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SHARP CONDITIONS OF A NEW MATRIX SPLITTING ITERATION
METHOD FOR GENERALIZED ABSOLUTE VALUE EQUATION

Weihua Linbt

Abstract For the generalized absolute value equation (denoted by GAVE), we develop
a new matrix splitting iteration method, which is derived by reformulating equivalently
GAVE as a three-by-three block non-linear equation. Convergence of the new proposal
is obtained under certain assumptions imposed on the involved iteration parameters and
splitting matrix. Moreover, sharp conditions of the iteration parameters are presented via
the new analysis strategy and numerical experiments also confirm the achieved theoretical
results. Compared with some well-known methods, the test results show the feasibility,
robustness and effectiveness of the new matrix splitting iteration method with application
to the linear complementarity problem.
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1. Introduction
Consider the generalized absolute value equation (denoted by GAVE) of the following form
Az — Blz| = b, (1.1)

where A, B € R"*" and b € R". The symbol |z| denotes the absolute value vector of z € R™ by
components. We remark that GAVE (1.1) is a non-smooth and non-linear equation due to the
non-differentiability of absolute value function.

When B = I, GAVE reduces to the absolute value equation (denoted by AVE)

Az — |z| = b, (1.2)

which was first studied in [30].

For the general form (1.1), it was first introduced in [31]. GAVE subsumes many mathe-
matical programming problems, for example, the linear complementarity problem, linear pro-
gramming and convex quadratic programming. Due to involving absolute values, solving (1.1)
is NP-hard [21,22] and checking whether (1.1) has a unique or multiple solutions is also NP-
hard [29].

In [32], Rohn proved that the singular value condition omax(|B|) < omin(A) implies unique
solvability of GAVE (1.1) for each right-hand side b, where opax and omin, respectively, denote
the maximal and minimal singular value of the matrix. In [34], Rohn et al. found that GAVE
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(1.1) for any b has a unique solution if p(|JA~!B|) < 1, where p(-) denotes the spectral radius
of the matrix. Other sufficient conditions for the unique solution of GAVE (1.1), it can see
[11-13,24,33,36-38,40] and references therein for more details.

In recent years, solving numerical solutions of absolute value equation has attracted much
attention and has been investigated in the literature; see [2,4,5,8,14,15,20,23,25,26,28,33,35,39]
and references therein. Most of those methods are based on the Newton method, with AVE in
(1.2) being a weakly non-linear equation.

Recently, Ke and Ma in [19] proposed the following iteration scheme for solving AVE (1.2):

2D = (1 — w)z® + wA= (y*) 4 b)

"k=0,1,2,..., (1.3)
Y40 = (1 - w)y® 4 wfa k4D,

where the parameter w > 0. The scheme (1.3) has been widely extended as its simplicity and
efficiency; see [5,7,9,16-18,39].

For the scheme (1.3), at each iteration step, it needs to solve the linear system Av = y(k) +b
and will be costly to solve it when the coefficient matrix A is large-scale and dense. To overcome
this problem, we consider to split the matrix A into A = M — N with M being non-singular,
and it is easy to solve the system Mu = h.

Inspired by the above facts, we propose a new matrix splitting iteration methods for solving
GAVE (1.1). Firstly, we split the matrix A into A = M — N with M being non-singular. Then,
we introduce two intermediate variables z = Nz, y = |z| and reformulate equivalently GAVE
as a three-by-three block non-linear equation. Utilize the accelerated overrelaxation (AOR)
method for linear system Az = b [10], we present a class of AOR-like matrix splitting iteration
method for GAVE. It is worth mentioning that sharp conditions of the iteration parameters are
presented via the new analysis strategy and numerical experiments also confirm the achieved
theoretical results.

This paper is organized as follows. In Section 2, we propose a class of AOR-like matrix
splitting iteration method for solving GAVE (1.1) and consider the convergence of the proposed
iteration method. Moreover, we give the convergence domains of the iteration parameters under
some conditions. In Section 3, we run some numerical experiments on the linear complementarity
problem, which can be derived equivalently into GAVE (1.1). Experimental results verify our
theoretical results. In addition, we test AVE (1.2) with the matrix A arising from University of
Florida Sparse Matrix Collection [6]. The numerical results indicate that the proposed method
has a good numerical performance. Finally, some conclusions are given in Section 4.

Notations. Let R™*" be the set of all n x n real matrices and R* = R™ ! Let |z| =
(|z1|,|z2|, .. ., |zn|)T, where z; is the i-th component of a vector € R™ for i = 1,...,n. For a
real number a, the sign function is defined by

-1, a <0,

sgn(a) =<0, a=0,
1, a>0.

A matrix P = (p;;) € R™*" is said to be non-negative (positive) if its entries satisfy p;; > 0
(pij > 0) for all 1 <3 <m and 1 < j < n. For the vector z € R", the 1-norm, 2-norm and
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Inf-norm are defined by

n n
el =Y bl Nella = (| S Joil2, e = oo [l
i=1 =1
For the matrix A € R™™", ||A||, denotes the operator norm defined by ||A||, := ”rr‘l‘ax | Az||,
z||p=1

for p = 1,2, 00. If it is not specified, the symbol ||A||(||x||) is represented to one of the 1-norm,
2-norm and Inf-norm. The symbol I denotes the identity matrix with suitable dimension.

2. Main results

In this section, we establish a novel iteration method for solving GAVE (1.1).
Let A= M — N be a splitting of the matrix A, where the matrix M is non-singular. Then,
we can get that
Mz — Nx — B|z| =b.

Denote z := Nz and y := |z|, then it holds

Mx —z— By = b,

Nz —2z=0, (2.1)
"T‘ —Yy= 07
that is
M —-I-B x b
Au:=| N -1 0 z|l=10]:=c (2.2)
D(x) 0 —I) \y 0
where D(x):=diag(sgn(z1),sgn(x2),...,sgn(z,)) is a diagonal matrix with 2= (1,2, ..., 2,)T.
Here, it has D(z)x = |x|.
Let A =D —L — U with
MO0 0 0 00 0IB
D=(o-ro |, L=] -N 00|, U=]000 [- (2.3)
00 —I —D(2)00 000

Utilize the AOR method for the linear system, we establish the following AOR-like matrix
splitting iteration method for solving GAVE (1.1):

(D — rL)yu**™) = [(1 — w)D + (w — )L 4+ wUJu® + we, (2.4)

where 7 and w are positive constants. Method 2.1 presents the implementation of (2.4).
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Method 2.1 (AOR-like matrix splitting iteration method for GAVE (1.1)).

Let A = M — N be a splitting of the matrix A € R"*" B € R™" and b € R". Given the
initial vectors x(o),z(o),y(o) € R, for k = 0,1,2,..., until the iteration sequence {(x(k),z(k),
y(k))}gj& is convergent, compute

) = (1 — w)z® + wM 1 (2% + By®) 1),
20D = e Nz*HD) (o — 1) Nz®) 4 (1 — w) 2R, (2.5)
YD) = g 40| 4 (1= )] + (1 - w)y®.

Here, r and w are given positive constants.

When M = A, the iteration scheme (2.5) reduces to

z* ) = (1 — w)z®) 4 wA= (%) + By®) 4 p),

2D = (1 — W)z, (2.6)
y D = |z 4 (w = )z ® |+ (1 - w)y®.

Here, we called the iteration scheme (2.6) as the AOR-like iteration method.
When r = w, the iteration scheme (2.5) reduces to

D = (1 — w)z® + wM (2% 4+ By +b),

2k = Nz D 4 (1 — w)z(), (2.7)
YD) = e+ 4 (1= w)y®,

Here, we called the iteration scheme (2.7) as the SOR-like matrix splitting iteration method.
When M = A, B =1, r = w, the iteration scheme (2.5) reduces to
20+ = (1 — )2k (2.8)

We remark that the iteration (2.8) is different from the iteration (1.3) for solving AVE (1.2).
Next, we recall some results that will be used in following analysis.

Lemma 2.1. ( [3]) For any vectors x € R™ and y € R™, the following results hold:

(L) [l 2] = Jyl | = ll= =yl
(2) if 0 <2 <y, then |[z| < |lyl;
(3) if x <y and P is a non-negative matriz, then Px < Py.

Let (z*, z*,y*) be the solution pair of the non-linear equation (2.1). Then it will satisfy
r* = (1 —w)z* +wM~(z* + By* +b),
2" =rNz*+ (w—7r)Nz* + (1 —w)z*, (2.9)
yr =l + (w—r)lat + (1 -w)y.
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Let (z(®), 2()) 4(®)) be generated by the iteration method (2.5). We define the iteration errors
as

R (NN (R C iy S C)

) z
Now, we are ready to prove the main results of this paper.

Theorem 2.1. Let A = M —N be a splitting of the matriz A € R™*"™ with M being non-singular,
B € R™™ and b € R™. Denote

11— ol wl[ M| w|[ M~ B
T(w,r):=| (rll —w| +|w—7))|N|| wr|M~Y-|N||+[1-w| wr|M'B|-|N| |- (210)
7|l —w|+ |w—7| wr||M~1] wr|M—1B|| + |1 — w|

If p(T'(w,r)) < 1, then the sequence {x(k)},j;’f) generated by Method 2.1 will converge to the
solution of GAVE (1.1).

Proof. From (2.5) and (2.9), we have

e = (1-— w)egk) + wM_l(e,(Zk) + Beg(f)),
e = p N 4 (w— r)Neg(ck) +(1- w)egk),
S = r(j2*| = 2 ® D)) + (w = 1) (27| = [2®]) + (1 - w)ep?.
According to Lemma 2.1 (1), it follows that
eS8V < 1= wl - 1]+ wld - e8] + wl 1B - ey,
HeS VN < PN - eV A+ w — | - (N - e+ 11— wl - [l

k+1 k+1 k k
1SN < rll e 4w — v - [+ 11— ] - 1§,

that is
100 (e 1-wl  wM M 1Bl (]
N Lo | [ eI < ] = N [l 0 [T ATy
—r 01 ) \ e o — 7| 0 1-ul leg™|l
Let
1 00

P = r||N||10 > 0.
r 01

Multiplying (2.11) from left by the non-negative matrix P and according to Lemma 2.1 (3), we
have

k+1 k
(B4l e8]
eV | < Tw,r) | (1) |, (2.12)

k k
(B4 eS|
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where T'(w,7) is defined in (2.10). Denote ERR(k) == (|[e%[], [|e%]], e |)T, then

ERR(k + 1) < [T(w, r)]* ' ERR(0).

If p(T'(w,r)) < 1, from (2.12), it holds that klim |IERR(K)|| = 0, that is
—+00
lim e =0, lim [[e®]| =0, lim [eM| =o0.
k—+o0 k—+o0 k—+o0

Therefore, the sequence {z(¥)} generated by Method 2.1 will converge to the solution of GAVE
(1.1). This completes the proof. O

In particular, we consider the choice of the matrices M and N as well as the iteration
parameters w and r such that [|T(w, )|l < 1.

Theorem 2.2. Let A= M—N be a splitting of the matriz A € R™™ with M being non-singular,
B € R"™™ and b € R". Denote
ni= M7+ (IMTEB, 6= max{||N|, 1},

0—1++/(1-0)2+80(1+n)
20(1 +n) '

W=

1
If0<n<1,0<||N| < = and the parameters w,r satisfy one of the following conditions:
n

0—1 " 0—1 . w(1+0)
Woa—w <<t g0 —n "~ R ral -1
@Dl <w<n, OFD=2 2+w(®-1)

R—wl+n - w0ty

then the sequence {l‘(k)}:ig generated by Method 2.1 will converge to the solution of GAVE
(1.1).
Proof. Let

=1 —wl+w|M | +w|M B
=1 — w| +wn,

ta :==(r[1 = w| + w = ) [IN]| + wr| MY - [N| + |1 = w| + wr|M B - [|N]|
=(r[1 —w[+ |w = r[N] + wrp||N| + 1 — wl,

t3:=r|l —w|+ |w — 7| + wr||M7Y| + wr|M'B|| + 1 — w|
=r|l —w|+ |w—7r|+wrn+ |1 —wl|

If 1 —w| > 1, then ¢; > 1 for any ¢ = 1,2,3. Note that ||T(w,7)|lcc < 1 if and only if ¢; < 1 for
any i = 1,2,3. Therefore, it is obvious that 0 < w < 2.

For the parameters r and w, we consider the following four Cases A-D. In each case, consid-
ering the value of || N|| can be further divided into two cases. Regardless of the value of ||N||,
to ensure || T(w,7)||co < 1, one of the necessary conditions is ¢t; < 1.

(i) If 0 < w < 1, we have 1 — w + wn < 1, which is from ¢; < 1. Consequently, it is essential
to satisfy the condition 0 < n < 1.
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(i) If 1 < w < 2, we have w — 1 + wn < 1, which is from ¢; < 1. In order to make sure the
existence of w, it means that %77 > 1, that is 0 < n < 1. Therefore, in the following discussion,
regardless of the value range of | N|| and w, the following condition must be satisfied: 0 < n < 1.

Case A-1. when 0 < r <w <1 and ||N|| < 1. It follows that to < t3. Then || T(w,7)||oc < 1 if
and only if

1-—w+wn <1,
rl—w)+w—r+wm+1—-w<1.
Hence, when
0<n<l1, |NI<1, O0<r<w<l, (2.13)

then ||T(w, 7)o < 1.

Case A-2. when 0 <r <w <1 and ||N|| > 1. It follows that t3 < t5. Then || T(w,7)||oc < 1 if
and only if

1 —w+wn <1,
[r(l —w)+(w—r)]||NH +wrn||N|| + (1 —w) < 1,

which is provided by

0<n<l,
r>|Wﬂ—1
[N[(1—n)

In order to make sure that the existence of r, it means that

[N][ -1

. L A
IN[[(1 = n)

which is provided by

1
N < —.
Ui

Hence, when

[N][ —1

- <1 2.14
D I (2.14)

1
0<n<1, 1<HN”<E’ 0<

then || 7' (w,7)|loc < 1.

Case B-1. when 0 <w <1, r > w and ||N|| < 1. It follows that to < t3. Then ||T(w,7)|e <1
if and only if

l-w+wn <1,
rl-—w)+r—wt+wm+l-w<l,

which is provided by

0<n<l,
- 2w
r<_———.
24+w(n—1)
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In order to make sure the existence of r, it means that

2w

_— > W,
24+ w(n—1)

This inequality holds while 0 < w <1 and n < 1.
Hence, when

0<n<1, |N|<1, O0O<w<l, w<r< (2.15)

then || 7' (w,7)|loo < 1.

Case B-2. when 0 <w <1, r > w and ||N|| > 1. It follows that t3 < ta. Then ||T(w,7)|o <1
if and only if

1 -—w+wn <1,
[r(1 = w) + (r = w)[[IN]| + wrn||N[ + (1 - w) <1,
which is provided by
0<n<l,
w(1+ [[N))
N2 +w(n —1)]

Firstly, in order to make sure the existence of r, it means that

W+ IN)
w
IN[2 + w(n —1)]
In fact, we have
1+ ||N
WAHIND

IN]I[2 4+ w(n = 1)]
w1 —|IN| = w|[N(n —1)]
INI2+w(n—1)]
< 1—[IN|| = w[N[(n—1) >0
V][ =1

SN Y

Secondly, in order to make sure the existence of w, it means that

>0

[N][ -1

.
IN{[(1 —n)

which is provided by
1
0<n<1, 1<HNH<;

Hence, when

1 [N -1 w(l+[|N])
0<n<l, 1<|N|<= 0<——<w<l w<r< , (2.16)
U N1 —n) N2+ w(n —1)]
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then ||T(w, )|l < 1.

Case C-1. when 1 < w < 2,0 < r < w and |[[N]] < 1. It follows that to < t3. Then
|T(w,7)]|oo < 1if and only if

w—14+wn <1,

rw—1+w—-r)+wrn+w-—-1<1,
that is
L2
1+’
2w —1)
2—w(l+n)

In order to make sure the existence of r, it means that

w

r>

2w —1)

—— < w,
2 —w(l+mn)

that is

It can be provided by

and

Hence, when

2
1+n

2w —1)

0<n<l1, |N|<1, l<w< =

, 0< <r<uw, (2.17)

then ||T(w, )|l < 1.

Case C-2. when 1 < w < 2,0 < r < w and |[N| > 1. It follows that t3 < t2. Then
| T (w,7)||oo < 1 if and only if

w—14wn <1,

[r(w 1)+ (w— r)] IN| +wrp||N||+w—1<1,
that is
< 2
1+n’
w(([N||+1) =2
N2 = w(@+n)]

In order to make sure the existence of r, it means that

w

WS(INI+D -2 _
N2 —w+m] ~
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which has
IN||(1+n)w?+ (1= ||N|)w—2<0.

Denote
fw) = [IN]I(1+n)w? + (1 — || N])w — 2.

It is obvious that the quadratic function f has two real distinct roots, that is

« _ NI =1— Q- [INID? + 8N +n)

w <0
! 2| N1 +mn)
and
N -1 1—||IN|)2 + 8|N||(1
i = IN|| =1+ /(1= [IN[)? +8|INI(1 +n) S0

2[[NI(L +m)
Therefore, f(w) < 0 implies that w € (w],w;). Note that w € (1,2). In order to make sure the
existence of w, it means that

) = INI(L+9) + (1 = [IN])) =2 <0,

that is )
[N < .
n

2
In addition, it can verify that w; < T+7 <2while 0 <n<1<|N]|.
n

Hence, when

1 w(|N||+1) -2
0<n<l1l, 1<|N|[<- 1<w<uws, <r<w, (2.18)
U 2 IND2 = w(L + )]

then ||7'(w, 7)o < 1.

Case D-1. when 1 < w < 2,7 > w and | N| < 1. It follows that ty < t3. Then ||T(w,7)|0 <1
if and only if

w—1+wn<1,
rw—1)4+r—-—w +wnt+w-1<1,

that is
- 2
w PR
147
- 2
r< ————.
w(l+mn)
In order to make sure the existence of r, it means that
2 >
—_ > w.
w(l+mn)
It follows that
2
W<y —,
1+n
and
2 2
- S -

—_
+
=
—_
+
=
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Hence, when

2 2
0<n<l1, |N|I<1l l<w<y/—, w<r<—m—m—m, (2.19)
w(l+mn)
then || 7' (w,7)|loc < 1.

Case D-2. when 1 < w < 2,7 >w and | N| > 1. It follows that t3 < t2. Then ||T(w,7)|oc <1
if and only if

w—14+wn <1,
[r(w=1)+ (r = w)]IN]| + wrn||N[ + w -1 <1,

that is
< 2
w I,
1+m7
24 w(([N]-1)
w|| N1 +n)
In order to make sure the existence of r, it means that
2+ w(IN|~1) _
w)
w|[N|[(L+mn)
which has

INI(1 + m)w?® + (1 = [|N])w — 2 < 0.
It is the same with Case C-2, we get
1
w € (Wi, w3), H?VH<15-
Hence, when
2+ w(IN] -1)
WIN|[(1+n)

0<n<l1, 1<\NH<?17, l<w<w;, w<r< (2.20)
then ||T(w, )|l < 1.

The above four classifications have been discussed in detail. Based on the results obtained
from these classifications, we conducted a systematic integration process to extract a more
concise and clear final conclusion.

Denote

6 := max{||N||,1}.

From (2.13) and (2.15), we get

0<n<l1l, |N|<1, O0<w<l,
% (2.21)

2+ w(n—1)’
then ||T(w,7)||cc < 1. From (2.14) and (2.16), we get

O<r<

1 N[ -1
0<n<l, 1<|N|<-, ——17° —u<i,
n o INI(—=mn)
N[ -1 w(1+[[N])

NI —n) ="~ N2+ wln— 1]’

(2.22)
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then | T(w,7)|lec < 1. Based on (2.21) and (2.22), we can obtain that the parameters satisfy

that
1 0—1

0<n<l1l, O0<L|N|[<-= ——<w<l,
6—1 w(l+86) '
< r < .
O(1 —n) 012+ w(n—1)]
From (2.17) and (2.19), we get
2
0§n<1a HN”SL I<w< 1,
L+ (2.24)
Aw—1) _ 2
S A e —
2—w(l+n) w(l+mn)
then ||7'(w,7)|lcc < 1. From (2.18) and (2.20), we get
1
0<n<l1l, 1<|N|<- 1<w<uws,
K (2.25)

([N +1) -2 2+ w(N| - 1)
INI2—w+m] ="~ wN|d+n)

then | T(w,7)|lcc < 1. Based on (2.24) and (2.25), we can obtain that the parameters satisfy
that )
0<n<l, O<L|N|<-, 1l<w<a,
n

WO +1) =2 24+ w(d—1) (2.26)

2—wl+n)] ' wo(lrn)

where

@“_0—1+\A1—aﬂ+8m1+m
20(1 +n) '
We remark that if | N|| <1, then # = 1 and

- 2
W=4/—.
1417

Therefore, from (2.23) and (2.26), we obtain the results of this theorem. This completes the
proof. O

According to Theorem 2.2, we obtain the following corollaries for the iteration schemes (2.6),
(2.7) and (2.8), respectively.

Corollary 2.1. Let A € R™", B € R™™ and b € R". Denote n := |A7Y|| + |[A~'B|. If
0 <n <1 and the parameters w,r satisfy one of the following conditions:

2w
2+w(n—1)

2)1<w<,/ 2 -2 . 2
w ) r 77
1+7n 2—w(l+mn) w(l+mn)

then the sequence {:p(k)},j;’?) generated by the iteration scheme (2.6) will converge to the solution

of GAVE (1.1).

Ho<w<1, 0<r<
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Corollary 2.2. Let A = M — N be a splitting of the matriz A € R™ ™ with M being non-
singular, B € R™"™ and b € R™. Denote
n= M7+ (IMTEB, 6= max{|N|, 1},

_ 01+ /(-0 +80(1+n)
N 20(1+n) '

W :

1
If0<n<1,0<||N|| < = and the parameter w satisfies
n
0—1
6(1 —n)

then the sequence {m(k)}z-:og generated by the iteration scheme (2.7) will converge to the solution

of GAVE (1.1).

<w < W,

1
Corollary 2.3. Let A € RV, B € R™" and b € R™. If |[A7!]| < 5 and the parameter w

satisfies
2
0<w<y/—a—,
1+ 2||A-Y|

then the sequence {x¥)}°0 generated by the iteration scheme (2.8) will converge to the solution

of AVE (1.2).

3. Numerical experiments

In this section, we use some test problems to examine the effectiveness of Method 2.1. All test
problems are started from the initial zero vector, are terminated if the current iterations satisfy

RES := ||b+ B|z®| — 42®| < 1076

or if the number of the prescribed iteration steps kmax = 1000 is exceeded, and are performed
under MATLAB R2018b on a personal computer with 1.80 GHz central processing unit (Intel(R)
Core(TM) i5-8265U), 8GB memory and Windows 10 operating system. In addition, ‘I'T’ denotes
the number of iteration steps and ‘CPU’ denotes the elapsed CPU time in seconds.

Example 3.1 (Linear complementarity problem). The linear complementarity problem is to
find a pair of real vectors w and v € R™ such that

w::gv—i—qZO, v>0 and vTw=0,

where A = (aij) € R™ ™ is a given large, sparse and real matrix and ¢ = (g1, ¢2,...,qs)" € R”

is a given real vector. It is abbreviated as LCP(q, A). By utilizing the modulus, LCP(g, A) can

be reformulated into B B
(AT 4+ Q)z — (2 — AD)|z| = —q, (3.1)

where 2 and I" are n X n positive diagonal matrices. For more details, it can see [1]. It is obvious
that the equation (3.1) reduces to GAVE (1.1) with

A=AT+Q, B=Q—- AT, b= —q.
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Let m be a prescribed positive integer and n = m?2. Consider LCP(q, ﬁ), in which A € R"*n
is given by A = A+ ul € R™" with

A = Tridiag(—1.5,,, S, —0.51,,) € R™™

being a block-tridiagonal matrix,

~

S = tridiag(—1.5,4,—0.5) € R™*™

being a tridiagonal matrix and
q= (1,2,...,n)T € R™.

Let D, —L and —U be the diagonal, the strictly lower-triangular and the strictly upper-
triangular matrices of the matrix A, respectively. Let H = $(A + AT) and § = (A — AT)
be the Hermitian and skew-Hermitian parts of the matrix A. Let D3, —L7 and —Uj be the
diagonal, the strictly lower-triangular and the strictly upper-triangular matrices of the matrix X,
respectively. Let Hy = %(K + AT) and S = %(K — A7) be the Hermitian and skew-Hermitian
parts of the matrix A. For Example 3.1, we choose I' = I, and = D3. Abbreviations of
testing methods for Example 3.1 are listed in Table 1.

Table 1. Abbreviations of testing methods for Example 3.1.

Method | Description Iteration scheme

MM The modified modulus method [27] (I + Azt = (1 — A)|]z®)] — ¢

MGCS The modulus-based Gauss-Seidel method [1] (Di+Q—Ly)a®D) = Uza® + (@ — A)ja®| — ¢
MHS The modulus-based HS method [1] (Hz+ Q)zk+D) = —ngr(k) +(Q = A)z®| —¢q
AOR The AOR-like iteration method Scheme (2.5) with M = A, N =0

AOR-GS | The AOR-like Gauss-Seidel splitting iteration method Scheme (2.5) with M =D — L, N =U

AOR-HS | The AOR-like HS splitting iteration method Scheme (2.5) with M = H, N = -5

For Example 3.1, denote 1 = || M ~!{|oc + || M ' B||sc and € = || N||so. Figure 1 illustrates the
domains of the parameters w and r based on the conditions ||T'(w,7)||c < 1 and Theorem 2.2,
corresponding to the various splittings of matrix A. Here, blue points are obtained from the
condition ||T(w, )]s < 1 and inside of the red curve is the result according to Theorem 2.2.

In Table 2, we list I'T, CPU and RES of different test methods as well as the parameters r and
w for AOR-like methods. From Table 2, we can see that the AOR-GS method costs much less
number of iteration steps and lower CPU time than other methods. In addition, when the scale
of the problem gradually expands, the AOR-HS method shows more significant advantages in
the number of iterations and the required iteration time than the MM, MGS and MHS methods.
Figure 2 plots RES curves of the test methods for Example 3.1 with ; = 4 and n = 400. From
this figure, we see that the residual norms of AOR-like methods decrease more sharply than the
modulus-based methods for solving the linear complementarity problems.

Example 3.2. Consider AVE (1.2), which the matrix A € R™*" comes from six different test
problems listed in Table 3. These test matrices A are sparse, symmetry and ||[A™}]| < 1. Let

x*:(_]-a]-u_]-a]-;"' 7_171)T€Rn al'ld b:AJ,‘*—|,§C*|

For more about these test problems, it can see [6].
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Figure 1. The domains of the parameters w and r for Example 3.1 with ¢ = 4 and n = 400.
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Figure 2. Curves of RES for Example 3.1 with 4 =4 and n = 400.

For Example 3.2, we compare the proposed method with the SOR-like method (1.3). The
numerical results are listed in Table 4 as well as the corresponding parameters. These parameters
are obtained via minimize the number of iterations. From these results, it can see that AOR-GS
method has a good numerical performance for the large scale problems.
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Table 2. Numerical results for Example 3.1 with p = 4.

Method n = 400 n=1600 n=3600 n=6400 n = 10000
MM 1T 85 93 97 100 102
CPU 0.1125 0.6131 1.7038 3.5265 7.9939
RES | 9.7684e-07 8.3783e-07 8.8300e-07 8.9255e-07 9.5837e-07
MGS IT 15 17 18 18 19
CPU 0.0046 0.0223 0.1304 0.4670 1.6172
RES | 3.3688e-07 2.9109e-07 2.8037e-07 7.4648e-07 3.5445e-07
MHS IT 20 22 24 24 25
CPU 0.0122 0.0453 0.1266 0.6890 1.1769
RES | 7.6949e-07 9.0595e-07 3.6937e-07 9.1737e-07 6.1224e-07
AOR IT 11 12 13 13 14
w=0.94 | CPU 0.0236 0.1088 0.2976 1.2051 0.9449
r=0.93 | RES | 9.0599e-07 8.6153e-07 4.7329e-07 8.6097e-07 3.2583e-07
AOR-GS | IT 10 11 11 12 12
w=10.90 | CPU 0.0034 0.0049 0.0074 0.0174 0.0594
r=0.98 | RES | 9.5592e-07 4.6342e-07 7.5456e-07 2.2837e-07 3.0109e-07
AOR-HS | IT 12 13 14 14 15
w=20.92 | CPU 0.0064 0.0286 0.0962 0.2757 0.6835
r=0.94 | RES | 8.6538¢e-07 9.1377e-07 5.4957e-07 9.7842e-07 4.1181e-07

Table 3. Test problems of Example 3.2.

Problem n Problem n

meshlel 48 Trefethen_20b 19
meshleml | 48 Trefethen_200b 199

mesh2el | 306 | Trefethen_20000b | 19999

4. Conclusions

We have presented a class of AOR-like matrix splitting iteration method to solve the NP-hard
GAVE in (1.1), which is obtained by reformulating equivalently GAVE as a three-by-three block
non-linear equation. Under suitable choices of the involved parameters and splitting matrix,
we have presented the sufficient conditions for convergence of the proposed iteration method.
Moreover, we have considered the convergence domains of the iteration parameters via the new
analysis strategy, and numerical experiments also confirm the achieved theoretical results. From
Figure 1, it can see that the results of Theorem 2.2 are sharp. Numerical examples have shown
that the proposed iteration method is feasible and effective in computing.

Theorem 2.2 gives sufficient conditions for convergence based on ||T(w, )]s < 1. However,
it is still worth considering how to provide the convergence domains of the parameters w and r
such that || T'(w,7)|1 < 1 and || T(w,r)|l2 < 1 in theory. In addition, the choice of the optimal
iteration parameters in theory also merits some consideration.
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Table 4. Numerical results for Example 3.2.

Method meshlel meshleml mesh2el Trefethen 20b Trefethen_200b  Trefethen_20000b
w 0.94 0.93 0.94 0.95 0.95 0.95
SOR 1T 18 18 20 12 12 12
CPU | 0.0074 0.0056 0.0146 0.0004 0.0086 151.9966
w 0.97 0.91 0.98 1.01 1.01 1.01
r 0.94 0.95 0.93 0.90 0.91 0.91
AOR 1T 17 18 19 11 11 11
CPU | 0.0086 0.0087 0.0146 0.0004 0.0066 133.0436
w 0.90 0.92 1.10 0.90 0.91 0.91
r 1.15 1.20 1.20 1.10 1.10 1.10
AOR-GS | IT 19 51 402 11 11 13
CPU | 0.0033 0.0034 0.0138 0.0002 0.0003 0.1123
w 0.97 0.91 0.98 1.01 1.01 1.01
r 0.94 0.95 0.93 0.90 0.91 0.91
AOR-HS IT 17 18 19 11 11 11
CPU | 0.0015 0.0014 0.0086 0.0003 0.0083 134.2781
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