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THE PERSISTENCE OF AN AGE-STRUCTURED SYPHILIS MODEL

Chenkai Guo! and Peng Wul{

Abstract Syphilis, a highly infectious bacterial infection, poses a significant health threat
globally due to its high morbidity and mortality rates. Predominantly transmitted through
sexual contact, the age distribution among hosts plays a pivotal role in the disease transmis-
sion dynamics. In this paper, we first formulate an age-structured epidemic model with four
infection stages (primary, secondary, latent and tertiary) and then derive the explicit expres-
sion of the basic reproduction number by using the next generation equation. According to
the definition of the persistence and applying advanced mathematical techniques, including
multiple integral reordering, variable transformations, Laplace transforms, and the method
of contradiction, we not only prove the weak persistence but also the strong persistence of
the disease.
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1. Introduction and model

Syphilis, a sexually transmitted disease caused by the bacterium Treponema pallidum, follows
a complex pathogenesis. Upon infection, which occurs through mucous membranes or skin
breaches, the pathogen establishes a primary chancre at the entry point. This initial lesion serves
as a site for bacterial multiplication before Treponema pallidum spreads systemically through
the bloodstream, avoiding detection by the immune system due to its minimal antigenic variation
and adept immune evasion tactics. In the secondary phase, the infection proliferates, manifesting
in diverse clinical signs such as skin eruptions, mucosal lesions, and systemic symptoms. Left
untreated, syphilis may advance to latent and tertiary stages, impacting various organs and
inflicting significant harm.

The consideration of age structure is crucial in modeling biological processes, reflecting phys-
iological variations across different life stages. Building on the foundational work of McK-
endrick [15], age-structured models have become a staple in addressing biological and epidemi-
ological challenges, as detailed in the seminal works of f Webb [19], Iannelli [11], Capasso [3],
Inabacite [13], Wang et al. [18], Zhang et al. [2], Li and Yang [29]. These models, which have
been instrumental in understanding disease dynamics, include the renowned epidemic model
introduced by Kermack and McKendrick [14]. Given that syphilis primarily spreads through
sexual contact, the age distribution within the host population is a pivotal factor in its transmis-
sion. The primary goals of this study are to develop an age-structured model for syphilis that
encompasses four stages of infection—primary, secondary, latent, and tertiary—and to investi-
gate the model’s dynamical properties. It’s important to note that the persistence of syphilis in
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age-structured models cannot be directly assessed using the persistence theories found in tra-
ditional literature, such as that by Zhao [28]. Establishing persistence in these models requires
a foundational approach to defining persistence and the application of advanced mathematical
techniques, including multiple integral reordering, variable transformations, Laplace transforms,
and the method of contradiction.

Drawing on previous models of syphilis transmission formulated through ordinary differen-
tial equations (ODEs) [8, 12,25, 30], we incorporate the following fundamental compartments:
susceptible individuals (S), exposed individuals (E), individuals in the primary stage of infec-
tion (1), those in the secondary stage (I2), individuals in the early latent phase (L;), those
in the late latent phase (L), and individuals in the final (tertiary) stage of infection (I3). For
a detailed introduction to the process of syphilis, please refer to literatures [20,22]. To delve
into the epidemiological dynamics of syphilis within a stratified age demographic, we define
S(a,t), E(a,t), I(a,t), Is(a,t), L1(a,t), La(a,t), and I3(a,t) as the age-specific distributions of
individuals across these stages at time ¢ and age a. Consequently, we introduce the following
age-structured syphilis model that captures these dynamics

(a@t ; 5’) S(a,t) = —ola,1)S(a,1) — pla)S(a, ),

(51 N ;) E(a, 1) = ola, )S(a, 1) — (8(a) + p(a)) E(a, 1),

<§t N ;) L(a,t) = 6(a) B(a,t) + L (a, ) — (o) + p(a)) I (a, 1),

(gt N ;’) I(a,t) = o(a)ly(a,t) + Li(a,t) — (5(a) + p(a) + &(a)) o(a, 1), (1.1)
(gt + ;) Li(a,t) = n(a)a(a,t) — (¢(a) + (@) L (a, 1),

(gt ; (,f’) Lo(a,) = C(a)La(a,t) — (0(a) + p(a)) La(a, ),

<gt n ;;) Is(a, t) = £(a)Ia(a, t) + 0(a) La(a,t) — p(a)I3(a, t),

with boundary conditions

S(0,t) = A, E(0,t) = 0, 1,(0,£) = 0, I5(0,) = 0,
L1(0,t) = 0, Ly(0,t) = 0, I3(0,) = 0

and initial conditions

S(a,0) = Sp(a) > 0, E(a,0) = Ey(a) > 0,
Il(a,O) = Ilo(a) > 0,[2((1,0) = Igo(a) > 0, (1.3)
Li(a,0) = Lip(a) > 0, La(a,0) = Lag(a) > 0, I3(a,0) = I3g(a) > 0.

We denote the infection rates for primary stage syphilis by a(a), for secondary stage by 8(a),
and for early latent stage by v(a), corresponding to the infected individuals I (a, t), I2(a,t), and
Li(a,t), respectively. Additionally, we let B(a) signify the effective contact rate for individuals
of age a. Consequently, the transition rate of susceptible individuals into the exposed category
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(those infected but not yet infectious) is given by o(a,t)S(a,t), where

oo.t) = /Oamax a(a,s)l1(s,t) + B(a;?fi;,t) +3(a, )Ly (s, t)

ds, (1.4)
in which

N(a,t) = S(a,t) + E(a,t) + Ii(a,t) + I2(a,t) + L1(a, t) + La(a,t) + I3(a,t),
d(a, s) = B(a)a(s), B(a, 5) = B(a)B(s), 7(a, s) = B(a)7(s),

and amax > 0 represents the maximum age of the population. The exposed individuals then
progress into the primary stage I(a,t) with rate §(a), the secondary stage Iz(a,t) with rate
o(a), the early latent stage Li(a,t) with rate n(a), the late latent stage Lo(a,t) with rate ((a),
and the tertiary stage I3(a,t) with rate 0(a), respectively. u(a) is the age dependent mortality
rate for all individuals and d(a) is syphilis-related mortality rate. A portion of secondary stage
&(a)Iz(a,t) will develop into the tertiary stage directly. In this section, we study the persistence
for system (1.1) under initial and boundary conditions (1.2)-(1.3). For the sake of simplicity, set

O N 0 = N S0 Vg T
then, we can rewrite system (1.1) as follows:

(gZ n ‘;i) = — 0(a,t)s(a,t) + d(a)is(a, t)s(a,t),

(gz ?;) —6(a, D)s(a, t) — 5(a)ela, ),

(?92 52) =b(a)e(a,t) + (1 - w(@)li(a,t) - o(a)ir(a,1),

@ij . 3;;) —o(a)ir(a,1) + e(@)w(a)li(a, t) — (n(a) + £(@))ia(a, 1), (16)
(G + 5t ) =nl@ia(ent) - clalis(ant),

(glz fjj) —¢(@)l1(a,) — B(a)laa, 1),
@ij N a@f) —¢(a)ia(a, ) + 0(a)lala, 1),

where g(a,t) = [;™(a(a,s)i(s,t) + B(a, s)iz(s,t) + 7(a,s)li(s,t))ds. Corresponding initial
values and boundary conditions for system (1.6) are
s(0,t) = 1,e(0,t) = i;(0,t) = 1;(0,t) = i3(0,t) = 0, s(a,0) = so(a),

6((1, 0) == 60((1), ij(a, 0) = ijo(a), lj(a, 0) = ljo(a), ig(a, 0) = i30(a),j = 1, 2. (17)
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Assumption 1.1. We suppose that
1. The population is homogeneously mizred and population activities are free from outside
interference;

2. The natural death rate p(-) is locally integrable and fam‘”‘ (a)da = +oo;
5/(‘7 ) € Lio((()?amax) X (07 amax)) 5()7 B()? U(')? f(); C()? 77(')7 w(' ’ 6()

all these functions are extended by zero outside of [0, amax]-

K ')a B(a ')7

According to the definition in [31], we can define the basic reproduction number as

Ro = F(0) = /0 " (@), (0, 0) + Bla)TT, (0, a) + ~(a)Ty, (0, a))da, (1.8)

I, (a) = /0 5(s) /0 B(l) exp {— /l 5(7)d7} exp {— /:(A + a(T))dT} dlds,

M) = [ ot sesp { - [+ 5(7))d7} ds,

0

1, (a) = /0 "), O\, 5) exp {— / aq(f)df} ds.

In our pervious works, we not only studied the well-posedness and the stability of system (1.6)
but also presented the optimal control problem and conducted some numerical simulations for
system (1.6), the readers refer to [21,23] for details. However, we have not addressed an extremely
important issue in the field of infectious disease modeling research: the persistence of the disease.
We will focus on analyzing the issue of system (1.6) in this paper.

where

2. Persistence of the disease

In this section, we prove the persistence of the disease. Note that the concept of persistence can
be further classified as weak persistence, strong persistence, uniform weak persistence and uni-
form persistence [6,7]. Since age-structured models are first-order hyperbolic partial differential
equations, we cannot use the comparison principle and then apply the strong repeller theory
(Chapter 1 in [28]) to show the uniform persistence of our model. Differing from the method
that mentioned in [9] (the persistence theory of general infinite dimensional systems), we will
prove the persistence conclusion of the age-structured syphilis model by using the definition of
persistence [28]. The classic technique in [17] only provides weak persistence conclusion for age-
structured SIR models and does not provide strong persistence conclusion. Kunyia et al. [16]
prove the uniform strong p-persistence of an age-structured SIRS epidemic model in an innova-
tive way. In this section, for the complex age-structured syphilis model we not only obtain weak
persistence conclusion but also strong persistence conclusion.

We first set
b= {~ [ st ():exp{_/“a<s>ds},
c1>2(a)_exp{ /n( )d} P3(a { /5 }
ot =en{- [ o}
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and chose Gmax = +00. Then, we introduce
s(a,t) = s(a,t), s(a,0) = so(a), @3(a, ) = qm,%(a,m - %éj’)gw,
z1(ayt) = f}fj(’;),xl(a,()) - ;)Oe((z)),ajg(a,t) - i&fi’a t)),xz(a,O) - g?ﬁi; (2.1)
za(a,t) = ljlflcz;’;) 4(a,0) = g?((g

From system (1.6) with w(a) = d(a) = 0, these new variables in (2.1) take the form

(35 N a;) = —5(a,t)s(a, t), (85;1 + %?) = gj(’j))S(a,t%

da Bt
A RN AC)) Oz3 | Oz3\ _  ®i(a)
<8a+ 6t>_ <I>1(a)$1(a’t)’ da ot ) ®g(a)®3(a)x2<a’t)’
Org | Owa) _ P5(a) - —0,m =
(G4 55t ) == G, 00,5(0.0) = 10 0,0) = 0 = 1,231,

where ®'(a) = d®(a)/da, d(a,t) = B(a)¥(t) with
+oo
w(t) = /0 (a(@)®1(@)as(a,t) + Bla)®a(a)®3(a)ws(a,t) + 7(a)@i(a)e(a ) ) da,

We call W(t) the infective force at time ¢ [17]. Denote that x! (a,t) = z,,(a,t) for t > a and
20 (a,t) =z (a,t) for t < a,m = 1,2,3,4. Thus, we have

U(t) :/0 a(a)q)l(a)x%(a,t)da—i—/o B(a)®a(a)®3(a)x3(a,t)da

+ /Otfy(a)@l(a)x}l(a,t)da + /t+oo afa)®(a)zy(a,t)da (2.2)
+00 +oo
+ t B(a)q)g(a)@g(a)xg(a,t)da +/t v(a)®;(a)xd(a, t)da.

Applying the characteristics line method, we obtain that

exp{—/ @(a—s,t—s)ds},tzaz(],

0
¢

So(a—t)exp{—/ @(a—s,t—s)ds},a>t20,
0

“*t s(a — s,t —s)o(a — s,t — 8)
1(a, 1) _/0 s ds + z10(a — 1),

where a % t = min{a, t}, zymo(a —t) =0 for a < t,m =1,2,3,4, and

_ axl(T’t+T_a) T ron(a —

s(a,t) =

o a:Eg(T,tJrT*CL)
ad == [ e

_ aﬂ?g(T,t“PT*a) T xranla —
:64(@7” a /[a,t]+ (I)I(T) d((IDZ( )) " 40( t)7

d(®1(1)) + z30(a — 1),
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where [a, t]; is the positive part of [a — t] which is (a —t) for a > ¢ and 0 for a < ¢t. Thus, after
some calculations, we have

// ct—a+c ct—a+c)d df;((;)),

at) = / (/T (ct—a+c) (cta—i—c)dc_'_xlOth) d(® (T ))—l—xgo(a—t)

D (c) D (1)

La,t) /// t—a+c t—a+c)dcd((1)<1>le(())) d(P (T)))

23(a,t) = /at</at (/:t (Ct_aJr(;z(c()Ct_aJrc)d +:1:1o(r—t)> d(sle(%))

+ 3320(7' — t)) qm + $30(a — t),

and

// //lsct—a+c (c.t—a+tc), d(®c() d(®i(r)) d(Ps())
o Jo Jo Jo Q1(1) Pa(r)Ps(r) ’

o7
xi(a,t):—/ﬂ t</aTt</a t(/lt = t_a+<IfZ(c() a+c)d +.’E10(l—t)> Qi((ll)))

o) S e ) o,

where d(®(a)) represents the derivative of ®(a) with respect to a.
Since g(a,t) = B(a)¥(t), we can obtain the following expression of ¥(¢) from (2.2)

w(t)

/ 1(a // t—a+c ta+c)dcd(q;{>1€((:)))da

/5 ) By (a)B5(a //0/Osct a—l—c ct a+C)dcdge(()))d§1(g_T)))d@

/ 23 (a / / //Olsct—a+c ct—a+c)d dﬁe((ll)))q)i((j);q()z)(
+/t+oo (a)1(a )[_L—t (/a; e t—a+£:(c()c t_a+c)dc+xlo(7—t) d(;)le(T))

+x90(a — t)] da

i tmﬁ(a)@ (@)Bs(a) [/t(/t(/ (”‘“qu ole,t—ate),
d(
(

—|— CBQ(] t) o, 7_)1
)

+r10(r — t))

™) +l‘30a—t:|da
3

)3
+[% [“(/ [ (e e )

xd(q) ) + 20(7 t)) d((r)1<1>2(3ﬂ) + 230(T — 75)> (@(S)) + z40(a — t)] da.
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For the first integration part in (2.3), we change the order of the integration and obtain that

t—a+c)( t—a+c), d®(r))
/ ) [ [ 1R “om

- B ®) g [ A,

—— [ ["sti—a+vue-arnsila [ da.

(2.4)

(I’l(T)

then we change the variables ¢ = a and ¢ — b = r and change the order of the integration in
(2.4), yields

_/t (a)®1(a )/a (t—a+b)\IJ(t—a+b)£’(b)db/b“d(@e(r))da
/0 t—r/ Bla-r)
/otqjt_r/ (@ —r,t—r)Ki(a,a —r)dadr,

where Ki(a,a — 1) = a(a) Bla T)) e gigf_gd(@e(ﬂ). Changing the variable ¢ — ¢ = w in the

P (a—
fourth integration part in (2.3), one has

/t+°° o(a)®1(a) [— [ </_t S(C’t‘“qffc(;’t‘a“)dc

+ x10(T — t)) dfle((?) + z20(a — t)] da
- too t+w C c— w)\Ij ) (C) d(q)e(T))
__/0 ot + w) Pyt “"/ / o ( ) “om " @)
+00 b d(Pc(7))
“+o0o
+ /O a(t + w)Pq (t + w)xeo(w)dw
Aq(t)

From the expression of ®.(a), it follows that () > 0. Similarly, changing the variables and
the order of the integration several times, we can obtain

s(e,t —a+c)o(e,t —a+c) , d(Pe(r)) d(Pi(7))
[ ssareato [ [ [0 TR0 B

:/0 \I/(t—r)/ s(a—rt - r)Ka(a,a — r)dadr,

ct—a+c)ple,t —a+c) , d®e(l) d(@i(r) d(Pa(r))
/ a)®i(a //// P (c) fe Pi(l) Po(r)Ps(r) Pu(r) da

:/thz(t_m/r sla —rt — 1) Ky(a,a — r)dadr,
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where

Ks(a,a — 1) = B(a)P2(a)®s3(a) B(a — 1) /a /T d(q’e(:)) d(®1(7)

B B(a—r) [ T ! d(®c(1)) d(P1(r)

Koo =s@n@g = [ [ S ae
Furthermore, we have

tm B(a)®2(a)®s(a) [ / at < /;t </t et qu)(g()c Lt

Fao(r — 1)) dﬁ"’(ﬁ?) + o0 (T — t)>

B ()3 (7)
400 t+w T T g
[Tt wmew) [

d(®c(r)) d(®1(d7))

Dy(r) Po(7)P3(7)

+oo t+w T
+ 6(t+w)<1>2(t+w)q)3(t—|—w)/ xlo(w)/

+oo

0
e ddy (1)
B 0 B(t+w)<b2(t+w)q’3(t+w)x20(7v‘))/w W

—+00

+ Bt + w)Pa(t + w)P3(t + w)zs0(w)dw

= Ay(t)
>0,

/t+oov(a)<1>z(a)[ (at<a_ < s(e,t—a+c¢)o ()ct—a—i—c)d +x10(l_t)>
+z

&
S

and

d(®e(1) d(® ( ) 50(7 — )) d(q(flz( ))) + 240(a — t)] da

)
Caw T )> ()%3(7) (
e tho e~ w)¥le wB(), dOlD) dDi()
__/0 ”“’”*w/w / 3.(0) YB0() Ba(r)@a(r)

AN [ e [ vt [ [ A2l (1)
)

D7 () ®a(r)®s3(r)

) (! 3
xd((bQ(T))dw—i- +Oofy(t+w)<l>l(t+w t+wx20(w) T_d(®i(r)) d(® ()) dw
Py(7) 0 w w P2(r)®3(r) Py(7)

400 t+w d((I) (7_)>
_ /0 (4 w) By (t + w) /w 30(w) q)fm dw
+o0
+/ y(t + w)Py(t + w)x40(w)dw
0
= As(t)
> 0.
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Finally, based on (2.5)-(2.8), we can rewrite the expression of ¥(t) in (2.2) as follows:
t t
U(t) :/ U(t—r) / s(a —rt—r)(Ki(a,a,—r) + Ka(a,a —r) + K3(a,a — r))dadr
0 T
3
+)A;®). (2.9)
j=1

Next we study the weak persistence of the disease and have the following result.

Theorem 2.1 (Uniform weak persistence). Under Assumption 1.1, if Ro in (1.8) with

Gmax = +00 18 larger than 1, then the disease is uniformly weakly persistent in the sense that

the infective force W(t) is not 0 a.e., satisfies ¥ = limsup ¥ (t) > ¢ with ¢ > 0 not depending
t—o0

on the initial values.

Proof. By (2.9), we have ¥(t) > [JW(t —r f s(a —r,t — r)(Kl(a a—r1)+ Ks(a,a—r)+
Ks(a,a — r))dadr. Setting \Ilw = U(t + w), one has W, (t) > [7 0, r) [Ps(a—rt—r+
w)(Ki(a,a —r)+ Ka(a,a — 1) + Ks(a,a — r))dadr. Suppose that \II( ) < gb for ¢ > w and note
that

s(a,t) = exp {— /Oa\Il(t —r)B(a — r)dr} ,t > a,
s(a,) = so(a — t) exp {— /Ot W(t — r)Bla - r)dr} t<a,

then we obtain s(a—r,t—r) > e~ ?@=7) for ¢ < t and U, ( >f0 (t—r fte_¢a "NK1(a,a—
r) + Ka(a,a —r) + K3(a,a — r))dadr, which leads to

\I/w-i-W (t) :\ij (t + W)

t r+W
2/ Uw(t—r) / e (K (a,a — 1) + Ko(a,a — )
0 T

+ K3(a,a — r))dadr. (2.10)

Taking Laplace transforms~on the both sides of (2.10) yields Uy (v) > sy (1) k(, v, W),
where k(¢, v, W) = +O° e IWJFT e @)K (a,a — 1) + Ko(a,a —r) + K3(a,a — r))dadr. ITn
fact, by the boundedness of @, it follows that the Laplace transform of W,y is defined on
[0,400). Moreover, it is obvious that k(0,0,+00) = R > 1 and k(¢,v, W) > 1 when ¢ and v
are taken sufficiency small and W sufficiency large. Hence, we can verify that \/I}S+W(V) =01i.e.,
Uerw is 0 a.e. on [0,+00). Thus, we can say VU is eventually 0 for a.e. ¢ > r. To completes
the proof, it suffices to derive the condition such that every infective force ¥ that is eventually
0 a.e. on [0, +00). Since s(a —r,t —r) > e~ (@) for t > a, where ¥ is the supermum of ¥(t),
then we have

t t
U(t) > / U(t—r) / e YO (K (a,a — ) + Ka(a,a — r) + Ks(a,a — r))dadr-.
0 T
Suppose that ¥ is eventually 0, then there admits some W > 0 such that ¥(t) =

t > W. We take W > 0 such that [, ¥(t)dt = 0, then (¢ >f0 t—r —YWrY
r) + Ks(a,a — 1) + Ks(a,a — r))dadr,0 < t < W, which leads to fW fo —r) [ (Ki(a,a —
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r) 4+ Ka(a,a — 1) + Ks(a,a — r))dadrdt = 0. Further, changing the order of integration several
times and recalling that ¥(¢) = 0,t € (W, +00), then we obtain

w 00 T
/0 ‘I’(T)/W T/ (Ki(a,a+ s)+ Ka(a,a+ s) + Ks(a,a + s))dadsdr = 0.

Choosing some W such that ¥ does not vanish a.e. on (0,W — ¢1) for ¢1 € (0,W). Thus, we
have

W—¢1
/ / (Ki(a,a+71)+ Ka(a,a+ 1) + Kz(a,a+r))dadr = 0. (2.11)
1
Taking ¢ — 0 and changing the order of the integration in (2.11), one has
W—¢1
/ / (Ki(a,a+1)+ Ks(a,a+r) + Ks(a,a+r))dadr
1

- " (Ka(a,5) + Fola,b) + Ks(a, b))dadb
0.

Recalling the expression of K;(a,b) (i =1,2,3) in (2.6), we have

w +o00 a
/ / a(a) Bb) /b ET;d( o(7))dadb
” B(b) 2.(r)) _d(@:(7))
/ Bla)Px(a)@s(a) 5 / / <I>1 OR 7)11)3(7))dadb
o b) O (1) d(®i(r) d(®a(r)) ,
+/O /b 7(a)<1>z(a)¢e(b)/b /b/b @1(1) @2(T)¢3(T)) B1(7) dadb = 0.

Setting ®,(a + s)/®,(a) = ®.(s), 2 = ¢,1,2,3, and changing the variables and the order of the
integration which mentioned in Theorem 4.2 [17], then we obtain

+0o0 a (I)l(a) - W oo » )
/ / /b <I>1(7_)d(<1>e(7))alaalb—/0 a(a) ) B(b)T'1(b — a)dbda,
+o00 too
T1(b) = / ©1(b— 5)d(e(s)), 333%) B(a + b)I'(b)db = i B(b)T (b)db,

(r) d(®1(7))

CI>1 @2 (1) @3 (r ))dadb

/ /+°°B )P2(a)®s(a

:/O ﬁ(a)/a B(b)['s(b — a)dbda

W +o00
:/ B(a)/ B(b + a)l'y(b)dbda, where
0 0

b T
—/0 /0 B1(b— 5)d(Do(5))Ba(b — 7)Bs(b — 7)d(D1 (7)),

+00 +oo
lim [ B(a+b)Ta(b)db = / B(b)la(b)db,
0

a—0 0
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Wb B() [* [7 [Ld(®@.0) d@i(r)) d(@a(r))
/0 /b 7‘“)‘I”(C‘)cbe(b)/b /b /b (1) Do(r)3(r)) Bu(r) P
w “+00

_ /0 +(a) / B(b)Ts(b — a)dbda

and

W +o00
:/ ry(a)/ B(b + a)l'3(b)dbda, where
0

0
b T !
I3(b) = /0 /0 /0 D1 (b — 5)d(Pe(5))Po(b— 1)D3(b — 1)d(D1(1)) Dy (b — 7)d(Do(T)),
im [ BO+as®ydb= [ BETsb)db.

a—0 0 0

Thus, we have derived the condition such that ®(t) is eventually 0 a.e. on [0,400), namely

w +o0 w 400
/ a(a) / B(a + b)T's (b)dbda + / B8(a) [ B(a+b)Ta(b)dbda
0 0 0 0 (2.12)

w +oo
+/O 'y(a)/o B(a + b)Ts(b)dbda = 0.

According to the condition of Assumption 1.1, (2.12) is obviously impossible to hold. Hence,
the result of Theorem 2.1 holds. This completes the proof. O

To prove the strong persistence of the disease, in addition to Assumption 1.1, we also need
to make the following assumption.

Assumption 2.1. We assume that the initial valus so(a),eo(a), ixo(a), lio(a) € L(0, amax) are
extended by zero outside of [0, amax], k= 1,2.

Theorem 2.2 (Strong persistence). Under Assumptions 1.1 and 2.1, if Ro > 1 and the
infective force in (2.9) W(t) # 0, then the disease is strongly persistent; i.e., Voo = litm inf W(¢) >
—00
0.
Proof. We proof the theorem by contradiction. Suppose that ¥(¢) # 0 and Vo, = litm inf W(¢)
—00

= 0. Since ¥(¢) in (2.9) is uniformly continuous on t € [0,400), we can verify that W(¢) is not
zero a.e. (almost everywhere) when Rg > 1. From Theorem 2.1, we know that ¥>° > ¢. Hence,
there exists a subsequence satisfying

\IJ(SJ) = ¢, 'hin \I/(tj + Sj) — 0, \I/(t + Sj) <o, Vte [O,tj], (2.13)
j—+oo

where s;,t; € (0,400),j € N and s; = +00(j = +00). For t € (—o00,+00), we define ¥;(t) as
follows:

_ ‘lj(t—f-Sj),tE [—Sj,—l—oo),
i) = {\1}(0),75 € (—o0,—5,). (2.14)
From the expression of ¥(¢) in (2.9), we get
t+s; t4s;—r b
(1) :/0 \I/(t—r)/o exp{—/O \If(t—r—S)B(s)ds} (K1(b+7,b)
(2.15)

3
+ Ka(b+1,b) + Ks(b+1,b))dbdr + > Ap(t +s;) for t € [—s;,+00).

m=1
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According to condition (3) in Assumption 1.1, Assumption 2.1 and the expression of A,,(t)(m =
1,2,3) in (2.7)-(2.8), we know that

Ap(t) = 0 (t = +00). (2.16)

Since ¥(t) is bounded, nonnegative and uniformly continuous on ¢ € [0, +00), it follows that
W, (t) is nonnegative, uniformly bounded and equicontinuous with respect to j on t € (—oo, +00)
[4]. Hence, based on Arzela-Ascoli Theorem, we know that there exists a subsequence of {VU;(¢)}
(still denote as {¥;(t)}) which is convergence, namely, there admits a nonnegative bounded and
continuous function ¥(t) such that

B(t) = lim W;(t),Vt € (—o0, +00). (2.17)

j—+o0

Note that s; — 4o00(j — 400) and (2.16), we set j — +oo in (2.15) and obtain the following
result by using Dominated Convergence Theorem [1]

+o00 +oo b
U(t) :/0 \if(t—r)/o exp{—/O \i/(t—r—s)B(s)ds} (K1(b+7,0b)
+ Ka(b+7,b) + K3(b+r,b))dbdr for ¢ € (—o0,+00).

(2.18)

Next, we discuss the property of {¢;}. If t; — 400(j — +00) is not true, then {¢;} has a
subsequence (still denoted as {t;}) which satisfies t; — to(j — +00), further from (2.13). Thus,
since ¥(¢) is uniformly continuous on ¢ € [0, +00), it follows that for any fixed @ > 0, there exists
a jo such that W(t+s;) < ¢+w,Vt € [0,]. Further, we have limsup ¥(t+s;) < ¢,V t € [0, to].

Based on (2.17) and the definition of ¥(¢) in (2.9) we have e
U(t) < ¢,V t €0, t0). (2.19)
Combined (2.13), (2.14) with (2.17), we further obtain that
U(0) = lim U(s;)=¢ >0, U(ty) = lim W(ty+s;) =0,t; — to. (2.20)

J—+oo J—+oo

Thus, we can immediately obtain that W;(0) = ¥(s;) > ¢/2 for large enough j. Since {¥;(¢)}
is equicontinuous on t € (—o0, +00), it follows that there admits a appropriately small Ty > 0
such that

\I/j(t) > ¢/4 = ¢1,t € [0, T()] (221)
Note that functions B(a), a(a), 3(a) and y(a) have a positive lower bound for a € [0, amax],
then we can define the domain of exp {— fé) @B(s)ds} (K1(b+7r,b)+ Kao(b+7,b) + K3(b+1,b))

(U represents the supermum of W(¢)) as D := {(b,7)[b > 0,7 > 0,0 < b+ 1 < amax} and denote
the positive lower bound of D as P. Without loss of generality, we assume Ty < Gmax, from
(2.15), we have

W;(t) z/tt 1 (/Ot_T(Kl(b-i-r,b) + Ko(b+1,b)

—To

b
+ K3(b+1,b)) exp{— /0 B(s)@ds}db) dr.
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Because of the inclusion of the integration region at the right end of the above equation in D,
it is easy to obtain that

T2
,(t) > 70P¢1,V t € [Ty, Gmax)- (2.22)

Based on (2.21) and (2.22), we have

2
Wj(t) > b2, V1 € [0, amas], 6 = minfor, "2 P}, (2.23)

which leads to ¥(t) = limj 400 ¥j(t) > 0,t € [0, amax|. For any fixed t € [amax, %amax], from
(2.15) and (2.23), we get

(1) z/j ¢2</0t_T(K1(b+r,b) + Ko(b+1,b)

—0Omax

b
+ K3(b+1,b)) exp{— /0 B(s)@ds}db) dr,

it further leads to W;(t) > a?réax Py, t € [amax, %amax}. Similarly, we can obtain W;(t) > ¢3,t €

[0, 3amax], #3 = min{¢s, a?ré‘”‘ P¢o}, which implies that W(t) = lim; 400 ¥;(t) > 0, € [0, 3 max]-
By analogy, using the same method, the range that satisfies W(¢) > 0 can be increased by amax/2
each time. Thus, we have

U(t) = lim W;(t) >0,t € [0,4+00), (2.24)

J—+o0

which leads a contradictions with (2.20). Hence, we can assume t; — +o00(j — +00). Con-
sequently, for any fixed ¢t* > 0, there admits a jo such that t; > to when j > jo. Based on
U(t+s;) < ¢,t €[0,t*] in (2.13), it is easy to obtain that

limsup U(t + s;) < ¢, € [0, +00). (2.25)

Jj—+oo

Combined (2.13), (2.14) with (2.17), we immediately have ¥(0) = ¢ > 0. Using (2.14) and
(2.25) again, one has

U(t) < ¢,t €0, +00). (2.26)

Following the same proof process as starting from (2.20) to obtain (2.24), the following
inequality can be obtained from ¥(0) = ¢ > 0

U= lim >0,tc[0,+o0). (2.27)

Jj—+oo

Thus, according to (2.18), (2.27) and using the contradiction method again, we can obtain that

limsup;_,, o, ¥(t) > ¢, which leads to a contradictions with (2.26). Hence, the assumption about

U, = litm inf U(¢) = 0 is not true. In other words, ¥, = litm inf U(¢t) > 0 when Ry > 1, i.e., the
—00 —00

disease is strongly persistent. This completes the proof. O
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3. Conclusion

In this paper, we considered four infection stages of syphilis and constructed an age-structured
compartmental model. Subsequently, by following the approach outlined in [24, 26,27, 31], we
derived the explicit expression for the basic reproduction number Ry.

Compared to previous studies on classical age-structured epidemic models [5,10,31], we fur-
ther discussed uniform weak persistence and strong persistence of the disease following [4, 17].
The difficulty lies in the fact that age-structured models are described by first-order hyperbolic
partial differential equations, which cannot be studied directly by employing the persistence
theory mentioned in the classical references such as [28]. Specifically, constructing comparison
systems under the assumption of dissipation and subsequently deriving persistence conditions
via the comparison principle for ordinary differential equations (ODEs) or parabolic equations
is widely applicable to biological and epidemic models described by ODEs and reaction-diffusion
systems. However this method is not feasible for age-structured epidemic models. Therefore,
proving persistence for age-structured epidemic models necessitates starting from the funda-
mental definitions of persistence and employing techniques such as multiple integral reordering,
change of variables, Laplace transform methods, and combined with contradiction method, as
illustrated in the proof of Theorems 2.1 and 2.2. The approach in establishing persistence demon-
strated in this paper can be extended to other age-structured models in biology and medicine.
This is also one of the focuses of our future work.
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