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Emadidin Gahalla Mohmed Elmahdi1,2 and Jianfei Huang1,†

Abstract In this paper, a Crank-Nicolson L1/trapezoidal Product integration (PI) differ-
ence scheme is constructed to numerically solve a Volterra-type nonlinear integro-differential
equation. Assuming the exact solution exhibits a weak singularity at t = 0, the conver-
gence order of the fully discrete scheme is O

(
N−min{rσ,2−α,2} +M−2

)
, and the stability

is analyzed using an improved Grönwall inequality in terms of the L2-norm. Finally, the
theoretical results are verified by numerical experiments.
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ence scheme, stability and convergence.

MSC(2010) 65M06, 65M12.

1. Introduction

Fractional integro-differential equations have gained prominence over the past two decades due
to their widespread applications in fields, such as anomalous diffusion, mechanical systems,
viscoelastic materials, biology and signal analysis [13, 19]. The current study investigates the
subsequent fractional nonlinear Volterra integro-differential equation (FNVIDE) including sin-
gular kernels:

∂ν(x, t)

∂t
+ C

0 D
α
t ν(x, t) = 0J

β
t

∂2ν(x, t)

∂x2
+ g(ν(x, t)) + f(x, t), (1.1)

ν(x, 0) = 0, x ∈ (0, L),

ν(0, t) = ν(L, t) = 0, t ∈ (0, T ],

where f(x, t) is a known function, C0 D
α
t ν(x, t) and 0J

β
t ν(x, t) denote the temporal Caputo deriva-

tive with order 0 < α < 1 and the Riemann-Liouville integral operator of order 0 ≤ β ≤ 1,
respectively, defined as

C
0 D

α
t ν(x, t) =

∫ t

0
ω̄
(t−s)
1−α

∂ν(x, s)

∂s
ds, where ω̄(t)

α =
tα−1

Γ(α)
(1.2)
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and

0J
β
t ν(x, t) =

∫ t

0
ω̄
(t−s)
β ν(x, s)ds.

In the present study, we claim that the solution ν(x, t) fulfills the following regularity assumption:∣∣∣∣∂pν(x, t)

∂tp

∣∣∣∣ ≤ C
(
1 + tσ−p

)
, σ ∈ (0, 1), and p = 1, 2, (1.3)

where σ is a regularity parameter, dependent on α and β.
Numerical research of various versions of Eq. (1.1), specifically for the scenario when β = 0

(fractional mobile/immobile equations FMIMEs) and the fractional diffusion equations FDEs
(excluding ∂ν

∂t and β = 0), in both linear and nonlinear frameworks, have been thoroughly
analyzed in the literature (see, for instance, [1, 4, 6, 8, 29]). Qiao and Cheng [14] handled 2D
variable FMIMEs with the L1 finite difference method on uniform meshes. The application
of an averaged L1 technique for solving nonlinear FMIMEs on nonuniform domains has been
analyzed by Yu and Chen in [27] and Tan in [21]. For linear FDEs, the authors in [23, 26]
examined an α-robust analysis for the developed schemes. Wang and Sun [25] constructed an L1-
type method on nonuniform grids to solve a category of variable-coefficient Caputo-Hadamard
FDEs. The stability and convergence of the suggested methods were rigorously shown. Zhu
and Xu [28] employed a combination of temporal nonuniform meshes and the spectral method
to numerically solve FDEs on unbounded spatial domains. Consequently, this motivates us to
examine and analyze a comprehensive framework including all the scenarios previously discussed.

Recently, there has been considerable research on linear FVIDEs (see, for instance, [3,9,15,16,
18, 22]), but comparatively little attention has been devoted to the nonlinear case [2, 10, 17,20].
In [20], Sunthrayuth et al. constructed a linearized scheme to solve a type of FNVIDEs via
a Chebyshev pseudospectral method. Kumar and Gupta [10] implemented fractional-order La-
grange polynomials to introduce and analyze a numerical scheme for solving a type of FNVIDEs.
In [17], Saini et al. presented a stable iterative method with convergence order O(τ2−α) to han-
dle a class of FNVIDEs, while the nonlinear term was treated by the Daftardar-Gejji and Jafari
method. Behera and Saha Ray in [2], presented a scheme based on Taylor wavelets technique for
solving linear and nonlinear fractional Volterra-Fredholm integro-differential equations. Here,
we present a Crank-Nicolson linearized difference scheme for solving a type of FNVIDEs with
initial singularity at t = 0. We approximate the Caputo derivative and the Riemann-Liouville
fractional integral over time by combining the L1 scheme and the trapezoidal PI rule on a graded
mesh with the Crank-Nicolson method. The fractional central difference formula is utilized to
build a full discrete difference scheme. Ultimately, it is shown that the proposed scheme is stable
and convergent, with convergence orders of O

(
N−min{rσ,2−α,2} +M−2

)
.

The next sections of this paper are organized as follows: Section 2 delineates several practical
lemmas and preparatory concepts. In Section 3, a finite difference scheme is formulated. The
stability and convergence of the proposed method are explained in Section 4. Alongside the
theoretical results, numerical experiments are showcased in Section 5. A succinct summary is
given in Section 6.

2. Preliminaries

This section introduces fundamental definitions, significant notations, and key lemmas for con-
structing and analyzing the difference scheme for problem (1.1).
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For positive integer M , let h = L/M , {xi = ih}Mi=0. Let N be a positive integer, we divide
the interval [0, T ] into N sub-intervals with ϵn = {t0, · · · , tN |0 = t0 < t1 < · · · < tN = T}
by {tk = T (k/N)r}Nk=0, where r ≥ 1, denote the time step as τk = tk − tk−1 and tk−1/2 =
(tk + tk−1)/2.

For any grid point {νni }
M−1
i=1 , we set

δ2xν
n
i =

νni−1 − 2νni + νni+1

h2
≈ ∂2ν(xi, tn)

∂x2
.

Lemma 2.1. ( [24], Eq. (2.1)) For n = 1, 2, · · · , N . One has

C
0 D

α
t ν(tk) =

n∑
k=1

c
(α)
n−k

(
ν(tk)− ν(tk−1)

τk

)
+ (Rα

t ) ,

with

c
(α)
n−k =

1

Γ(2− α)

(tn − tk−1)
1−α , if k = n,

(tn − tk−1)
1−α − (tn − tk)

1−α , if k = 1, 2, · · · , n− 1.

Lemma 2.2. ( [24], Lemma 2.2) For n ≥ 1 and under assumption (1.3), then

n∑
k=1

P
(n)
n−k| (R

α
t )

k | ≤ CN−min{rσ,2−α},

where

P
(n)
n−k =

1

c
(α)
0


1, if k = n,

n∑
j=k+1

(
c
(α)
j−k−1 − c

(α)
j−k

)
P

(n)
n−j , if k = 1, 2, · · · , n− 1,

and

0 < P
(n)
n−k < Γ(2− α)ταk , 1 ≤ k ≤ n.

According to [24], we approximate the operator 0J
β
t by the following trapezoidal product

integral method.∣∣∣∣∣0Jβ
t ν(tn)−

τβ1
Γ(β + 2)

(
ωnν(t0) +

n∑
s=1

bn,sν(ts)

)∣∣∣∣∣ ≤ CNmin{rσ,2}, 1 ≤ n ≤ N, (2.1)

where ωn = (nr−1)β+1−nrβ(nr−β−1), bn,s = ϕn,s(β, r)−ϕn,s+1(β, r), and bn,n = (nr−(n−1)r)β

with ϕn,s(β, r) =
(nr−(s−1)r)β+1−(nr−sr)β+1

sr−(s−1)r .

Lemma 2.3. Let 0 < µ ≤ 1 and ν(t) = O (tσ) satisfies νtt(t) ≤ C
(
1 + tσ−2

)
, then the following

results

ν
(
tn− 1

2

)
=

ν(tn) + ν(tn−1)

2
+O

(
tσ−2
n− 1

2

τ2n

)
,

C
0 D

µ
t ν(tn− 1

2
) =

C
0 D

µ
t ν(tn) +

C
0 D

µ
t ν(tn−1)

2
+O

(
tσ−µ−2

n− 1
2

τ2n

)
,
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and

0J
µ
t ν(tn− 1

2
) =

0J
µ
t ν(tn) + 0J

µ
t ν(tn−1)

2
+O

(
tσ+µ−2

n− 1
2

τ2n

)
hold.

Proof. Using Taylor expansion, we have

(tn−1)
σ =

(
tn− 1

2

)σ
− τn

2

((
tn− 1

2

)σ)′
+

τ2n
8

∫ 1

0
ν ′′
(
tn− 1

2
− µτn

2

)
(1− µ) dµ (2.2)

and

(tn)
σ =

(
tn− 1

2

)σ
+

τn
2

((
tn− 1

2

)σ)′
+

τ2n
8

∫ 1

0
ν ′′
(
tn− 1

2
+

µτn
2

)
(1− µ) dµ. (2.3)

From Eqs. (2.2) and (2.3), we have

(tn)
σ + (tn−1)

σ

2
=
(
tn− 1

2

)σ
+O

(
tσ−2
n− 1

2

τ2n

)
.

We easily deduce that

C
0 D

µ
t ν(tn− 1

2
) = O

(
tn− 1

2

)σ−µ

=
(tn)

σ−µ + (tn−1)
σ−µ

2
+O

(
tσ−µ−2

n− 1
2

τ2n

)
=

C
0 D

µ
t ν(tn) +

C
0 D

µ
t ν(tn−1)

2
+O

(
tσ+µ−2

n− 1
2

τ2n

)
.

Similarly,

0J
µ
t ν(tn− 1

2
) =

0J
µ
t ν(tn) + 0J

µ
t ν(tn−1)

2
+O

(
tσ+µ−2

n− 1
2

τ2n

)
,

this completes the proof.

Lemma 2.4. ( [7], Lemma 2.6) Suppose ν(t) satisfies the assumption (1.3), then the following
approximation holds

ν(tn) = 2ν(tn−1)− ν(tn−2) +O
(
N−rσ

)
.

3. Derivation of a finite difference scheme

In this section, we construct a Crank-Nicolson L1/PI method on nonuniform meshes, following
the regularity assumption (1.3).

Applying the Crank-Nicolson technique and Lemma 2.3, we get

νt(xi, tn) + νt(xi, tn−1)

2
+

(
C
0 D

α
t ν(xi, tn) +

C
0 D

α
t ν(xi, tn−1)

)
2
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=
0J

β
tn

∂2ν(xi,t)
∂x2 + 0J

β
tn−1

∂2ν(xi,t)
∂x2

2
+

g(ν(xi, tn)) + g(ν(xi, tn−1))

2
+ f(xi, tn− 1

2
) +O

(
N−2

)
,

where f(xi, tn− 1
2
) = f(xi,tn)+f(xi,tn−1)

2 .

Let ν(xi, tn) = νni . Thus, from Eq. (2.1), Lemma 2.1, Taylor expansion formula to approxi-
mate νt(x, t), and the standard difference method to approximate the second-derivative in space,
one has

νni − νn−1
i

τn
+

1

2

[
c
(α)
0

νni − νn−1
i

τn
+

n−1∑
k=1

(
c
(α)
n−k + c

(α)
n−1−k

) νki − νk−1
i

τk

]

=
τβ1

2Γ(β + 2)

[
bn,nδ

2
xν

n
i +

n−1∑
k=1

(bn,k + bn−1,k) δ
2
xν

k
i + (ωn + ωn−1) δ

2
xν

0
i

]
+

1

2

[
g(νni ) + g(νn−1

i )
]

+ f
n− 1

2
i + (Rα,β

x )i, (3.1)

where (Rα,β
x )i = (Rα

t )i + (Rβ
x)i and (Rβ

x)i = O
(
N−min{rσ,2} +M−2

)
.

Define

ζn =
ωn + ωn−1

2
, n = 1, 2, · · · , N,

ξn−k =


bn,k
2

, if k = n,

bn,k + bn−1,k

2
, if k = 1, 2, · · · , n− 1,

and

cn−k =
1

2

2 + c
(α)
0 , if k = n,

c
(α)
n−k + c

(α)
n−1−k, if k = 1, 2, · · · , n− 1.

So Eq. (3.1) can be expressed as

0Dtν
n
i =

τβ1
Γ(β + 2)

(
n∑

k=1

ξn−kδ
2
xν

k
i + ζnδ

2
xν

0

)
+

g(νni ) + g(νn−1
i )

2
+ f

n− 1
2

i +
(
Rα,β

x

)n
i
, (3.2)

where

0Dtν
n
i :=

n∑
k=1

cn−k
νki − νk−1

i

τk
.

From Lemma 2.4 and Taylor expansion theorem we linearize Eq. (3.2) with respect to the
unknown variable νni for n = 1, 2, · · · , N as follows:(

c0 −
τβ+1
1 ξ0δ

2
x

Γ(β + 2)

)
ν1i =

(
c0 +

τβ+1
1

Γ (β + 2)
ζnδ

2
x

)
ν0 + τ1f

1
2
i + τ1

(
Rα,β

x

)1
i
, for n = 1, (3.3)
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and(
c0 −

τnτ
β
1 ξ0δ

2
x

Γ(β + 2)

)
νni =c0ν

n−1
i − τn

n−1∑
k=1

cn−k
νki − νk−1

i

τk
+

τnτ
β
1

Γ(β + 2)

n−1∑
k=1

ξn−kδ
2
xν

k
i

+
τnτ

β
1

Γ (β + 2)
ζnδ

2
xν

0 +
τn
2

(
g(2νn−1

i − νn−2
i ) + g(νn−1

i )
)
+ τnf

n− 1
2

i

+ τn

(
Rα,β

x

)n
i
, for n = 2, 3, · · · , N. (3.4)

By neglecting the truncation error term
(
Rα,β

x

)n
i
in Eqs. (3.3), (3.4) and replacing νni with

numerical solution ν̃ni , we obtain(
c0 −

τβ+1
1 ξ0δ

2
x

Γ(β + 2)

)
ν̃1i =

(
c0 +

τβ+1
1

Γ (β + 2)
ζnδ

2
x

)
ν̃0 + τ1f

1
2
i , for n = 1, (3.5)

and (
c0 −

τnτ
β
1 ξ0δ

2
x

Γ(β + 2)

)
ν̃ni =c0ν̃

n−1
i − τn

n−1∑
k=1

cn−k
ν̃ki − ν̃k−1

i

τk
+

τnτ
β
1

Γ(β + 2)

n−1∑
k=1

ξn−kδ
2
xν̃

k
i

+
τnτ

β
1

Γ (β + 2)
ζnδ

2
xν̃

0 +
τn
2

(
g(2ν̃n−1

i − ν̃n−2
i ) + g(ν̃n−1

i )
)

+ τnf
n− 1

2
i , for n = 2, 3, · · · , N. (3.6)

4. Convergence and stability analysis

This section discusses the stability and convergence of the proposed scheme under an improved
Grönwall inequality. First, we define the grid function space as follows:

Θh = {νi|0 ≤ i ≤ M and ν0 = νM = 0}.

For νi, wi ∈ Θh, we introduce the discrete inner product, L2-norm and the semi norm as

⟨ν, w⟩ = h
M−1∑
i=1

νiwi, ∥ν∥2 = ⟨ν, ν⟩ and |ν|1 =
√
⟨−δ2xν, ν⟩ =

√
⟨δxν, δxν⟩,

respectively.

Lemma 4.1. ( [5], Corollary 1) Consider the sequence {νn}Nn=0, which represents a mesh func-
tion. For all values of n from 1 to N , we have

n∑
k=1

cn−k
∥νk∥2 − ∥νk−1∥2

τk
≤ 2⟨νn, 0Dtν

n⟩.

The subsequent modified discrete Grönwall inequality constitutes the principal finding in the
theoretical investigation. A similar argument in [12] produces the required outcome.
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Lemma 4.2. Assume {λn}N−1
n=0 is a non-negative sequence. Additionally, let the following in-

equality holds

n∑
k=1

cn−k

(
(νk)2 − (νk−1)2

)
≤

n∑
k=1

λn−kν
kνn + νnηn + (ϕn)2 for 1 ≤ n ≤ N, (4.1)

where {νn, ηn, ϕn|1 ≤ n ≤ N} are non-negative sequences. If there exists a constant Λ indepen-
dent of step sizes satisfies Λ ≥

∑N−1
l=0 λl and the maximum step size fulfills

max
1≤n≤N

τn ≤ 1
α
√

2πAΓ(2− α)Λ
,

then

νn ≤ 2Eα (2max(1, ρ)πAΛt
α
n)

ν0 + max
1≤k≤n

k∑
j=1

P
(k)
k−j

(
ηj + ϕj

) (4.2)

holds, where Eα is the Mittag-Leffler function, πA > 0, and τn
τn+1

≤ ρ for 1 ≤ n ≤ N .

Lemma 4.3. ( [24], Lemma 2.2) Under the assumption (1.3), the following result

n∑
j=1

P
(n)
n−j |R

α
t | ≤ CN−min{rσ,2−α}

holds.

Lemma 4.4. ( [11], Eq. (1.8)) For n = 1, 2, · · · , N , one has

n∑
j=1

P
(n)
n−j ≤

11tαn
4Γ(1 + α)

.

Theorem 4.1. Let ν(x, t) be the exact solution of problem (1.1) and {ν̃ni }Mi=1 be the numerical
solution of schemes (3.5) and (3.6). If

max
1≤n≤N

τn ≤ 1
α
√

2πAΓ(2− α)Λ
,

then, it holds for 1 ≤ n ≤ N that

∥en∥ = ∥νn − ν̃n∥ ≤ C
(
N−min{rσ,2−α} +M−2

)
.

Proof. From Eqs. (3.6) and (3.4), we have

0Dte
n
i =

τβ1
Γ(β + 2)

(
ζnδ

β2
x e0i +

n∑
k=1

ξn−kδ
2
xe

k
i

)

+
g(2νn−1

i − νn−2
i )− g(2ν̃n−1

i − ν̃n−2
i ) + g(νn−1

i )− g(ν̃n−1
i )

2
+
(
Rα,β

x

)n
i
.
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Since e0i = 0 for 0 ≤ i ≤ M , the above equation becomes

0Dte
n
i =

τβ1
Γ(β + 2)

n∑
k=1

ξn−kδ
2
xe

k
i

+
g(2νn−1

i − νn−2
i )− g(2ν̃n−1

i − ν̃n−2
i ) + g(νn−1

i )− g(ν̃n−1
i )

2
+
(
Rα,β

x

)n
i
.

Multiplying the above equation by heni and summing over 1 ≤ i ≤ M − 1, we obtain

⟨0Dte
n, en⟩ = τβ1

Γ(β + 2)

n∑
k=1

ξn−k⟨δ2xek, en⟩

+
⟨g(2νn−1 − νn−2)− g(2ν̃n−1 − ν̃n−2), en⟩+ ⟨g(νn−1)− g(ν̃n−1), en⟩

2

+ ⟨
(
Rα,β

x

)n
, en⟩. (4.3)

From Lipschitz condition with respect to the unknown ν and Lemma 4.1, one has

0Dt∥en∥2 ≤
2τβ1

Γ(β + 2)

n∑
k=1

ξn−k|ek|1|en|1 + (1 + LP ) ∥en∥2 + LP ⟨en−1, en⟩+ ∥
(
Rα,β

x

)n
∥2.

Assume that ∥eP ∥ = max0≤n≤N , then it holds

0Dt∥eP ∥2 ≤
2τβ1

Γ(β + 2)

P∑
k=1

ξn−k|ek|1|eP |1 + (1 + 2LP ) ∥eP ∥2 + ∥
(
Rα,β

x

)P
∥2. (4.4)

Similarly, from Eqs. (3.3) and (3.5), we obtain

0Dt∥e1∥2 ≤
2τβ1

Γ(β + 2)
ξ0|e1|21 + (1 + 2LP ) ∥e1∥2 + ∥

(
Rα,β

x

)1
∥2. (4.5)

Summing Eqs. (4.4) and (4.5) gives

0Dt∥eP ∥2 ≤
2τβ1

Γ(β + 2)

P∑
k=1

ξP−k|ek|1|eP |1 + (1 + 2LP ) ∥eP ∥2 + ∥
(
Rα,β

x

)P
∥2, (4.6)

which has the form of Eq. (4.1) with Λ = 2T β/Γ(β + 1). Therefore, applying Lemma 4.3, we
obtain

∥eP ∥ ≤ CEα

(
4T β max(1, ρ)πAt

α
n

Γ(β + 1)

)
max

1≤k≤P

k∑
j=1

P
(k)
k−j∥

(
Rα,β

x

)j
∥

≤ CEα

(
4T β max(1, ρ)πAt

α
n

Γ(β + 1)

)
max

1≤k≤P

k∑
j=1

P
(k)
k−j

(
∥(Rα

t )
j∥+ ∥(Rβ

x)
j∥
)
. (4.7)

Therefore, from Lemmas 4.3 and 4.4, we obtain

∥en∥ ≤ O
(
N−min{rσ,2−α,2} +M−2

)
.

The proof is completed.
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Theorem 4.2. Assume {ν̃n}Mi=0 is the numerical solution of schemes (3.5) and (3.6), it holds

∥ν̃n∥ ≤ Eα

(
4T β max(1, ρ)πAt

α
n

Γ(β + 1)

)(
∥ν̃0∥+ 11tαn

4Γ(1 + α)
max
1≤k≤n

∥fk− 1
2 ∥
)

for 1 ≤ n ≤ N .

Proof. Multiplying Eq. (3.6) by hν̃ni and summing over 1 ≤ i ≤ M − 1, we obtain

⟨0Dtν̃
n, ν̃n⟩ = τβ1

Γ(β + 2)

(
ζn⟨δ2xν̃0, ν̃n⟩+

n∑
k=1

ξn−k⟨δ2xν̃k, ν̃n⟩

)

+
⟨g(2ν̃n−1

i − ν̃n−2
i ) + g(ν̃n−1

i ), ν̃ni ⟩
2

+ ⟨fn− 1
2 , ν̃n⟩. (4.8)

Eq. (1.1) which is characterized by homogeneous initial conditions, resulting in

⟨0Dtν̃
n, ν̃n⟩ = τβ1

Γ(β + 2)

n∑
k=1

ξn−k⟨δ2xν̃k, ν̃n⟩

+
⟨g(2ν̃n−1

i − ν̃n−2
i ) + g(ν̃n−1

i ), ν̃ni ⟩
2

+ ⟨fn− 1
2 , ν̃n⟩. (4.9)

Applying similar deductions to get Eq. (4.6), one has

0Dt∥ν̃P ∥2 ≤
2τβ1

Γ(β + 2)

P∑
k=0

ξP−k|ν̃k|1|ν̃P |1 + ∥fP− 1
2 ∥2 + (1 + 2LP )∥ν̃P ∥2, (4.10)

which has the form of Eq. (4.1) with Λ = 2Tβ

Γ(β+1) . Therefore, applying Lemma 4.2 gives

∥ν̃P ∥ ≤Eα

(
4T β max(1, ρ)πAt

α
P

Γ(β + 1)

)∥ν̃0∥+ max
1≤k≤P

k∑
j=1

P
(k)
k−j + max

1≤k≤P

k∑
j=1

P
(k)
k−j∥f

j∥


≤Eα

(
4T β1 max(1, ρ)πAt

α
P

Γ(β + 1)

)(
∥ν̃0∥+

11tαP
4Γ(1 + α)

max
1≤k≤P

∥fk∥
)
,

where Lemma 4.4 is used.

5. Numerical experiments

Here, we conduct numerical experiments to validate the correctness of theoretical analysis and
provide our numerical results. All of the computations are performed by using a MATLAB on
a computer with Intel(R) Core(TM) i5-8265U CPU 1.60GHz 1.80GHz and 8G Ram.

The following tables display the L2-norm errors between the exact and numerical solution,
which is denoted by

L2
(N,M) = max

0≤n≤N
∥en∥

and the average CPU time measured in seconds, is expressed by the mean duration. Moreover,
the numerical CRs in all possible scenarios are denoted by

rate = log2

(
L2
(N/2,M/2)/L

2
(N,M)

)
and ratex = log2

(
L2
(N,M/2)/L

2
(N,M)

)
.
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Example 5.1. Consider Eq. (1.1) with the exact solution ν(x, t) = tσ sin(πx) and

f(x, t) = σtσ−1 sin(πx) +
Γ(σ + 1)

Γ(σ − α+ 1)
tσ−α sin (πx)

− Γ(σ + 1)π2tσ+β

Γ(σ + β + 1)
sin(πx)− ν2.

This experiment evaluates the performance of nonuniform schemes (3.5) and (3.6) by utilizing
several graded mesh parameters r, namely r = 1, 1

σ ,
2−α
σ , and 2. The CRs shown in Tables 1 and

2 indicate that schemes (3.5) and (3.6) attain the maximum CR (2−α) for the L1 method when
r = 2−α

σ , achieving CR σ under uniform meshes (r = 1) and has CR rσ when r = 2. Table 3
illustrates that schemes (5) and (6) achieve second-order precision with the parameters α = 0.1,
σ = 0.9, r = 2−α

σ , and 2. This demonstrates that the application of graded mesh significantly
enhances the accuracy of the scheme by concentrating a greater density of mesh points at t = 0.

Conversely, we evaluate the CR in space as presented in Table 4, maintaining a constant
N = 1000 and setting r = 2−α

σ , which is characterizes as second-order. The theoretical and
experimental findings line up with one another. Finally, Figures 1 and 2 demonstrate that the
exact solution ν(x, t) closely aligns with the linearized difference schemes (3.5) and (3.6) with
N = 100,M = 16, α = 0.4, σ = 0.7, β = 0.3, r = 2−α

σ , and the errors are not significant.

Table 1. The maximum errors and the temporal CR of schemes (3.5) and (3.6).

r N = M
(α, σ, β) = (0.3, 0.8, 0.5) (α, σ, β) = (0.4, 0.7, 0.3) (α, σ, β) = (0.5, 0.6, 0.1) CPU time

L2
(N,M) rate L2

(N,M) rate L2
(N,M) rate mean

1

128 3.1576× 10−3 7.2614× 10−3 1.4296× 10−2 0.78

256 1.9408× 10−3 0.7022 4.8237× 10−3 0.5901 1.0419× 10−2 0.4564 8.72

512 1.1546× 10−3 0.7493 3.0914× 10−3 0.6419 7.2564× 10−3 0.5219 82.78

1024 6.7615× 10−4 0.7720 1.9469× 10−3 0.6671 4.9394× 10−3 0.5549 1114.85

Expected CR 0.8 0.7 0.6

1
σ

128 1.3754× 10−3 2.0726× 10−3 2.7438× 10−3 0.81

256 7.0712× 10−4 0.9598 1.0558× 10−3 0.9732 1.3906× 10−3 0.9805 8.73

512 3.5849× 10−4 0.9800 5.3282× 10−4 0.9866 7.0006× 10−4 0.9902 77.16

1024 1.8054× 10−4 0.9896 2.6772× 10−4 0.9929 3.5130× 10−4 0.9947 1140.28

Expected CR 1.0 1.0 1.0

2−α
σ

128 5.5720× 10−5 1.2958× 10−4 2.6766× 10−4 1.24

256 1.7183× 10−5 1.6972 4.2824× 10−5 1.5973 9.4817× 10−5 1.4972 8.53

512 5.2925× 10−6 1.6990 1.4137× 10−5 1.5990 3.3550× 10−5 1.4988 77.43

1024 1.6294× 10−6 1.6996 4.6647× 10−6 1.5996 1.1866× 10−5 1.4995 1106.69

Expected CR 1.7 1.6 1.5

2

128 8.8823× 10−5 3.3015× 10−4 1.0918× 10−3 0.54

256 2.9384× 10−5 1.5959 1.2560× 10−4 1.3943 4.7811× 10−4 1.1913 8.46

512 9.7033× 10−6 1.5985 4.7671× 10−5 1.3976 2.0871× 10−4 1.1959 80.61

1024 3.2022× 10−6 1.5994 1.8077× 10−5 1.3990 9.0972× 10−5 1.1980 1105.18

Expected CR 1.6 1.4 1.2
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Table 2. The maximum errors and the temporal CR of schemes (3.5) and (3.6).

r N = M
(α, σ) = (0.2, 0.8) (α, σ) = (0.4, 0.6) (α, σ) = (0.7, 0.3) CPU time

L2
(N,M) rate L2

(N,M) rate L2
(N,M) rate mean

1

128 2.3468× 10−3 1.3977× 10−2 1.0142× 10−1 0.74

256 1.7073× 10−3 0.4590 1.0408× 10−3 0.4254 8.8127× 10−2 0.2028 8.45

512 1.0904× 10−3 0.6468 7.3114× 10−3 0.5095 7.4542× 10−2 0.2415 79.07

1024 6.5938× 10−4 0.7257 4.9900× 10−3 0.5511 6.2133× 10−2 0.2627 1131.75

Expected CR 0.8 0.6 0.3

1
σ

128 1.2729× 10−3 2.7666× 10−3 4.5174× 10−3 0.76

256 6.8757× 10−4 0.8886 1.3993× 10−3 0.9834 2.2622× 10−3 0.9978 8.36

512 3.5510× 10−4 0.9533 7.0300× 10−4 0.9931 1.1319× 10−3 0.9989 79.09

1024 1.8005× 10−4 0.9798 3.5223× 10−4 0.9970 5.6618× 10−4 0.9994 1106.26

Expected CR 1.0 1.0 1.0

2−α
σ

128 3.4921× 10−5 1.6722× 10−4 3.0161× 10−3 1.01

256 1.0043× 10−5 1.7979 5.5191× 10−5 1.5992 1.3362× 10−3 1.1745 8.74

512 2.8850× 10−6 1.7995 1.8209× 10−5 1.5998 5.7596× 10−4 1.2142 79.59

1024 8.2857× 10−7 1.7999 6.0072× 10−6 1.5999 2.4384× 10−4 1.2400 1084.29

Expected CR 1.8 1.6 1.3

2

128 8.8755× 10−5 1.0975× 10−3 2.9760× 10−2 1.01

256 2.9390× 10−5 1.5945 4.7961× 10−4 1.1943 1.9808× 10−2 0.5873 8.62

512 9.7055× 10−6 1.5985 2.0907× 10−4 1.1978 1.3141× 10−2 0.5919 77.96

1024 3.2026× 10−6 1.5996 9.1059× 10−5 1.1991 8.7017× 10−3 0.5947 1093.95

Expected CR 1.6 1.2 0.6

6. Conclusion remarks

This paper introduces and analyzes a linearized difference method for a class of nonlinear
Volterra integro-differential equations that display a weak singularity at the initial time t = 0.
The L1 scheme and trapezoidal PI method are utilised to discretize the Caputo fractional
derivative and the Riemann-Liouville integral operator on graded meshes, respectively. Mean-
while, the central difference formula approximates the second-order spatial derivative on uniform
meshes. The suggested scheme is demonstrated to be stable and convergent with an order of
O
(
N−min{rσ,2−α,2} +M−2

)
. The theoretical analysis is supported by the experimental data.
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Table 3. The maximum errors and the temporal CR of schemes (3.5) and (3.6) with fixed σ = 0.9 and α = 0.1.

r N = M
β = 0.3 β = 0.5 β = 0.7 CPU time

L2
(N,M) rate L2

(N,M) rate L2
(N,M) rate mean

1

128 8.9170× 10−4 9.9529× 10−4 1.0359× 10−3 0.99

256 5.5758× 10−4 0.6774 5.8224× 10−4 0.7735 5.9061× 10−4 0.8107 8.28

512 3.1827× 10−4 0.8089 3.2402× 10−4 0.8455 3.2571× 10−4 0.8586 78.55

1024 1.7537× 10−4 0.8599 1.7669× 10−4 0.8709 1.7702× 10−4 0.8796 1169.18

Expected CR 0.9 0.9 0.9

1
σ

128 6.3638× 10−4 6.7323× 10−4 6.8634× 10−4 1.06

256 3.4690× 10−4 0.8754 3.5424× 10−4 0.9264 3.5647× 10−4 0.9452 8.33

512 1.7949× 10−4 0.9506 1.8093× 10−4 0.9693 1.8130× 10−4 0.9754 77.19

1024 9.1043× 10−5 0.9793 9.1321× 10−5 0.9864 9.1382× 10−5 0.9884 1144.86

Expected CR 1.0 1.0 1.0

2−α
σ

128 2.9339× 10−5 3.0001× 10−5 2.9624× 10−5 0.54

256 7.3132× 10−6 2.0043 7.4200× 10−6 2.0155 7.1565× 10−6 2.0494 8.12

512 1.8210× 10−6 2.0058 1.8322× 10−6 2.0179 1.7208× 10−6 2.0562 78.35

1024 4.5305× 10−7 2.0070 5.5175× 10−7 2.0200 4.1171× 10−7 2.0634 1104.97

Expected CR 1.9 1.9 1.9

2

128 3.0540× 10−5 3.1674× 10−5 3.2499× 10−5 0.58

256 7.6137× 10−6 2.0040 7.8424× 10−6 2.0139 7.8901× 10−6 2.0423 7.76

512 1.8958× 10−6 2.0058 1.9375× 10−6 2.0171 1.9036× 10−6 2.0513 77.95

1024 4.7155× 10−7 2.0073 4.7758× 10−7 2.0204 4.5596× 10−7 2.0617 1093.46

Expected CR 1.8 1.8 1.8

Table 4. The maximum errors and the spatial CR of schemes (3.5) and (3.6) with fixed N = 1000.

M
(α, σ, β) = (0.3, 0.8, 0.5) (α, σ, β) = (0.4, 0.7, 0.3) (α, σ, β) = (0.5, 0.6, 0.1) CPU time

L2
(N,M) ratex L2

(N,M) ratex L2
(N,M) ratex mean

8 9.8125× 10−3 9.4179× 10−3 9.1487× 10−3 5.35

16 2.4379× 10−3 2.0090 2.3395× 10−3 2.0092 2.2727× 10−3 2.0091 5.57

32 6.0844× 10−4 2.0025 5.8380× 10−4 2.0027 5.6689× 10−4 2.0033 5.80

64 1.5194× 10−4 2.0015 1.4573× 10−4 2.0021 1.4124× 10−4 2.0049 7.75

Expected CR 2.0 2.0 2.0
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Figure 1. The comparison between the exact solution ν(x, t) with the numerical schemes (3.5) and (3.6) of
problem (1.1).
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Figure 2. The error surface between the numerical solution and the exact solution of schemes (3.5) and (3.6).
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