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SOLVABILITY OF THE CAPUTO FRACTIONAL DIFFERENTIAL

SYSTEM WITH RIEMANN-STIELTJES BOUNDARY CONDITIONS

Ying Wang1,† and Limin Guo2

Abstract Fractional derivative is nonlocal which exhibit a long-term memory behavior.
Having these advantages, fractional order systems are more accurate than integer order
ones. In this article, our research focuses on the Caputo fractional differential system with
Riemann-Stieltjes integral boundary conditions. Firstly, we convert the system to an integral
operator. And then, based on the properties of the Green function, we have separately proven
the existence of the unique solution and at least one solution for the system by applying the
Banach contraction principle and the Leray-Schauder’s alternative. Finally, The correctness
of the results is verified through an example.
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1. Introduction

Compared to integer order calculus, fractional order calculus can handle differentiation and inte-
gration of any order, and has great advantages in describing the motion, intermediate processes,
and memory features of some complex systems. Therefore, for long-term and large-scale bio-
logical and physical phenomena, fractional order models are more accurate than integer order,
thanks to their ability to overcome the locality of integer order models. For instance, Arafa etc [1]
studied the viral dynamic model under the definition of fractional derivatives (α1, α2, α3 > 0) :

Dα1(x) = s− µx− βxz,

Dα2(y) = βxz − εy,

Dα3(z) = cy − γz,

subject to the initial values

x(0) = 200, y(0) = 0, z(0) = 1.

The Volterra’s model for species population growth in closed systems can be represented by the
fractional equation:

cDαy(t) = ay(t)− by2(t)− cy(t)

∫ t

0
y(x)dx, y(0) = y0,
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where cDα denotes the Caputo fractional derivative of order 0 < α ≤ 1. Obviously, it is very
meaningful to study the existence of positive solutions to equation models under appropriate
initial and boundary conditions.

In this article, our main focus is the investigation of the following Caputo fractional differ-
ential system 

cDα1x(t) + λ1a1(t)f1(t, x(t), y(t)) = 0,

cDα2y(t) + λ2a2(t)f2(t, x(t), y(t)) = 0, 0 < t < 1,

x(0) = x′′(0) = 0, x(1) = µ1

∫ 1

0
b1(s)x(s)dA1(s),

y(0) = y′′(0) = 0, y(1) = µ2

∫ 1

0
b2(s)y(s)dA2(s),

(1.1)

where λi > 0 is a parameter, 2 < αi < 3, cDαi is the standard Caputo derivative. µi > 0
is a constant, Ai : [0, 1] → [0,+∞) is the function of bounded variation,

∫ 1
0 b1(s)x(s)dA1(s),∫ 1

0 b2(s)y(s)dA2(s) denote the Riemann-Stieltjes integral with a signed measure, 0 ≤ µi

∫ 1
0 tbi(t)

dAi(t) < 1. bi : [0, 1] → [0,+∞), ai : (0, 1) → [0,+∞), fi : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞)
are continuous functions, i = 1, 2.

In the context of mathematics, profiting by the rapid development of nonlinear analysis
theory in recent years, many practical tools and methods, such as the operator theory [11,12,16],
fixed point theory [6,13–15], iterative methods [5,17,19], upper and lower solution methods [18],
etc. are used to solve every kind of differential equations. Fractional differential equations
involving different boundary conditions have attracted increasing interest from scholars. In [2],
Cabada et al. consider the following nonlinear fractional differential equation boundary value
problem 

cDαu(t) + f(t, u(t)) = 0, 0 < t < 1,

u′(0) = u′′(0) = 0, u(1) = µ

∫ 1

0
u(s)ds,

(1.2)

where 2 < α ≤ 3, 0 ≤ µ < 1, cDα is the Caputo differential operator of order α, f : [0, 1] ×
[0,+∞) → [0,+∞) is a continuous function. By using the Krasnoselskii’s fixed point theorem,
they deduce a general existence theorem for (1.2).

Apply the Krasnoselskii’s fixed point theorem as well, Ma and Cui in [8] investigate the
following Caputo fractional boundary value problem

cDαp(t) + µf(t, p(t)) = 0, 0 < t < 1,

p(0) = p′′(0) = 0, p(1) =

∫ 1

0
p(s)dA(s),

where 2 < α < 3, µ > 0 is a parameter, f : [0, 1]× [0,+∞) → [0,+∞) is a continuous function.

Chen and Li [3] prove the existence of positive solutions for a system of nonlinear Caputo-type
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fractional differential equations

cDα1u(t) + λf1(t, u(t), v(t)) = 0,

cDα2v(t) + µf2(t, u(t), v(t)) = 0, 0 ≤ t ≤ 1,

u(0) = u′′(0) = 0, u(1) =

∫ 1

0
u(t)dA1(t),

v(0) = v′′(0) = 0, v(1) =

∫ 1

0
v(t)dA2(t),

(1.3)

where 2 < αi < 3 (i = 1, 2), cDαi is the standard Caputo derivative, λ, µ > 0 are parameters,
fi : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) is a continuous function, Ai is a bounded variation
function, i = 1, 2. In [7], by the virtue of the fixed point index theory, the authors obtain the
two positive solutions for the equations (1.3) with parameters λ = µ = 1.

The objective of this study is to obtain the existence and uniqueness of solutions for the
system (1.1), we study it according to the Banach contraction principle and the Leray-Schauder’s
alternative. Compared to the papers we mentioned earlier, the system in this paper is more
complex, and the Riemann-Stieltjes integral boundary conditions can be converted into ordinary
integral boundary conditions, two-point, multi-point boundary conditions as well. What’s more,
in the system (1.1) we are discussing, λ1 > 0 and λ2 > 0 can be unequal, when the order of the
fractional derivative is not the same in the fractional differential equation, the system is called
incommensurate order.

The plan for this article is as follows. In Section 2, we provide the preliminaries and necessary
definitions, lemmas that are to be used to prove our main results. The main results are given in
Section 3, we show the proof of the existence and uniqueness of positive solutions for the system
(1.1). In Section 4, an example is given to demonstrate the application of our theoretical results.
In Section 5, we give the conclusions of this article.

2. Preliminaries and lemmas

In an effort to the system (1.1), in this section, we provide some preliminaries and lemmas to be
used in the rest of this article. Firstly, we present here some necessary definitions and lemma
about fractional calculus theory for convenience of the readers.

Definition 2.1. [9, 10] The Caputo fractional order derivative of order α > 0, n − 1 < α < n,
n ∈ N is defined as

cDαu(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1u(n)(s)ds,

where u ∈ Cn(J, R), J = [0,+∞), R = (−∞,+∞), N denotes the natural number set, n =
[α] + 1, and [α] denotes the integer part of α.

Definition 2.2. [9, 10] Let α > 0 and let u be piecewise continuous on (0,+∞) and integrable
on any finite subinterval of [0,+∞). Then for t > 0, we call

Iαu(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds,

the Riemann-Liouville fractional integral of u of order α.
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Lemma 2.1. [9, 10] Let n− 1 < α ≤ n, u ∈ Cn[0, 1]. Then

Iα(cDαu)(t) = u(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

where ci ∈ (−∞,+∞) (i = 1, 2, · · · , n− 1), n is the smallest integer greater than or equal to α.

In the following Lemmas 2.2 and 2.3, we consider the following linear Caputo fractional dif-
ferential system (2.1), prove that system (2.1) has a unique integral representation and illustrate
the properties of the Green function Gi(t, s) (i = 1, 2).

Lemma 2.2. Let hi ∈ C(0, 1) ∩ L(0, 1) (i = 1, 2), then the system

cDα1x(t) + h1(t) = 0,

cDα2y(t) + h2(t) = 0, 0 < t < 1,

x(0) = x′′(0) = 0, x(1) = µ1

∫ 1

0
b1(s)x(s)dA1(s),

y(0) = y′′(0) = 0, y(1) = µ2

∫ 1

0
b2(s)y(s)dA2(s),

(2.1)

has a unique integral representation
x(t) =

∫ 1

0
G1(t, s)h1(s)ds,

y(t) =

∫ 1

0
G2(t, s)h2(s)ds,

(2.2)

where

Gi(t, s) (2.3)

=
1

Γ(αi)



t

(1− χi)

(
(1− s)αi−1 − µi

∫ 1

s
bi(t)(t− s)αi−1dAi(t)

)
− (t− s)αi−1,

0 ≤ s ≤ t ≤ 1,

t

(1− χi)

(
(1− s)αi−1 − µi

∫ 1

s
bi(t)(t− s)αi−1dAi(t)

)
, 0 ≤ t ≤ s ≤ 1,

χi = µi

∫ 1

0
tbi(t)dAi(t), i = 1, 2. (2.4)

Proof. By Lemma 2.1 and the conditions

x(0) = x′′(0) = 0, y(0) = y′′(0) = 0.

System (2.1) is equivalent to the following integral equations:

x(t) = −
∫ t

0

(t− s)α1−1

Γ(α1)
h1(s)ds+ ct, (2.5)

y(t) = −
∫ t

0

(t− s)α2−1

Γ(α2)
h2(s)ds+ ct. (2.6)
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Combining the conditions

x(1) = µ1

∫ 1

0
b1(s)x(s)dA1(s), y(1) = µ2

∫ 1

0
b2(s)y(s)dA2(s),

we get

c = x(1) +

∫ 1

0

(1− s)α1−1

Γ(α1)
h1(s)ds,

c = y(1) +

∫ 1

0

(1− s)α2−1

Γ(α2)
h2(s)ds.

Then, we have

c =
1

Γ(α1) (1− χ1)

(∫ 1

0
(1− s)α1−1h1(s)ds

−µ1

∫ 1

0

∫ t

0
b1(t)(t− s)α1−1h1(s)dsdA1(t)

)
, (2.7)

c =
1

Γ(α2) (1− χ2)

(∫ 1

0
(1− s)α2−1h2(s)ds

−µ2

∫ 1

0

∫ t

0
b2(t)(t− s)α2−1h2(s)dsdA2(t)

)
. (2.8)

Substituting (2.7) and (2.8) into (2.5) and (2.6) separately, we can get

x(t) =
t

Γ(α1) (1− χ1)

(∫ 1

0
(1− s)α1−1h1(s)ds− µ1

∫ 1

0

∫ 1

s
b1(t)(t− s)α1−1h1(s)dA1(t)ds

)
− 1

Γ(α1)

∫ t

0

(t− s)α1−1

Γ(α1)
h1(s)ds, (2.9)

y(t) =
t

Γ(α2) (1− χ2)

(∫ 1

0
(1− s)α2−1h2(s)ds− µ2

∫ 1

0

∫ 1

s
b2(t)(t− s)α2−1h2(s)dA2(t)ds

)
− 1

Γ(α1)

∫ t

0

(t− s)α2−1

Γ(α2)
h2(s)ds. (2.10)

Comprehensive equations (2.3) and (2.4), we can obtain (2.2). The proof is completed. □

From the expression of Green Function Gi(t, s), we can proof the following Lemma 2.3 holds.

Lemma 2.3. The Green Function Gi(t, s) (i = 1, 2) defined by (2.3) has the following proper-
ties:

(1)

Gi(t, s) ≥ 0 and Gi(t, s) is continuous on [0, 1]× [0, 1]. (2.11)

(2)

Gi(t, s) ≤
(1− s)αi−1

Γ(αi)(1− χi)
, t, s ∈ [0, 1]. (2.12)
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In the following proof, for the sake of convenience, denote Φi(s) = (1−s)αi−1

Γ(αi)(1−χi)
. Let X =

C[0, 1]× C[0, 1], clearly X is a Banach space with the norm

∥(x, y)∥ = ∥x∥+ ∥y∥, ∥x∥ = max
t∈[0,1]

|x(t)|, ∥y∥ = max
t∈[0,1]

|y(t)|.

For any (x, y) ∈ X, defining an integral operator T : X → X

T (x, y)(t) = (T1(x, y)(t), T2(x, y)(t)), 0 ≤ t ≤ 1, (2.13)

T1(x, y)(t) = λ1

∫ 1

0
G1(t, s)a1(s)f1(s, x(s), y(s)ds, 0 ≤ t ≤ 1,

T2(x, y)(t) = λ2

∫ 1

0
G2(t, s)a2(s)f2(s, x(s), y(s)ds, 0 ≤ t ≤ 1.

(x, y) is a positive solutions of system (1.1) if and only if (x, y) is a fixed point of T .

Lemma 2.4. [4] Let E be a Banach space. Assume that T : E → E be a completely continuous
operator. Let V = {x ∈ E|x = µTx, 0 < µ < 1}. Then either the set V is unbounded, or T has
at least one fixed point.

3. Main results

In what follows, we list the conditions to be used later:

(H0)
∫ 1
0 Φi(s)ai(s) < +∞, i = 1, 2.

(H1) There exist constants ζi, ηi ≥ 0, such that

|fi(t, u1, v1)− fi(t, u2, v2)| ≤ ζi|u1 − u2|+ ηi|v1 − v2|, t ∈ [0, 1], ui, vi ∈ [0,+∞), i = 1, 2.

(H2) There exist constants τi > 0, ρi, ϱi ≥ 0, such that ∀t ∈ [0, 1], x, y ∈ [0,+∞),

fi(t, u, v) ≤ τi + ρi|u|+ ϱi|v|, t ∈ [0, 1], u, v ∈ [0,+∞), i = 1, 2.

According to the Ascoli-Arzela theorem, by a routine discussion, we can prove that the
following Lemma 3.1 holds.

Lemma 3.1. Assume that (H0) hold. Then T : X → X is a completely continuous operator.

Theorem 3.1 is about the uniqueness theorem of solutions. In the following proof, it mainly
shows that T is a contraction operator, that is ∥T (x2, y2)− T (x1, y1)∥ < ∥x2 − x1∥+ ∥x2 − y1∥.

Theorem 3.1. Assume that (H0)(H1) hold, ∆1(ζ1 + η1) + ∆2(ζ2 + η2) < 1, where

∆i = λi

∫ 1

0
Φi(s)ai(s)ds. (3.1)

Then the system (1.1) has a unique solution.

Proof. Suppose
sup fi(t, 0, 0) = ϖ < +∞,

by (H1), we have

fi(t, u, v) ≤ ϖi + ζi|u|+ ηi|v|, i = 1, 2.
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Let

r =
∆1ϖ1 +∆2ϖ2

1−∆1(ζ1 + η1)−∆2(ζ2 + η2)
, Pr = {(x, y) ∈ X : ∥(x, y)∥ < r}.

Nest, we prove that TPr ⊂ Pr. For any (x, y) ∈ Pr,

|T1(x, y)(t)| ≤ max
t∈[0,1]

∣∣∣∣λ1

∫ 1

0
G1(t, s)a1(s)f1(s, x(s), y(s))ds

∣∣∣∣
≤ λ1

∫ 1

0
Φi(s)a1(s)f1(s, x(s), y(s)ds

≤ λ1

∫ 1

0
Φi(s)a1(s)(ϖ1 + ζ1|x|+ η1|y|)ds

≤∆1 (ϖ1 + ζ1∥x∥+ η1∥y∥) ,

therefore

∥T1(x, y)∥ ≤ ∆1 (ϖ1 + ζ1∥x∥+ η1∥y∥) . (3.2)

By the similar proofing as (3.2), for any (x, y) ∈ Pr, we can obtain

∥T2(x, y)∥ ≤ ∆2 (ϖ2 + ζ2∥x∥+ η2∥y∥) . (3.3)

Combining (3.2) and (3.3), we know

∥T (x, y)∥= ∥T1(x, y)∥+ ∥T2(x, y)∥
≤∆1 (ϖ1 + ζ1∥x∥+ η1∥y∥) + ∆2 (ϖ2 + ζ2∥x∥+ η2∥y∥)
≤ r.

For any (x1, y1), (x2, y2) ∈ X, t ∈ [0, 1], by Lemma 2.3 and (H1), we can get

|T1(x2, y2)(t)− T1(x1, y1)(t)|

≤ λ1

∫ 1

0
G1(t, s)a1(s) |f1(s, x2(s), y2(s))− f1(s, x1(s), y1(s))| ds

≤ λ1

∫ 1

0
Φ1(s)a1(s) |f1(s, x2(s), y2(s))− f1(s, x1(s), y1(s))| ds

≤ ∆1 (ζ1∥x2 − x1∥+ η1∥y2 − y1∥)
≤ ∆1(ζ1 + η1)(∥x2 − x1∥+ ∥y2 − y1∥).

Therefore, for (x1, y1), (x2, y2) ∈ X, we observe

∥T1(x2, y2)− T1(x1, y1)∥ ≤ ∆1(ζ1 + η1)(∥x2 − x1∥+ ∥y2 − y1∥). (3.4)

Similar proof to (3.4), for (x1, y1), (x2, y2) ∈ X, we achieve

∥T2(x2, y2)− T2(x1, y1)∥ ≤ ∆2(ζ2 + η2)(∥x2 − x1∥+ ∥y2 − y1∥). (3.5)

As can be seen from (3.4) and (3.5),

∥T (x2, y2)− T (x1, y1)∥ ≤ (∆1(ζ1 + η1) + ∆2(ζ2 + η2)) (∥x2 − x1∥+ ∥x2 − y1∥).

Owing to ∆1(ζ1 + η1) +∆2(ζ2 + η2) < 1, T is a contraction operator, thus T has a unique fixed
point basing on the fixed point theorem of the contraction mapping principle, the system (1.1)
has a unique solution. The proof is complete. □
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Theorem 3.2 is about the existence of solutions. We prove that the set P in E is bounded,
and then obtain the conclusion based on the Lemma 2.4.

Theorem 3.2. Assume that (H0)(H2) hold, (∆1ρ1 + ∆2ρ2) + (∆1ϱ1 + ∆2ϱ2) < 1, where ∆1

and ∆2 are defined as (3.1). Then the system (1.1) has at least one solution.

Proof. Suppose
P = {(u, v) ∈ X : (u, v) = χT (u, v), 0 ≤ χ ≤ 1}.

For (u, v) ∈ V , (u, v) = χT (u, v), so we have

u = χT1(u, v), v = χT2(u, v).

Thus, for any t ∈ [0, 1], by Lemma (2.3) and (H2), we obtain

|u(t)| ≤
∣∣∣∣λ1

∫ 1

0
G1(t, s)a1(s)f1(s, x(s), y(s))ds

∣∣∣∣
≤ λ1

∫ 1

0
Φ1(s)a1(s)f1(s, x(s), y(s)ds

≤∆1(τ1 + ρ1∥u∥+ ϱ1∥v∥), (3.6)

|v(t)| ≤
∣∣∣∣λ2

∫ 1

0
G2(t, s)a2(s)f2(s, x(s), y(s))ds

∣∣∣∣
≤ λ2

∫ 1

0
Φ2(s)a2(s)f2(s, x(s), y(s)ds

≤∆2(τ2 + ρ2∥u∥+ ϱ2∥v∥). (3.7)

As can be seen from (3.6) and (3.7),

∥u∥+ ∥v∥ ≤∆1(τ1 + ρ1∥u∥+ ϱ1∥v∥) + ∆2(τ2 + ρ2∥u∥+ ϱ2∥v∥)
= ∆1τ1 +∆2τ2 + (∆1ρ1 +∆2ρ2)∥u∥+ (∆1ϱ1 +∆2ϱ2)∥v∥.

Thus

∥(u, v)∥ = ∥u∥+ ∥v∥ ≤ ∆1τ1 +∆2τ2
1− (∆1ρ1 +∆2ρ2)− (∆1ϱ1 +∆2ϱ2)

.

Therefore, P is bounded. By Lemma 2.4, the operator T has at least one fixed point. That is
to say, the system (1.1) has at least one solution. The proof is complete. □

4. An example

An example is given to illustrate our main results. Consider the following problem:

cD
8
3x(t) +

1

5
t−

1
3 (1− t)−

5
3 f1(t, x(t), y(t)) = 0,

cD
9
4 y(t) +

3

7
t(1− t)−

5
4 f2(t, x(t), y(t)) = 0, 0 < t < 1,

x(0) = x′′(0) = 0, x(1) =

∫ 1

0
x(s)ds,

y′(0) = y′′(0) = 0, y(1) =
1

3

∫ 1

0
y(s)ds2.

(4.1)
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Let

α1 =
8

3
, α2 =

9

4
, λ1 =

1

5
, λ2 =

3

7
, µ1 = 1, µ2 =

1

3
,

a1(t) = t−
1
3 (1− t)−

5
3 , a2(t) = t(1− t)−

5
4 ,

b1(s) = b2(s) = 1, A1(s) = s, A2(s) = s2.

In the following, we verify that conditions (H0) and (H2) are met, through calculation, we get

χ1 = µ1

∫ 1

0
tb1(t)dA1(t) =

∫ 1

0
tdt =

1

2
, χ2 = µ2

∫ 1

0
tb2(t)dA2(t) =

2

3

∫ 1

0
t2dt =

2

9
,∫ 1

0
Φ1(s)a1(s) =

2

Γ
(
8
3

) ∫ 1

0
t−

1
3dt < +∞,

∫ 1

0
Φ2(s)a2(s) =

9

7Γ
(
9
4

) ∫ 1

0
tdt < +∞,

the condition (H0) holds. For t ∈ [0, 1], x, y ∈ [0,+∞), take

f1(t, x, y) =
t

2 + et

(
1 +

1

4
sinx+

1

8
y

)
,

f2(t, x, y) =
t

(1 + t)3
(1 + 2x+ 3y) .

Notice that

|f1(t, x, y)| =
∣∣∣∣ t

2 + et

(
1 +

1

4
sinx+

1

8
y

)∣∣∣∣ ≤ 1

2
+

1

8
|x|+ 1

16
|y|,

|f2(t, x, y)| =
∣∣∣∣ t

(1 + t)3
(1 + 2x+ 3y)

∣∣∣∣ ≤ 1

8
+

1

4
|x|+ 3

8
|y|,

the condition (H2) holds. What’s more

∆1 = λ1

∫ 1

0
Φ1(t)a1(t)dt =

1

5
· 2

Γ
(
8
3

) ∫ 1

0
t−

1
3dt ≈ 0.3976,

∆2 = λ2

∫ 1

0
Φ2(t)a2(t)dt =

3

7
· 9

7Γ
(
9
4

) ∫ 1

0
tdt ≈ 0.2432,

(∆1ρ1 +∆2ρ2) + (∆1ϱ1 +∆2ϱ2) ≈ 0.2266 < 1.

Therefore, all conditions of Theorem 3.2 are satisfied, by Theorem 3.2, the system (4.1) has at
least one solution.

5. Conclusions

This article, we investigate positive solutions for the Caputo differential system involving
Riemann-Stieltjes integral boundary conditions. By using the Leray-Schauder’s nonlinear alter-
native theorem and the Banach contraction principle, we present the existence and uniqueness
results of positive solutions (Theorems 3.1 and 3.2). Since fi (i = 1, 2) is the abstract function,
in real world, there are a large class of functions that satisfying the conditions given in the
article, which proves the effectiveness and feasibility of these theorems.
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