Hξ,

χ = N(1)ξ +

∫ 1

0
κ(1, y)v(y)dy.

(3.17)

Remark that Φ given by (3.17) satisfies the following property which will be used later:
∥Φ∥ ≤ C|ξ|,
∥∂i

xΦ(x, ξ)∥ ≤ C|ξ|,
|∂i

xΦ(1, ξ)| ≤ C|ξ|,
∂2i−1
x Φ(0, ξ) = 0,

(3.18)

with i = 1, 2, · · · and C being certain positive constant. In fact, the first three inequalities of

(3.18) can be directly obtained by (3.14) and the boundedness of N(x), ε(x). The last equality

is derived by noting N (2i−1)(0) = 0 and ε(2i−1)(0) = 0.

3.3. Stabilization of entire system (X, u, Z)

In this subsection, a finite-dimensional backstepping stepping step is given for the stabilization

of the whole system and hence to complete the control design procedure. For this, define the

following transformation

ζ1 = w(1) = Z1 − χ, ζi = Zi − αi−1, i = 2, · · · ,m, (3.19)

with αi’s being certain virtual controls to be determined later.

Step n+1. We first choose Lyapunov function Vn+1 = Vn+
1

2C2 ∥w∥2+ 1
2C2 ζ

2
1 . Then, computing

V̇n+1 along the solutions of (3.16) gives that

V̇n+1 = V̇n +
1

C2

∫ 1

0
w
(
∂2
xw +Φ(x, ξ)

)
dx+

1

C2
ζ1ζ̇1

≤−
n∑

i=1

(ci − (n− i)) ξ2i + ξnw(0) +
1

C2
w(1)∂xw(1)−

1

C2
∥∂xw∥2

+
1

C2

∫ 1

0
w(x)Φ(x, ξ)dx+

1

C2
ζ1ζ̇1.

By Poincare’s inequality and then Agmon’s inequality (See Lemmas G.2 and G.1 in Part G

of Appendix at the end of the paper), we have w2(0) ≤ 3w2(1) + 5∥∂xw∥2. Then, by the first

equality of (3.18) while using Young’s inequality, we obtain that

ξnw(0) ≤
1

µ
ξ2n +

3µ

4
w2(1) +

5µ

4
∥∂xw∥2,

1

C2

∫ 1

0
w(x)Φ(x, ξ)dx ≤ 1

4C2
w2(1) +

1

2C2
∥∂xw∥2 + 2|ξ|2,
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with µ > 0 being certain to-be-determined constant. Thus, there holds that

V̇n+1 ≤−
n−1∑
i=1

(ci − (n− i)− 2) ξ2i −
(
cn − 1

µ
− 2

)
ξ2n −

(
1

2C2
− 5µ

4

)
∥∂xw∥2

+
1

C2
ζ1

(
3µC2

4
ζ1 +

1

4
ζ1 + ∂xw(1) + g1 − χ̇+ ζ2 + α1

)
.

By choosing

α1 =−cn+1ζ1 −
3µC2

4
ζ1 −

1

4
ζ1 − g1 + χ̇− ∂xw(1)

≜−∂xw(1) + ρ1 (Z1, χ, χ̇) , (3.20)

we obtain that

V̇n+1 ≤−
n−1∑
i=1

(ci − (n− i)− 2) ξ2i −
(
cn − 1

µ
− 2

)
ξ2n

−
(

1

2C2
− 5µ

4

)
∥∂xw∥2 −

cn+1

C2
ζ21 +

1

C2
ζ1ζ2.

Step n+ 2. First, we choose Vn+2 = Vn+1 +
1

2C2 ζ
2
2 . By (3.16), we obtain that

α̇1 =−∂t∂xw(1) + ρ̇1

=−∂3
xw(1)− ∂xΦ(1, ξ) +

∂ρ1
∂Z1

(Z2 + g1) +
1∑

i=0

∂ρ1

∂χ(i)
χ(i+1),

which helps to give V̇n+2, i.e.,

V̇n+2 = V̇n+1 +
1

C2
ζ2ζ̇2

≤−
n−1∑
i=1

(ci − (n− i)− 2) ξ2i −
(
cn − 1

µ
− 2

)
ξ2n −

(
1

2C2
− 5µ

4

)
∥∂xw∥2

−cn+1

C2
ζ21 +

1

C2
ζ2

(
ζ1 + ζ3 + α2 + g2 + ∂3

xw(1)−
∂ρ1
∂Z1

(
Z2 + g1

)
+∂xΦ(1, ξ)−

1∑
i=0

∂ρ1

∂χ(i)
χ(i+1)

)
.

By (3.18) and using Young’s inequality, we have

1

C2
ζ2∂xΦ(1, ξ) ≤

1

C2
ζ22 + |ξ|2,

which gives that

V̇n+2 ≤−
n−1∑
i=1

(ci − (n− i)− 3) ξ2i −
(
cn − 1

µ
− 3

)
ξ2n −

(
1

2C2
− 5µ

4

)
∥∂xw∥2



Stabilization of a parabolic PDE 281

−cn+1

C2
ζ21 +

1

C2
ζ2

(
ζ1 + ζ2 + ζ3 + α2 + g2 + ∂3

xw(1)−
∂ρ1
∂Z2

(Z2 + g1)

−
1∑

i=0

∂ρ1

∂χ(i)
χ(i+1)

)
.

Then, the choice of the following virtual controller

α2 =−cn+2ζ2 − ζ1 − ζ2 − g2 − ∂3
xw(1) +

∂ρ1
∂Z1

(Z2 + g1) +

1∑
i=0

∂ρ1

∂χ(i)
χ(i+1)

=−∂3
xw(1)− cn+2

(
Z2 + ∂xw(1)− ρ1 (Z1, χ, χ̇)

)
− ζ1 − ζ2

−g2 +
∂ρ1
∂Z1

(Z2 + g1) +
1∑

i=0

∂ρ1

∂χ(i)
χ(i+1)

≜−∂3
xw(1) + p2,1∂xw(1) + ρ2

(
Z[2], χ̇[2]

)
, (3.21)

gives that

V̇n+2 ≤−
n−1∑
i=1

(ci − (n− i)− 3) ξ2i −
(
cn − 1

µ
− 3

)
ξ2n −

(
1

2C2
− 5µ

4

)
∥∂xw∥2

−cn+1

C2
ζ21 − 1

C2

2∑
i=1

cn+iζ
2
i +

1

C2
ζ2ζ3.

Step n + k (k = 3, · · · ,m − 1). Suppose that the first n + k − 1 steps have been completed.

Then, we have

αk−1 = −cn+k−1ζk−1 − ζk−2 − gk−1 − ζk−1 − ∂2k−3
x w(1) +

k−3∑
i=1

pk−2,i∂
2i+1
x w(1)

+
k−2∑
i=1

∂ρk−2

∂Zi
(Zi+1 + gi) +

k−2∑
i=0

∂ρk−2

∂χ(i)
χ(i+1)

≜ −∂2k−3
x w(1) +

k−2∑
i=1

pk−1,i∂
2i−1
x w(1) + ρk−1

(
Z[k−1], χ̇[k−1]

)
,

V̇n+k−1 ≤ −
n−1∑
i=1

(
ci − (n− i)− k

)
ξ2i −

(
cn − 1

µ
− k

)
ξ2n

−
(

1

2C2
− 5µ

4

)
∥∂xw∥2 −

1

C2

k−1∑
i=1

cn+iζ
2
i +

1

C2
ζk−1ζk.

Then, along the solutions of (3.16), we obtain

α̇k−1 =−∂t∂
2k−3
x w(1) +

k−2∑
i=1

pk−1,i∂t∂
2i−1
x w(1) + ρ̇k−1

=−∂2k−1
x w(1)− ∂2k−3

x Φ(1, ξ)



282 Q. Gao, B. Shi & X. Zhang

+

k−2∑
i=1

pk−1,i

(
∂2i+1
x w(1) + ∂2i−1

x Φ(1, ξ)
)

+
k−1∑
i=1

∂ρk−1

∂Zi
(Zi+1 + gi) +

k−1∑
i=0

∂ρk−1

∂χ(i)
χ(i+1). (3.22)

Choose Vn+k = Vn+k−1 +
δ
2ζ

2
k , the following inequalities hold by using (3.22)

V̇n+k ≤−
n−1∑
i=1

(
ci − (n− i)− k

)
ξ2i −

(
cn − 1

µ
− k

)
ξ2n −

(
1

2C2
− 5µ

4

)
∥∂xw∥2

− 1

C2

k−1∑
i=1

cn+iζ
2
i +

1

C2
ζk

(
ζk−1 + ζk+1 + αk + gk + ∂2k−1

x w(1)

+ ∂2k−3
x Φ(1, ξ)−

k−2∑
i=1

pk−1,i

(
∂2i+1
x w(1) + ∂2i−1

x Φ(1, ξ)
)

−
k−1∑
i=1

∂ρk−1

∂Zi
(Zi+1 + gi)−

k−1∑
i=0

∂ρk−1

∂χ(i)
χ(i+1)

))
.

By (3.18) and using Young’s inequality, we obtain

1

C2
ζk

(
∂2k−3
x Φ(1, ξ)−

k−2∑
i=1

pk−1,i∂
2i−1
x Φ(1, ξ)

)
≤ 1

C2
ζ2k + |ξ|2,

which, together with the choice of αk given as follows

αk =−cn+kζk − ζk−1 − gk − ζk − ∂2k−1
x w(1) +

k−2∑
i=1

pk−1,i∂
2i+1
x w(1)

+
k−1∑
i=1

ρk−1

∂Zi
(Zi+1 + gi) +

k−1∑
i=0

∂ρk−1

∂χ(i)
χ(i+1)

≜−∂2k−1
x w(1) +

k−1∑
i=1

pk,i∂
2i−1
x w(1) + ρk

(
Z[k], χ̇[k]

)
, (3.23)

leads to that

V̇n+k ≤−
n−1∑
i=1

(
ci − (n− i)− k − 1

)
ξ2i −

(
cn − 1

µ
− k − 1

)
ξ2n −

(
1

2C2
− 5µ

4

)
∥∂xw∥2

− 1

C2

k∑
i=1

cn+iζ
2
i +

1

C2
ζkζk+1.

Step n + m. Choose Vn+m = Vn+m−1 +
δ
2ζ

2
m. By the similar derivation as previous step, we

obtain that

U =−cn+mζm − ζm−1 − gm − ζm − ∂2m−1
x w(1) +

m−2∑
i=1

pm−1,i∂
2i+1
x w(1)
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+
m−1∑
i=1

ρm−1

∂Zi
(Zi+1 + gi) +

m−1∑
i=0

∂ρm−1

∂χ(i)
χ(i+1)

≜−∂2m−1
x w(1) +

m−1∑
i=1

pm,i∂
2i−1
x w(1) + ρm

(
Z[m], χ̇[m]

)
, (3.24)

which brings that

V̇n+m ≤−
n−1∑
i=1

(
ci − (n− i)−m− 1

)
ξ2i −

(
cn − 1

µ
−m− 1

)
ξ2n

−
(

1

2C2
− 5µ

4

)
∥∂xw∥2 −

1

C2

m∑
i=1

cn+iζ
2
i .

Noting that −∥∂xw∥2 ≤ 1
2w

2(1)− 1
4∥w∥

2 (see Poincaré’s inequality), we arrive at

V̇n+m ≤−
n−1∑
i=1

(
ci − (n− i)−m− 1

)
ξ2i −

(
cn − 1

µ
−m− 1

)
ξ2n

−1

4

(
1

2C2
− 5µ

4

)
∥w∥2 −

(
cn+1

C2
−
(

1

2C2
− 5µ

4

)
1

2

)
ζ21 − 1

C2

m∑
i=2

cn+iζ
2
i .

By choosing 

ci > n− i+m+ 1, i = 1, · · · , n− 1,

0 < µ <
2

5C2
,

cn >
1

µ
+m+ 1,

cn+1 >
1

4

(
1− 5µC2

2

)
,

cn+i > 0, i = 2, · · · ,m,

we obtain that

V̇n+m ≤ −σVn+m, (3.25)

with σ being certain positive constant.

4. Stability analysis

This section analyzes the stability of the resulting closed-loop system. As preparation, we

first give two propositions which respectively present two pivotal new systems. Specifically,

Proposition 4.1 gives the dynamics of ζi’s which can be directly obtained by transformation

(3.19) with the choices of virtual controls and actual control given above whose proof is omitted.

Proposition 4.2 gives the further dynamics of w-subsystem whose proof is somewhat long and

hence postponed to Part C of Appendix at the end of the paper.
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Proposition 4.1. By the choice of virtual controls (3.20), (3.21), (3.23) and actual control (3.24),

the dynamics of ζ is given as follows:

ζ̇1 = a1,1ζ1 + ζ2 − ∂xw(1),

ζ̇2 = a2,1ζ1 + a2,2ζ2 + ζ3 + ∂xΦ(1, ξ),

ζ̇k = ak,1ζk−1 + ak,2ζk + ζk+1 + ∂2k−3
x Φ(1, ξ)

−
k−2∑
i=1

pk−1,i∂
2i−1
x Φ(1, ξ), k = 3, · · · , n,

(4.1)

with ai,j being certain constants and ζm+1 = 0.

Proposition 4.2. With controller (3.24) in loop, w given in (3.16) satisfies the following equa-

tions: 

∂k
x∂tw = ∂k+2

x w + ∂k
xΦ(x, ξ),

∂k
t w = ∂2k

x w + Γk(x, ξ, w(0), ∂tw(0), · · · , ∂k−2
t w(0)),

∂2k−1
x w(0) = 0, k = 1, 2, · · · ,

∂tw(1) = −∂xw(1) + Υ1

(
ζ[2]
)
,

∂2
tw(1) = −∂3

xw(1) + Υ2

(
ζ[3], ∂xw(1)

)
+ Λ2(ξ),

∂k
t w(1) = −∂2k−1

x w(1) + Υk

(
ζ[k+1], ∂xw(1), ∂

3
xw(1), · · · , ∂2k−3

x w(1)
)

+Λk

(
ξ, w(0), ∂tw(0), · · · , ∂k−3

t w(0)
)
, k = 3, · · · ,m,

(4.2)

where Υk is certain linear function with respect to the arguments therein, Γk and Λk are given

as follows: 

Γ1 = Φ(x, ξ),

Γ2 = ∂2
xΦ(x, ξ) + ∂ξΦ(x, ξ) (Gξ +Ψ(Hξ) +Bw(0)) ,

Γk = ∂2k
x Φ(x, ξ) +

∂Γk−1

∂ξ
ξ̇ +

k−3∑
i=0

∂Γk−1

∂(∂i
tw(0))

∂i+1
t w(0),

Λ2 = b2,1∂xΦ(1, ξ),

Λ3 =
2∑

i=1

b2,i∂
2i−1
x Φ(1, ξ) + ∂ξΛ2(ξ)ξ̇,

Λk =

k−1∑
i=1

bk,i∂
2i−1
x Φ(1, ξ) + ∂ξΛ2(ξ)ξ̇ +

k−4∑
i=0

∂Λk−1

∂(∂i
tw(0))

∂i+1
t w(0),

(4.3)

with bi,j being certain constant.

In the following, we turn to give the stability results of the resulting closed-loop system. First,

a proposition (i.e., Proposition 4.3) is given to present the stability of states ζ, ξ and w. Then,

another proposition (i.e., Proposition 4.4) is given to show the integrability and boundedness of

some system signals. Finally, the stability of the original system states are given in a theorem

(i.e., Theorem 4.1).
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Proposition 4.3. The designed controller (3.24) guarantees that X, ξ, ζ and supx∈[0,1]w(x, t)

are bounded while limt→+∞

(
|ξ|+ |ζ|+ supx∈[0,1] |w(x, t)|

)
= 0,

∂xw(1), ∂tw(1), ∥∂2
xw∥ ∈ L2, w(0), ∥∂xw∥ ∈ L2 ∩ L∞.

Proof. The boundness and convergence of ξ, ζ and ∥w∥ can be directly obtained by (3.25)

which gives that Vn+m(t) ≤ Vn+m(0)e−σt.

By the first equality of (3.16) while using Young’s inequality and noting Υ1, ∥Φ∥ ∈ L2, we

have

1

2

d

dt
∥∂xw∥2 = ∂xw(1)∂tw(1)−

∫ 1

0
∂2
xw
(
∂2
xw +Φ(x, ξ)

)
dx

= ∂xw(1) (−∂xw(1) + Υ1)− ∥∂2
xw∥2 −

∫ 1

0
∂2
xw(x)Φ(x, ξ)dx

≤−1

2
(∂xw(1))

2 − 1

2
∥∂2

xw∥2 + ℓ1.

Integrating both sides of above inequality leads to ∥∂xw∥ ∈ L∞, ∂xw(1), ∥∂2
xw∥ ∈ L2, hence

∂tw(1) ∈ L2 (seen from the fourth equality of (4.2)). Then, Agmon’s inequality brings that

limt→+∞ supx∈[0,1] |w(x, t)| = 0 and w(x, t) is bounded on [0, 1]× [0, +∞).

Proposition 4.4. The designed controller (3.24) guarantees that (for i = 1, 2, · · · ,m){
αi, Żi, Zi+1, ∥∂2i

x w∥, ∥∂2i+1
x w∥, ∂2i−1

x w(1), ∂i
tw(1), ∂

i
tw(0), χ

(i) ∈ L∞ ∩ L2,

∥∂2i+2
x w∥, ∂2i+1

x w(1), αi+1, Zi+2, ∂
i+1
t w(1), χ(i+1) ∈ L2,

(4.4)

with Zm+1 = U .

Proof. Such proposition is proven by recursive steps.

Step 1. We choose E1 = 1
2

(
∥∂2

xw∥2 + ∥∂3
xw∥2

)
. Computing Ė1 along the solutions of system

(4.2) by using integration by parts while noting ∂t∂xw(0) = 0, ∂3
xw(0) = 0, ∥∂i

xΦ∥ ∈ L2 and

using Young’s inequality, we obtain that

Ė1 =

∫ 1

0
∂2
xw∂t∂

2
xwdx+

∫ 1

0
∂3
xw∂t∂

3
xwdx

= ∂2
xw(1)∂t∂xw(1)−

∫ 1

0
∂3
xw
(
∂3
xw + ∂xΦ(x, ξ)

)
dx

+∂3
xw(1)∂t∂

2
xw(1)−

∫ 1

0
∂4
xw
(
∂4
xw + ∂2

xΦ(x, ξ)
)
dx

≤ ∂2
xw(1)∂t∂xw(1) + ∂3

xw(1)∂t∂
2
xw(1)−

1

2
∥∂3

xw∥2 −
1

2
∥∂4

xw∥2 + ℓ1. (4.5)

By using the following estimation whose proof is given in Part D of Appendix,

Claim 1○:


∂2
xw(1)∂x∂tw(1) ≤

1

4

(
∂3
xw(1)

)2
+ ℓ1,

∂3
xw(1)∂

2
x∂tw(1) ≤ −1

2

(
∂3
xw(1)

)2
+ ℓ1,
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we arrive at

Ė1 =−1

4

(
∂3
xw(1)

)2 − 1

2
∥∂3

xw∥2 −
1

2
∥∂4

xw∥2 + ℓ1,

which gives that E1, ∥∂2
xw∥, ∥∂3

xw∥ ∈ L∞ and ∂3
xw(1), ∥∂3

xw∥, ∥∂4
xw∥ ∈ L2 by integrating over

[0, t] and [0,+∞), respectively. Then, (4.2) with (3.17) gives that ∥∂tw∥, ∥∂tv∥, χ̇ ∈ L∞, and

moreover, Agmon’s inequality brings that ∂xw(1) ∈ L∞. Thus, there subsequently hold that

∂tw(1), ∂tw(0), α1, Z2, Ż1 ∈ L∞ ∩ L2, ∥∂2
tw∥, χ̈, ∂2

tw(1), α2, Z3, ∂
2
tw(1) ∈ L2 (seen from (4.2)

and (3.20), (3.21), respectively).

Step 2. We choose E2 = 1
2

(
∥∂4

xw∥2 + ∥∂5
xw∥2

)
. Computing Ė2 along the solutions of system

(4.2) by using integration by parts while noting ∂t∂
3
xw(0) = 0, ∂5

xw(0) = 0, ∥∂i
xΦ∥ ∈ L2 and

using Young’s inequality, we obtain that

Ė2 =

∫ 1

0
∂4
xw∂t∂

4
xwdx+

∫ 1

0
∂5
xw∂t∂

5
xwdx

= ∂4
xw(1)∂t∂

3
xw(1)−

∫ 1

0
∂5
xw
(
∂5
xw + ∂3

xΦ(x, ξ)
)
dx

+∂5
xw(1)∂t∂

4
xw(1)−

∫ 1

0
∂6
xw
(
∂6
xw + ∂4

xΦ(x, ξ)
)
dx

≤ ∂4
xw(1)∂t∂

3
xw(1) + ∂5

xw(1)∂t∂
4
xw(1)−

1

2
∥∂5

xw∥ −
1

2
∥∂6

xw∥+ ℓ1. (4.6)

Then, by using the following claim whose proof is given in Part E of Appendix

Claim 2○:


∂4
xw(1)∂

3
x∂tw(1) ≤

1

4

(
∂5
xw(1)

)2
+ ℓ1,

∂5
xw(1)∂

4
x∂tw(1) ≤ −1

2

(
∂5
xw(1)

)2
+ ℓ1,

we arrive at

Ė2 =−1

4

(
∂5
xw(1)

)2 − 1

2
∥∂5

xw∥2 −
1

2
∥∂6

xw∥2 + ℓ1,

integrating which over [0, t] and [0,+∞) respectively gives that E2, ∥∂4
xw∥, ∥∂5

xw∥ ∈ L∞ and

∂5
xw(1), ∥∂5

xw∥, ∥∂6
xw∥ ∈ L2. Then, (4.2) with (3.17) gives that ∥∂2

tw∥, ∥∂2
t v∥, χ̈ ∈ L∞, and

moreover, Agmon’s inequality brings that ∂3
xw(1) ∈ L∞. Thus, there subsequently hold that

∂2
tw(1), ∂

2
tw(0), α2, Z3, Ż2 ∈ L∞ ∩ L2, ∥∂3

tw∥, χ(3), α3, Z4, ∂
3
tw(1) ∈ L2 (seen from (4.2) and

(3.21), (3.23), respectively).

Step k (k = 3, · · · ,m). Suppose that the first k−1 steps have been completed. Then, (4.4) holds

for i = 1, · · · , k−1. Choose Ek = 1
2

(
∥∂2k

x w∥2 + ∥∂2k+1
x w∥2

)
. Computing Ėk along the solutions

of system (4.2) by using integration by parts while noting ∂t∂
2k−1
x w(0) = 0, ∂2k+1

x w(0) = 0,

∥∂i
xΦ∥ ∈ L2 and using Young’s inequality, we obtain that

Ėk =

∫ 1

0
∂2k
x w∂t∂

2k
x wdx+

∫ 1

0
∂2k+1
x w∂t∂

2k+1
x wdx

= ∂2k
x w(1)∂t∂

2k−1
x w(1)−

∫ 1

0
∂2k+1
x w

(
∂2k+1
x w + ∂2k−1

x Φ(x, ξ)
)
dx
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+∂2k+1
x w(1)∂t∂

2k
x w(1)−

∫ 1

0
∂2k+2
x w

(
∂2k+2
x w + ∂2k

x Φ(x, ξ)
)
dx

≤ ∂2k
x w(1)∂t∂

2k−1
x w(1) + ∂2k+1

x w(1)∂t∂
2k
x w(1)− 1

2
∥∂2k+1

x w∥ − 1

2
∥∂2k+2

x w∥+ ℓ1. (4.7)

Then, by using the following claim whose proof is given at Part F of Appendix

Claim 3○:


∂2m+2
x w(1)∂2m+1

x ∂tw(1) ≤
1

2
∥∂2m+4

x w∥2 + ℓ1,

∂2m+3
x w(1)∂2m+2

x ∂tw(1) ≤ −1

2

(
∂2m+3
x w(1)

)2
+ ℓ1,

we obtain that

Ėk =−1

4

(
∂2k+1
x w(1)

)2
− 1

2
∥∂2k+1

x w∥2 − 1

2
∥∂2k+2

x w∥2 + ℓ1,

integrating which over [0, t] and [0,+∞) respectively gives that Ek, ∥∂2k
x w∥, ∥∂2k+1

x w∥ ∈ L∞
and ∂2k+1

x w(1), ∥∂2k+1
x w∥, ∥∂2k+2

x w∥ ∈ L2. Then, (4.2) with (3.17) gives that ∥∂k
t w∥, χ(k) ∈ L∞,

and moreover, Agmon’s inequality brings that ∂2k−1
x w(1) ∈ L∞. Thus, there subsequently hold

that ∂k
t w(1), ∂

k
t w(0), αk, Zk+1, Żk ∈ L∞ ∩ L2, ∥∂k+1

t w∥, χ(k+1), αk+1, Zk+1, ∂
k+1
t w(1) ∈ L2

(seen from (4.2) and (3.23), respectively). This completes the proof.

It is a position to give the main results of the resulting closed-loop system which are sum-

marized in the following theorem.

Theorem 4.1. Consider system (2.1) under Assumption 2.1. The designed controller given by

(3.24) guarantees that all the system signals of the resulting closed-loop system are bounded while

original system states X, Z and u(x, t) converge to zero, i.e.,

lim
t→+∞

|X| = 0, lim
t→+∞

|Z| = 0, lim
t→+∞

sup
x∈[0,1]

|u(x, t)| = 0.

Proof. Then, convergence of X is direct since X = Hξ and limt→+∞ |ξ| = 0 (given by Propo-

sition 4.3). Moreover, by (4.4), we know that Zi, Żi ∈ L∞ and Zi ∈ L2, i = 1, · · · ,m + 1.

Then, by the well-known Barbalat’s Lemma, we obtain that limt→+∞ |Z| = 0.Noting that

limt→+∞ supx∈[0,1] |w(x, t)| = 0, transformation (3.12) gives that limt→+∞ supx∈[0,1] |v(x, t)| = 0.

Then, the third equality of (3.1) gives that limt→+∞ supx∈[0,1] |u(x, t)| = 0.

5. Simulation results

In this section, we validate the effectiveness of the proposed theoretical results for system (2.1)

with n = m = 2, f1 = sin(X1), f2 = 2X1 cos(X2) + 3 sin2(X2), g1 = cos(Z1), g2 = 2Z1 sin(Z2)

and λ = 5, ε(x) =
(
cos(x), cos(x2)

)
. Then, we can find σf = 3 and σg = 2 for Assumption 2.1.

In this section, we assume that the initial condition is X1(0) = 3.8, X2(0) = −1.5, Z1(0) = −8.8,

Z2(0) = 10.5 and u(x, 0) = 2 cos(x) + x3.

By the control design procedure given above, we obtain the controller as follows:

U =−c4ζ2 − ζ1 − ζ2 − g2 − ∂3
xw(1) + χ̈

−
(
c3 −

3

4δ
− 1

4

)
(Z2 + g1 − χ̇)− ∂g1

∂Z1
(Z2 + g1),
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where w has been given by the first line of (3.12) with κ(x, y) being given by infinite series (3.13)

which is truncated at i = 15 for simulation, ζ1 = Z1 − χ, ζ2 = Z2 − α1 and

α1 = −∂xw(1) + χ̇−
(
c3 −

3

4δ
− 1

4

)
(Z1 − χ)− g1,

N(x) = [h2 0] exp

([
0 λI −G

I 0

]
x

)I
0

 ,

h2 =
[
h21,1 − 1, h1,1 − σ2 − c2

]
,

G =

h1,1 1

−1 −σ2 − c2

 ,

with h1,1 = −c1−σf , σ2 = σ2
f +σf +

3
2h

2
1,1σ

2
f . Thus, by using the explicit forward Euler method

with 20-step discretization in Matlab, we implement the above controller with δ = 5, c1 = 50,

c2 = 120, c3 = 15, c4 = 2. Consequently, four simulation figures are obtained (see Figures 1-4

for detail) which indicate that the both the original system states and control input are bounded

and converge to zero ultimately.
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Figure 1. Trajectory of system state X.
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Figure 2. Trajectory of system state Z.

Figure 3. Trajectory of system state u.
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Figure 4. Trajectory of control input U .
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6. Concluding remarks

In this paper, stabilization of a class of nonlinear ODE-PDE-ODE systems has been solved.

Owing to the presence of serious nonlinearities involving in the two ODE subsystems which

are respectively located at both distal and proximal to the control input, the traditional con-

trol schemes are incapable. Then, a novel control framework is established in this paper by a

smart combination of the infinite- and finite-dimensional backstepping method. By the proposed

scheme, a state-feedback controller is explicitly designed which guarantees the desirable stability

of the resulting closed-loop system. The future interesting research directions are twofold. First,

stabilization of other nonlinear ODE-PDE-ODE systems with PDE subsystem being replaced by

other ones, such as wave equation or the first-order hyperbolic equation. Second, stabilization

via output feedback. For this, certain observer design schemes for the ODE and PDE systems

should be designed to reconstruct the system states, and hence challenge the control design.

Appendix

A. Proof of Proposition 3.1

The last equality of (3.11) can be directly obtained by letting x = 1 in the third equality of (3.1)

while noting u(1) = Z1 (shown in (2.1)). Moreover, letting x = 0 in ∂xv(x, t) = ∂xu(x, t)−N ′(x)ξ

gives the third equality of (3.11) by noting ∂xu(0) = 0 and N ′(0) = 0. By transformation (3.1)

with the choice of τi, we directly obtain that X = Hξ. Then, the first lines of (3.4), (3.6), (3.9),

(3.10) directly give the first equation of (3.11).

By computing the second-order partial derivative with respect to x of v from the third

equality of (3.1) while using (3.3), we directly bring that

∂2
xv = ∂2

xu−N ′′(x)ξ,

= ∂2
xu+N(x)(λI −G)ξ. (A.1)

Moreover, computing the partial derivative with respect to t of v from the third equality of (3.1)

while using (2.1) and the first equality of (3.11), we obtain

∂tv = ∂2
xu+ λu+ ε(x)X −N(x)ξ̇

= ∂2
xu+ λu+ ε(x)X −N(x)

(
Gξ +Ψ(Hξ) +Bv(0)

)
= ∂2

xu+ λv + ε(x)X +N(x)(λI −G)ξ −N(x)
(
Ψ(Hξ) +Bv(0)

)
.

Subtracting both sides of above equalities from those of (A.1) while using (3.3) leads to the

second equality of (3.11).

B. Proof of Proposition 3.2

First, letting x = 0 in the first equality of (3.12) directly gives that w(0) = v(0). Then, the first

equation of (3.16) is obtained from that of (3.11). Moreover, letting x = 1 in the first equality

of (3.12) directly gives the fourth equality of (3.16). Second, computing ∂xw and ∂2
xw from the
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first equality of (3.12) gives that
∂xw = ∂xv − κ(x, x)v(x)−

∫ x

0
∂xκ(x, y)v(y)dy,

∂2
xw = ∂2

xv −
d

dx
κ(x, x)v(x)− κ(x, x)∂xv(x)

−∂xκ(x, x)v(x)−
∫ x

0
∂2
xκ(x, y)v(y)dy.

(B.1)

Letting x = 0 in the first equality of (B.1) while noting κ(0, 0) = 0, ∂xv(0) = 0 leads to

∂xw(0) = 0, which is the third equality of (3.16).

Moreover, computing the time derivative of both sides of the first equality of (3.12) while

using integration by parts, we obtain that

∂tw = ∂tv −
∫ x

0
κ(x, y)∂tv(y)dy

= ∂2
xv + λv −N(x)Ψ(Hξ) + ε(x)Hξ −N(x)Bv(0)

−
∫ x

0
κ(x, y)

(
∂2
xv + λv −N(y)Ψ(Hξ) + ε(y)Hξ −N(y)Bv(0)

)
dy

= ∂2
xv + λv −N(x)Ψ(Hξ) + ε(x)Hξ −N(x)Bv(0)− κ(x, x)∂xv(x)

+κ(x, 0)∂xv(0) + ∂yκ(x, x)v(x)− ∂yκ(x, 0)v(0)−
∫ x

0
∂2
yκ(x, y)v(y)dy

−λ

∫ x

0
κ(x, y)v(y)dy −

∫ x

0
κ(x, y)

(
−N(y)Ψ(Hξ) + ε(y)Hξ

)
dy

+

∫ x

0
κ(x, y)N(y)dyBv(0).

Subtracting both sides of above equality from those of the second equality of (B.1) while using

(3.15) gives the second equality of (3.16).

C. Proof of Proposition 4.2

By computing the k-th partial derivatives with respect to x of both sides of the second equality

of (3.16) directly gives the first line of (4.2). The second line is obtained by recursive step.

First, by computing the partial derivative with respect to t of both sides of the second equality

of (3.16) while using the first line of (4.2), we obtain

∂2
tw = ∂t∂

2
xw + ∂tΦ(x, ξ)

= ∂4
xw + ∂2

xΦ(x, ξ) + ∂ξΦ(x, ξ)ξ̇

= ∂4
xw + ∂2

xΦ(x, ξ) + ∂ξΦ(x, ξ) (Gξ +Ψ(Hξ) +Bw(0))

≜ ∂4
xw + Γ2(x, ξ, w(0)),

which shows that the second equality of (4.2) holds for k = 2. Suppose that the second equality

of (4.2) holds for k = l (l = 2, · · · ,m− 1). Then, we have

∂l
tw = ∂2l

x w + Γl(x, ξ, w(0), ∂tw(0), · · · , ∂l−2
t w(0)).



Stabilization of a parabolic PDE 291

Computing the partial derivative with respect to t of both sides of above equality leads to that

∂l+1
t w = ∂t∂

2l
x w + ∂tΓl

= ∂2l+2
x w + ∂2l

x Φ(x, ξ) + ∂ξΓlξ̇ +

l−2∑
i=0

∂Γl

∂(∂i
tw(0))

∂i+1
t w(0)

= ∂2l+2
x w + Γl+1(x, ξ, w(0), ∂tw(0), · · · , ∂l−1

t w(0)).

Thus, the second line of (4.2) is obtained.

The third line of (4.2) is derived by recursive step. Suppose that ∂2l−1
x w(0) holds for l = 1, · · · .

Then, by letting x = 0 in the first line of (4.2) with k = 2l − 1 while noting ∂2l−1
x Φ(0, ξ) = 0

(given by (3.18)), we obtain that ∂2l+1
x w(0) = ∂t∂

2l−1
x w(0)− ∂2l−1

x Φ(0, ξ) = 0, and hence brings

the third line of (4.2).

The fourth equality of (4.2) is directly obtained from the first one of (4.1) by noting w(1) = ζ1.

Computing the partial derivative of both sides of the fourth equality of (4.2) with respect to t

brings that

∂2
tw(1) =−∂t∂xw(1) + Υ1

(
ζ̇[2]

)
=−∂3

xw(1) + Υ2

(
ζ[3], ∂xw(1)

)
+ b2,1∂xΦ(1, ξ)

≜−∂3
xw(1) + Υ2

(
ζ[3], ∂xw(1)

)
+ Λ2(ξ),

which is the fifth equality of (4.2). The last equality of (4.2) is derived by recursive step. First,

computing the partial derivative with respect to t of both sides of the fifth equality of (4.2) while

using its first line with k = 1, 3 and (4.1) gives that

∂3
tw(1) =−∂t∂

3
xw(1) + Υ2

(
ζ̇[3], ∂t∂xw(1)

)
+ Λ̇2(ξ)

=−∂5
xw(1) + Υ3

(
ζ[4], ∂xw(1), ∂

3
xw(1)

)
+ b3,1∂xΦ(1, ξ)

+b3,2∂
3
xΦ(1, ξ) + ∂ξΛ2(ξ)ξ̇

≜−∂5
xw(1) + Υ3

(
ζ[4], ∂xw(1), ∂

3
xw(1)

)
+ Λ3(ξ, w(0)).

Suppose that the last equality of (4.2) holds for k = l (l = 4, · · · ,m − 1). Then, computing its

time derivative gives that

∂l+1
t w(1) =−∂2l+1

x w(1) + Υl+1

(
ζ[l+2], ∂xw(1), · · · , ∂2l−1

x w(1)
)

+
l∑

i=1

bl+1,i∂
2i−1
x Φ(1, ξ) + ∂ξΛl(ξ)ξ̇ +

l−3∑
i=0

∂Λl

∂(∂i
tw(0))

∂i+1
t w(0)

≜−∂2l+1
x w(1) + Υl+1

(
ζ[l+2], ∂xw(1), · · · , ∂2l−1

x w(1)
)

+Λl+1(ξ, w(0), ∂tw(0), · · · , ∂l−2
t w(0)).

Thus, the last equality of (4.2) holds.

D. Proof of Claim 1○

From Proposition 4.3, the first equality of (3.12) implies that ∥∂xv∥ ∈ L∞, ∥∂2
xv∥ ∈ L2. Thus,

there holds that v(0) ∈ L∞ ∩ L2, ξ̇, ∥v∥ ∈ L∞ ∩ L2, and hence χ̇ ∈ L2, χ, Z1 ∈ L∞ ∩ L2.
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Noting that ∂2
xw(1) = ∂tw(1)− Φ(1, ξ) ∈ L2, ∂t∂xw(1) = ∂3

xw(1) + ∂xΦ(1, ξ) = ∂3
xw(1) + ℓ2

(seen from (4.2) and Proposition 4.3), we obtain the following inequality by Young’s inequality

∂2
xw(1)∂t∂xw(1) = ℓ2

(
∂3
xw(1) + ℓ2

)
≤ 1

4

(
∂3
xw(1)

)2
+ ℓ1,

which gives the first inequality of Claim 1○.

Since ζ[3], ∂xw(1) ∈ L2, we have Υ2 ∈ L2. Moreover, (4.3), together with the integrability of

ξ and w(0), gives that Γ2, Λ2 ∈ L2. Then, (4.2) with (4.3) brings that

∂t∂
2
xw(1) = ∂4

xw(1) + ∂2
xΦ(1, ξ)

= ∂2
tw(1)− Γ2(1, ξ, w(0)) + ∂2

xΦ(1, ξ)

=−∂3
xw(1) + Υ2

(
ζ[3], ∂xw(1)

)
+ Λ2(ξ)− Γ2(1, ξ, w(0)) + ∂2

xΦ(1, ξ)

=−∂3
xw(1) + ℓ2,

by which and then using Young’s inequality, we bring that

∂3
xw(1)∂t∂

2
xw(1) = ∂3

xw(1)
(
−∂3

xw(1) + ℓ2
)
≤ −1

2

(
∂3
xw(1)

)2
+ ℓ1,

which gives the second inequality of Claim 1○.

E. Proof of Claim 2○

With the proven fact that (4.4) when i = 1 in hands, (4.3) brings that

∂4
xw(1) = ∂2

tw(1)− Γ2(1, ξ, w(0)) ∈ L2,

∂t∂
3
xw(1) = ∂5

xw(1) + ∂3
xΦ(1, ξ) = ∂5

xw(1) + ℓ2.

Then, by Young’s inequality, there holds that

∂4
xw(1)∂t∂

3
xw(1) = ℓ2

(
∂5
xw(1) + ℓ2

)
≤ 1

4

(
∂5
xw(1)

)2
+ ℓ1,

which gives the first inequality of Claim 2○.

Moreover, (4.4) with i = 1 gives that ξ, w(0), ∂tw(0), ∂
4
xΦ(1, ξ) ∈ L2∩L∞ and ∂3

xw(1) ∈ L2.

Then, (4.3) gives that Υ3, Γ3, Λ3 ∈ L2, and hence (4.2) with (4.3) brings that

∂t∂
4
xw(1) = ∂6

xw(1) + ∂4
xΦ(1, ξ)

= ∂3
tw(1)− Γ3(1, ξ, w(0), ∂tw(0)) + ∂4

xΦ(1, ξ)

=−∂5
xw(1) + Υ3

(
ζ[4], ∂xw(1), ∂

3
xw(1)

)
+ Λ3(ξ, w(0))

−Γ3(1, ξ, w(0), ∂tw(0)) + ∂4
xΦ(1, ξ)

=−∂5
xw(1) + ℓ2,

by which and then using Young’s inequality, we obtain that

∂5
xw(1)∂t∂

4
xw(1) = ∂5

xw(1)
(
−∂5

xw(1) + ℓ2
)
≤ −1

2

(
∂5
xw(1)

)2
+ ℓ1,

which gives the second inequality of Claim 2○.
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F. Proof of Claim 3○

With the proven fact that (4.4) when i = k − 1 in hands, (4.3) brings that

∂2k
x w(1) = ∂k

t w(1)− Γk(1, ξ, w(0), · · · , ∂k−2
t w(0)) ∈ L2,

∂t∂
2k−1
x w(1) = ∂2k+1

x w(1) + ∂2k−1
x Φ(1, ξ) = ∂2k+1

x w(1) + ℓ2.

Then, Young’s inequality leads to that

∂2k
x w(1)∂t∂

2k−1
x w(1) = ℓ2

(
∂2k+1
x w(1) + ℓ2

)
≤ 1

4

(
∂2k+1
x w(1)

)2
+ ℓ1. (G.1)

Moreover, (4.4) with i = k − 1 also gives that ∂2k
x Φ(1, ξ), ξ, w(0), ∂i

xw(0), ∂2i−1
x w(1) ∈

L2 ∩ L∞, i = 1, · · · , k − 1, and ∂2i−1
x w(1) ∈ L2. Then, (4.3) gives that Υk+1, Γk+1, Λk+1 ∈ L2,

and hence (4.2) with (4.3) brings that

∂t∂
2k
x w(1) = ∂2k+2

x w(1) + ∂2k
x Φ(1, ξ)

= ∂k+1
t w(1)− Γk+1

(
1, ξ, w(0), ∂tw(0), · · · , ∂k−1

t w(0)
)
+ ∂2k

x Φ(1, ξ)

=−∂2k+1
x w(1) + Υk+1

(
ζ[k+2], ∂xw(1), · · · , ∂2k−1

x w(1)
)

+Λk+1

(
ξ, w(0), ∂tw(0) · · · , ∂k−2

t w(0)
)

−Γk+1

(
1, ξ, w(0), ∂tw(0), · · · , ∂k−1

t w(0)
)
+ ∂2k

x Φ(1, ξ)

=−∂2k+1
x w(1) + ℓ2,

by which and then using Young’s inequality, we obtain that

∂2k+1
x w(1)∂t∂

2k
x w(1) = ∂2k+1

x w(1)
(
−∂2k+1

x w(1) + ℓ2

)
≤−1

2

(
∂2k+1
x w(1)

)2
+ ℓ1. (G.2)

G. Useful inequalities and criterions

The following four lemmas give some useful inequalities.

Lemma G.1. ( [11]) (Agmon’s inequality) For any continuously differentiable function w defined

on [0, 1], there hold {
max[0,1]w(x)

2 ≤ w(0)2 + 2∥w∥∥wx∥,
max[0,1]w(x)

2 ≤ w(1)2 + 2∥w∥∥wx∥.

Lemma G.2. ( [11]) (Poincaré’s inequality) For any continuously differentiable function w

defined on [0, 1], there hold {
∥w∥2 ≤ 2w(0)2 + 4∥wx∥2,
∥w∥2 ≤ 2w(1)2 + 4∥wx∥2.
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[2] B. P. Delphine and M. Krstić, Delay-adaptive predictor feedback for systems with unknown

long actuator delay, IEEE Transactions on Automatic Control, 2010, 55(9), 2106–2112.

[3] J. Deutscher and N. Gehring, Output feedback control of coupled linear parabolic ODE-PDE-

ODE systems, IEEE Transactions on Automatic Control, 2021, 66(10), 4668–4683.

[4] J. Deutscher, N. Gehring and R. Kern, Output feedback control of general linear heterodi-

rectional hyperbolic ODE-PDE-ODE systems, Automatica, 2018, 95, 472–480.

[5] J. Deutscher, N. Gehring and R. Kern, Output feedback control of general linear heterodirec-

tional hyperbolic PDE-ODE systems with spatially-varying coefficients, International Jour-

nal of Control, 2019, 92(10), 2274–2290.

[6] N. Gehring, A systematic backstepping design of tracking controllers for ode-pde-ode systems

with nonlinear actuator dynamics, Advances in Distributed Parameter Systems, Springer,

Cham, 2022, 171–196.

[7] A. Hasan and S. X. Tang, Boundary control of a coupled Burgers’ PDE-ODE system, In-

ternational Journal of Robust and Nonlinear Control, 2022, 32(10), 5812–5836.

[8] X. He, Y. Ma, M. Chen and W. He, Flight and vibration control of flexible air-breathing

hypersonic vehicles under actuator faults, IEEE Transactions on Cybernetics, 2022, 53(5),

2741–2752.
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