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SEASONALITY OF RICKER MUTUALISM MODEL EMPLOYING
RATE INDICATOR WITH ALMOST PERIODIC FUNCTION

Seda Igret Araz't

Abstract In this paper, we implement a rate indicator function featuring an almost periodic
component to capture seasonal trends within the Ricker model, which represents a mutual-
istic framework. For the updated model incorporating this function, we derived parameters
that guarantee the uniqueness of the solution and confirmed that the initial conditions do
not affect the solution. We anticipate that this study will provide valuable insights into the
critical role of the rate indicator function and the influence of almost periodicity in analyzing
seasonal trends.
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1. Introduction and preliminaries

The concept of rate of change is fundamental in both mathematics and its real-world applica-
tions, providing a precise means to describe how one quantity changes in relation to another.
Essentially, the rate of change measures the speed or pace at which one variable changes with
respect to another, offering valuable insights into dynamic systems across diverse fields, includ-
ing physics, economics, biology, and engineering. Mathematically, the rate of change is defined
as the ratio of the variation observed in one variable relative to that of another. This formu-
lation enables the analysis of how systems evolve over time or in response to other influencing
factors. It is particularly useful in modeling relationships that are not constant, as it allows for
the examination of both linear and non-linear dynamics. For example, in medicine, healthcare
providers assess the variations in a patient’s vital signs, including heart rate and blood pressure,
to uncover any health concerns. In environmental science, the trend of carbon dioxide levels in
the atmosphere over time can reflect changes in the climate. In economics, the rate of change of
price with respect to quantity is known as price elasticity. Understanding the rate of change is
crucial for analyzing and modeling dynamic systems in the natural world and beyond. Whether
we’re studying the motion of objects, tracking the growth of populations, or investigating eco-
nomic trends, the ability to measure and interpret the rate at which things change allows us to
make informed predictions and decisions. By using mathematical tools such as the derivative,
we can capture the instantaneous rate of change, which gives us deeper insights into how systems
evolve at every point in time. The rate of change is not just a mathematical concept—it’s a
lens through which we can understand the world around us. The function that defines the rate
of change, can be called as the rate indicator function, is crucial for accurately representing the
real-world dynamics of the model in which it is incorporated. However, differential equations
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serve as mathematical representations of rate of change and appear as part of real-world prob-
lems. Nonetheless, specific modifications can be incorporated into these comprehensive models
based on potential of real-world problems. For instance, periodic or almost periodic functions [6]
can be used as parameters of models to capture seasonality behavior in models [1]. A model with
almost periodic behavior can still exhibit seasonality, but it would do so with slight irregularities
in the timing or magnitude of its cycles. Seasonality in this context becomes more flexible, ac-
knowledging that while patterns are still recurring and predictable in nature, their exact timing
or intensity may vary by small amounts. To handle this, time series models that can accom-
modate variations in periods (e.g., Fourier transforms, stochastic seasonal models, or flexible
decomposition methods) are typically employed. In [1], an almost periodic Ross—Macdonald
model with age structure for the vector population in a patchy environment is examined. Nu-
merical simulations reveal that the biting rate significantly impacts disease transmission, and
human migration may occasionally reduce the transmission risk. A condition is also numerically
determined to assess whether a control strategy regarding migration is necessary. Furthermore,
the results indicate that extending the vector’s maturation period is advantageous for disease
control, and the threshold length of the maturation period required for disease outbreak can
be computed. Finally, a comparison between the almost periodic and periodic models suggests
that the periodic model may either overestimate or underestimate the disease transmission risk.
In [11], a periodic model that incorporates vaccinations is introduced, and the existence of a
disease-free periodic solution is demonstrated. The basic reproduction number for the model is
derived, and it is shown that, depending on its value, either the disease-free periodic solution will
be globally stable, or the disease will persist in the population. The numerical simulations for
both scenarios are provided, supporting the theoretical results. Monthly measles data from Pak-
istan, covering the period from January 2019 to December 2021, are fitted to estimate unknown
parameters and determine the basic reproduction number. Numerical evaluations will then be
conducted to assess the impact of the seasonal contact rate, increased vaccination coverage, vac-
cine efficacy, and other key parameters on the transmission dynamics of measles. In [10], given
that monthly measles case data exhibit seasonal fluctuations, a susceptible-exposed-infectious-
recovered (SEIR) model with a periodic transmission rate, based on the model by Earn et al.,
is proposed to study the seasonal dynamics of measles epidemics and the impact of vaccination.
The basic reproduction number is calculated, the model’s dynamical behavior is analyzed, and
the model is used to simulate the monthly measles case data reported in China. Sensitivity
analysis of the basic reproduction number with respect to various model parameters shows that
measles can be controlled and eventually eradicated by increasing the immunization rate, im-
proving vaccine management, and raising public awareness of measles. In [17], the persistence of
a class of seasonally forced epidemiological models is examined. An abstract theorem on persis-
tence by Fonda is applied, and five different application examples are provided. In [14], a general
almost periodic model is proposed to describe a mutualistic interaction between two seasonal
species, where climate-mediated shifts alter their population dynamics. In the modeling pro-
cess, almost periodic functions [20] are used as parameters to capture the loss of synchronicity in
the population dynamics of the mutualistic species [19]. Additionally, it is considered that the
benefit each species gains from interacting with its partner is modeled by a family of increasing
bounded functions, which reflect the fact that the maximum benefit for each species is attained
when the partner species reaches high abundance. It is proven that a unique, almost periodic,
globally stable solution exists for the model when certain conditions on the model parameters are
satisfied. Numerical simulations of the model’s solutions reveal significant differences between
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results obtained within the periodic [4] and almost periodic frameworks [2]. Therefore, in this
study, this rate indicator function is specifically analyzed as an almost periodic function, with
the goal of exploring the seasonality of mutualistic interactions since. To achieve this, the rate
function is integrated into the Ricker’s mutualism model [12,13,16,18], and the conditions for a
single almost periodic solution are presented.

Now, we shall present some definitions that will be used in this study.

Definition 1.1. Let the function v € C' (R) be almost periodic. We assume that there exists
a number [ (¢) > 0 such that each interval of length [ (¢) contains a number 7. For each ¢ > 0
and t € R, if the following inequality

lYE+T)—v(t)] <e (1.1)

holds, then the function v is called an almost periodic function. The above collection of all
almost periodic functions will be denoted by AP (R) which is a Banach space endowed with the
usual sup-norm. An almost periodic function has a mean value which is formulated by [6]

T

M : AP (R) — R is a bounded linear functional with the property that f > 0 implies M [f] > 0.

Example 1.1. A well-known example of almost periodic functions is cos (t) + cos (\/it) The
graphical representation of this function is simulated in Figure 1.

Almost periodic function

Ll | !I“

2 T T T

Figure 1. Graphical representation of the almost periodic function presented in Example 1.1.

Definition 1.2. [9] Let f,g: Rx D C R* — R be a couple of differentiable and almost periodic
function on ¢t. Assuming that f (¢,u,v) and g (¢,u,v) are both uniformly almost periodic with
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respect to (u,v) € C for every compact C C D. We consider the following system:

W' (t) = f (t,u,0), (1.2)

fo (t,u,v) >0, (1.3)
gu (tu u, U) Z 05

above system is called as cooperative. If
fu (t,u,v) <0, (1.4)
gu (tv U, U) S 07

above system is called as competitive. We will say that (z (t),y (t)) are a sub-solution pair if

u (t) < f(t,u(
v () <g(t,u(t

~
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for every t € R. A super-solution (X (¢),Y (¢)) is defined similarly with the reversing inequalities.
We will say that a sub-solution (z (¢),y (f)) and a super-solution (X (¢),Y (t)) are ordered if
x(t) < X (t) and y(t) <Y (¢) for all t € R.

Theorem 1.1. Consider an ordered pair of a sub-solution pair (z (t),y (t)) and a super-solution
pair (X (t),Y (t)) of the above system such that x (t) < X (t), and y(t) < Y (t). Suppose that
there is no equilibrium point (ug,vo) such that z (t) < wug < X (t) and y (t) < vy <Y (t). If the
system is cooperative type, then it has an almost periodic solution satisfying x (t) < u(t) < X (t)
and y(t) < v(t) < Y (t) for all t € R. Furthermore, if (u(t),v(t)),(w(t),v(t)) denote the

minimal and mazimal almost periodic solutions having initial data satisfying x (0) < u(0) <
X (0) and y (0) <v(0) <Y (0). Then, any solution of system, converges to the product of strips

(w(®), @) x (u(t),v(t)).

2. Model formulation of mutualism interactions

In ecological modeling, understanding how two species interact is central to predicting popula-
tion dynamics. While competition and predation have been well-studied, mutualism—a biolog-
ical interaction where both species benefit—presents unique modeling challenges [21]. Classic
population models like the Lotka-Volterra equations often oversimplify mutualistic interactions,
sometimes predicting unrealistic, unbounded growth. The Ricker mutualism model arises from
the need to: incorporate density-dependent regulation, which prevents unrealistic population
explosions; account for mutualistic benefits in a nonlinear, saturating, or diminishing way; and
allow for more realistic discrete-time dynamics, especially suitable for species with seasonal re-
production [12, 13,16, 18]. Such a model is governed by the following system of differential
equations

Pll(t):pl (1—) P1—|—I{1P2P1,P1 (O)ZPPZO, (21)
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PQI (t) = P2 <1 - Z) P2 + K,QP1P2,P2 (0) = Pg Z 0,
where p1, po > 0 are respectively the intrinsic growth rates of species P; and P, Ki, Ko > 0
represent respectively the carrying capacity of P; and P,, k1 > 0 represents mutualistic effect
of species P, on species P; and k9 > 0 represents mutualistic effect of species P; on species P».
We will now demonstrate that the assumptions required for the next section are satisfied for the
model under consideration and depict the numerical simulation for original model.

Positivity of solutions. We shall check the positivity of the solutions of the model, provided
that the initial data are positive.

P P2
Pll (t) =p1 (1 — I(11> P+ kPP = Pll (t) > p1P1 — plfll (22)
K1 P} t
S N e e L2
Py (exp (p1t) — 1) + Ki
/ Py / P22
P2 (t):pg 1*?2 P2+I€2P1P2:>P2 (t)ZpQPQ*pQE (23)
Ky PY t
o Py () > g2l oxP (paf)

= P (exp (pat) — 1) + Ko
We can conclude that the solutions of the system are positive when P} (exp (p1t) — 1) + K1 >0
and Py (exp (pat) — 1) + K2 > 0.

The cooperative system. To examine whether the system is cooperative, we will use definition
presented earlier. The above model is cooperative since

0 0 Py
— P, P)=— 1-— | P PP | =1 P > 2.4
ap, ! (t, Pr, P») oP, (pl( K1> 1+ K1 (1) P 1) k1P >0, (2.4)
0 0 P
— J— = > .
ap, 2 (t, P1, P2) ap, <P2 (1 K2> Py + k2 (1) P1P2> koPy >0

Midpoint method for solution of the model. We will simplify above system as follows

Wt PL(E), P (8) = Py <p1 (1 - 2) ; mg) , (2.5)
Y2 (L, PL(t), P (t) = P ([)2 <1 — ?2) + n2P1> )

To solve this model, we employ the midpoint method [8] by applying the associated integral on

above equation and evaluation at the points at t = t,41 and t = t,. Therefore, we have the
following

H@mg:ﬂ@m+[mHﬂnﬂ@L&ﬁ»m, (2.6)

Pa i) = Pa ) + | T (r PL(7), Py (7))

Employing the midpoint method [3] yields

h h h
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h h h
Pyt =Pl +h [72 <tn+2,P1 <tn+ 2) e <tn+2>>] :

For the above model, the following parameters and initial data are considered

P1 (0) = 2; P1 (0) = 1;p1 = 0.1; P2 = 0.9; K1 = 20; KQ = 20; K1 = 0.009; Ro = 0.008272. (28)

In Figure 2, the numerical simulation of Ricker’s mutualism model is shown.

|
Eﬂ s
o 40k
20}
0 5 0w 15 2 25 30 3/ 40 45 50
40 ¢ . . . . .

Figure 2. Simulation showing the dynamics of the Ricker mutualism model in the absence of the almost periodic
function.

3. Ricker’s mutualism model with rate indicator function

In this section, we will incorporate the rate indicator functions [5,7] into Ricker’s mutualism
model [2,10-12] to control the process as needed. The mutualism model under investigation is
given by the following system:

P
P{ (t) = p1 (1 — I(}l) P+ r1PP, P (0) = PP >0, (31)

P

Py (t) = pa <1—K2> Py + ke PPy, Py (0) =Py > 0.
2

To perform our aim, we will replace the constants x; and ke with k1 (¢) and ko (t) . Here, k1 (1)

and kg (t) may be the functions of time that are obtained using experimental data after the

times t1, to, ..., t,, which can be considered here as day, week, month depending on data. In this

case, we can take such function as follows:

% (t—t:), (3.2)
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is called as rate. Also, k'*

rRITI ki
where the term - tl
s

and t;, respectivefy. Sfmilarly, we have

Uand s} are the observed data at times t;,

t) = Kb Lﬂ_”ét—t- 3.3
Ko (t) = Ky + =(t—ti), (3.3)
tz+1_tz

where Iﬁé+1 and ﬁé are the observed data at times ;41 and ¢;, respectively. Moreover, the rate
indicator function can be chosen as any regression model, piecewise interpolation polynomial, pe-
riodic, almost periodic, quasi periodic under suitable conditions. Using the idea of rate indicator
functions [5, 7], our model is modified as follows:
P _ Py _ p0
1(t)—p1 (1—[(1> P1+I€1(t)P2P1, Pl(O)—Pl >0, (34)

P
PQI (t) = p2 (1 — KZ) Py + ko (t) PP, P (0) = PQO > 0.

Specifically, it is worth noting that in this study, we will choose the rate indicator function as
an almost periodic function.

4. Existence and uniqueness of solution of mutualism model in-
corporating the rate indicator function with an almost peri-
odic function

In this section, we examine the existence and uniqueness of solutions to the mutualism model

incorporating rate indicator functions characterized by almost periodic functions. Furthermore,

we perform numerical simulations of the modified model under varying initial conditions. To
achieve our aim, we recall our modified model:

P
PL(t) = p1 (1 - Kl> P+ k1 (t) PP, P (0)=P >0, (4.1)
1
/ _ Py _ p0
P2 (t) =pa|1— E Py + ko (t) PP, P (0) = P2 > 0.
For simplicity, we design above system as follows:
P/ _ Pl _ 0
1 (t) =P p1+V1(t,P2)*f)1E , P1(0)=Py >0, (4.2)

P
Py (t) = Py <02+’Yz(t,P1)—p2[{22)7 PQ(O):PQOZO

where
Y (t, Pz) =K1 (t) P>, v (t, Pl) = K2 (t) Pi.

We suppose that the right side of above system is continuous ¢t and C! with respect to P;,
i =1,2. We should also put the following conditions on the functions ~;, j = 1,2 to be satisfied.
C1) We assume that

i (£,0) = 0,7 (t, P;) > 0, and >0,Vt € R, P; > 0. (4.3)

oP,
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C2) (Uniqueness of solutions) For some k; > 0,
i (¢, P2) — i (¢, P1)| < ki | Py — Pul. (4.4)
C3) (Boundedness) There is K > 0 such that
0<|v(t, Pj)| <K, forall P;>0,VteR. (4.5)
Given an almost periodic function u : R — R, we denote

uy = inf u (t),u* = supw (t). (4.6)
teR teR

Theorem 4.1. ( [14,15]) Suppose that v; (t, Pj) > 0 and x; > 0 are continuous almost periodic
functions and that at least one of them is not a constant function. Assume that with k; > 0 and
that considered system does not admit equilibrium points with positive coordinates. Suppose that
the conditions (C1)-(C3) are satisfied. Then the following statements are valid:

i) There exists at least one almost periodic solution (P (t), P> (t)) of above system whose
components are positive, P; (t) > 0,i = 1,2.

it) If kiky < piepos, there exists a unique almost periodic solution (Py (t), Py (t)) in R2,.
Any solution (Py (t), Py (t)) of above system with positive initial conditions P; (0) > 0,7 = 1,2,
converges asymptotically to (Py (t), Py (t)) when t — co. Thus

Tim (P} (£), B3 (£)) — (P (£), Py (1)]] = 0. (47)

Proof. We shall first prove i). By (C1), we know that the system cooperative. Then, we can
consider sub- and super-solution pairs. We suggest for a super-solution pair

(X (),Y (t)) = (P,P), P>0.

We assume that p; is bounded on a closed interval and +; (¢, P) bounded for all t € R, N > 0
since 7y (¢, P) is a bounded function by (C3). Then, for P big enough, we can have

X't)=0=X'(t)>P (pl + 71 (t, P) — plé) , P (0)=P)>0, (4.8)

P
V0 =0=Y 02 P (ptnP) - mi ) RO =F 20

Then, we get a super-solution pair. Similarly, we propose for a sub-solution pair

(z(t),y (@) =(Q,Q), @>0.

We claim that these constant functions satisfy the inequalities in (C2) and (C3) when @ > 0
small enough and by applying Al). Indeed, since the right hand side in the following inequalities
is positive for ) > 0 small enough,

=022 0=Q(prmeQ-ng). (19)

Y (t)=0=y () SQ<p2+72(t,Q)—pz>-
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Then, we have a sub-solution pair. Therefore, by Theorem 1.1 there exists at least one almost
periodic solution for considered system [14,15].

For uniqueness, we need to show that Ny (t) = N, (t) and No(t) = N, (t) for a maximal
pair (Nl,ﬁg) and minimal pair (V;, Ny) of almost periodic solutions. To achieve our aim, we
consider the following claim:

N (t)

v

N (t)>0,M [N] =M [N]

for almost periodic functions N and N. Then, N (t) = N (t) for every ¢t € R. The proof of above
is presented in [14].
For proof, we consider M [(ln NZ)’} =0, then

such that i # j. Substracting these two equalities and employing (C2), we have
M [pi (Ni = N;)] =M [y (t, Nj) = (t,N;)]
< kM [Nj—N,].
By (C2), we have

kiks
P

0<quM[N1—N;|] <kiM[Ny— N, < M [Ny —N,].

If M [Ny —N;] > 0, then a contradiction arises in ii). Therefore M [N1] = M [N,], which
implies N1 = N; by the claim above. From the above inequality we have N9 = N,. According
to Theorem 4.1, the interaction between species that benefit from each other during different
seasons causes population densities of these mutualistic species to experience sustained oscilla-
tions that are almost periodic. To depict this scenario, we perform the numerical simulations

for Ricker’s mutualism model with rate indicator with an almost periodic function in Figures 3
and 4. O

Proposition 4.1. ( [14,15]) Suppose that ¢; > 0 and k; > 0 are continuous almost periodic
functions and that at least one of them is not a constant function. Assume that with k; > 0 and
that considered system does not admit equilibrium points with positive coordinates. Suppose that
the conditions (C1)-(C3) are satisfied. Then, the following statements is valid:

i) There exists at least one almost periodic solution (Py (t), P (t)) of above system whose
components are positive, P; (t) > 0,i =1,2.

it) If KiKS < pripas, there exists a unique almost periodic solution (Py (t), Py (t)) in R2,,
which attracts any other positive solution of the considered system when t — oo.
Proof. We showed that (C1) and (C2) are satisfied. Applying that x; > 0 then (C3) is valid
such that k1 := k1, kg := K3 , so the conditions of Theorem 1.1 are satisfied. Therefore the result
follows from Theorem 4.1 [14].

We will perform the numerical simulations employing different initial conditions such as
(2.6,1.6), (2.3,1.3), (2,1), (1.7,0.7) and (1.4,0.4) and the parameters

p1=0.1;py = 0.9. (4.10)
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Figure 3. Graphical representation of the dynamics of the function P;(t) in Ricker mutualism model, highlighting
the influence of the rate indicator function.

—
R
T

1] 20 40 60 80 100
Figure 4. Graphical representation of the dynamics of the function P»(t) in Ricker mutualism model, highlighting

the influence of the rate indicator function.

During simulations, our almost periodic functions were chosen as ki (t) = 0.09(2cos (7t
+3cos (t)) and k2 (t) = 0.08272 (3 cos (7t) 4+ 2 cos (t)) . With the values of the parameters k3 =
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0.00061 and pi4p2« = 0.09, the conditions kK]k5 < p1.«p2.« given in Proposition 4.1 are satisfied.
Therefore, all solutions of the considered model converge to a single global attractor almost
periodic orbit in the set R2>0.

In Figures 5 and 6, we present the simulations employing different initial conditions such as
(50,44), (47,38), (32,32), (24,17), (12,7), (5,2), (2,1).

120

100

40

0 20 40 G0 &0 100 120
1

Figure 5. Simulation of the function P (¢) in the Ricker mutualism model with the rate indicator function,
under different initial conditions.

From Figures 5-6, it can be seen that, under certain parameter conditions of the model,
the solutions tend to converge to a unique global attractor, as demonstrated by the findings of
Theorem 4.1. ]

5. Qualitative analysis of Ricker’s mutualism model with rate
indicator function

Qualitative analysis focuses on understanding the overall behavior of a system, independent
of numerical solutions. Particularly for complex or difficult-to-solve systems, this approach is a
valuable tool for understanding the system’s fundamental characteristics and long-term behavior.

Lyapunov exponents. The Ricker’s mutualism model with rate indicator function is integrated
using the midpoint method which is well-suited for solving ordinary differential equations (ODEs)
and provides a good balance between accuracy and computational efficiency. Lyapunov exponent
is calculated by comparing the trajectories of the original system and a perturbed version. For
each time step, the logarithm of the absolute differences between the populations of the original
and perturbed systems is computed. The average growth rate of these differences over time
gives the Lyapunov exponent. This is done in a loop over the time steps. The calculation of the
Lyapunov exponent involves numerical differentiation (using the differences between populations
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40 &0 &0 100 120

Figure 6. Simulation of the function P» (t) in the Ricker mutualism model with the rate indicator function,
under different initial conditions.

at consecutive time steps) to estimate the exponent. In Figure 5, we present the state variables
of the associated model and the Lyapunov exponents of Ricker’s mutualism model with rate
indicator function. The Lyapunov exponents for the considered model are depicted in Figure 7.

Ricker mutualism model with almest periedie function
Pt ' ' ' ' ' ' ' '
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0 10 20 30 40 S50 B0 70 &0 a0 100
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Figure 7. Lyapunov exponents of Ricker’s mutualism model with rate indicator function.
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Since both Lyapunov exponents are negative in a dynamical system, it indicates that the
system is stable, and nearby trajectories converge towards each other over time. The system
has a stable fixed point or periodic orbit where trajectories tend to settle. Perturbations from
this point will decay, meaning any small deviations will diminish over time. The system behaves
like an attractor. As time progresses, trajectories that start near each other will come together,
indicating a strong tendency for the system to return to a certain state. In such a stable envi-
ronment, the system’s future states can be predicted with greater accuracy since small changes
do not lead to drastically different outcomes. An examination of Figure 7 reveals that while
one of the Lyapunov exponents remains negative, the other gradually approaches zero, espe-
cially in the later iterations. Although the existence of two negative exponents would typically
imply convergence to a fixed point, the near-zero value of one exponent instead indicates the
emergence of periodic behavior. Based on this analysis, it can be concluded that the associated
model exhibits periodic dynamics and does not have chaotic behavior. To verify our results,
we depict the numerical simulations for state variables of Ricker’s mutualism model with rate
indicator function in Figure 8. The numerical simulation for Ricker’s mutualism model having

100 ¢

8

=]

Pt

38 888

W ' y
o 50 1040 150 200 250 300 3150 400 450 S00 o 50 10 150 200 32350 300 350 400 450 SO0
L] L]

Figure 8. Graphical representation of each variable of the Ricker mutualism model with the rate indicator
function over an extended time interval.

an almost periodic global attractor is shown in Figure 9.

Figure 9 presents a phase portrait plotting P, (¢) against P (t), revealing the geometric
structure of the system’s trajectories in state space. The resulting figure exhibits a spiraling,
looped structure typical of strange attractors or complex dynamical systems. The trajectories
never settle into a fixed point or closed orbit, reinforcing the earlier interpretation that the
system does not reach a steady state or simple periodic behavior. Instead, it evolves continuously
within a bounded region, which is characteristic of quasiperiodic or chaotic systems influenced
by deterministic but non-repeating inputs, such as an almost periodic function.

Bifurcation diagram. In a mutualistic system, such as two species benefiting from each other’s
presence, a bifurcation might occur if the population sizes of both species are highly sensitive
to certain environmental factors. For instance, if the growth rates of the species are close to
critical thresholds, a small change in environmental factors (e.g., resource availability) could
trigger a bifurcation, leading to a shift from stable coexistence to oscillations or even extinction.
A cooperative system can experience a bifurcation, but it depends on the dynamics of the system
and how the cooperative interactions are modeled. If the system includes nonlinearity, sensitive
parameters, or feedback loops, bifurcations may occur as those parameters change. Therefore,
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P.(1)

Figure 9. Phase plot of P, (t) versus P; (t), depicting the geometric behavior of the system trajectories within
the state space.

while cooperation in a system does not automatically imply bifurcation, the presence of certain
conditions—especially nonlinearity—can make bifurcations possible.

The bifurcation diagram for Ricker’s mutualism model with rate indicator function is per-
formed for varying the parameter Ki and is simulated in Figure 10. Figure 10 shows a bifurcation
diagram that investigates how the populations respond to changes in the system parameter K,
likely representing a growth rate or interaction strength for one of the species. The horizontal
axis represents a range of Ky values, while the vertical axis shows the corresponding long-term
values of P (t) and P» (t). The plot uses blue and red dots for each species, respectively. For
lower K7 values, the population values are widely scattered, indicating a high degree of vari-
ability and suggesting chaotic behavior. As K3 increases, the spread of points narrows, and
the system appears to stabilize into more regular, possibly periodic behavior. This transition
is a hallmark of bifurcation phenomena, where small changes in parameters lead to qualitative
changes in system behavior.

6. Conclusion

The rate of change is an essential concept that underpins much of what we understand about
the world around us. It allows us to describe how things evolve over time, make predictions
about future behavior, optimize systems, and analyze complex phenomena. The rate of change
provides a way to quantify how one quantity changes in response to changes in another. In
this study, we employed a rate indicator function, incorporating an almost periodic function,
to depict seasonality of the Ricker’s mutualism model, which represents a mutualistic system.
For the modified version of the model, to which this function was added, we derived conditions
that ensure the uniqueness of the solution and demonstrated that the solution was not affected
by the initial conditions. We strongly believe that this research will significantly contribute to
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Figure 10. Bifurcation diagram of the Ricker mutualism model with the rate indicator function for varying
values of K.

the understanding of both the importance of the rate indicator function and the role of almost
periodicity in modeling seasonal dynamics.
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