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Abstract This paper focuses on the stability and bifurcation in a fractional-order neutral-
type inertial neural network with time delay. We mainly analyze the new system with time
delay by using Cramer’s rule to derive precise bifurcation conditions. The accuracy of the
theoretical findings is ultimately confirmed through two numerical experiments. Moreover,
the remarkable advantages of the fractional-order model are found in delaying the occurrence
of inherent bifurcations and enhancing the stability performance.
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1. Introduction

Currently, research on fractional-order neural networks is garnering significant attention, as their
qualitative analysis and containment research hold substantial value. This is largely due to the
fact that Neural networks have attained extraordinary success across numerous domains, in-
cluding image processing [20], combinatorial optimization [15], associative memory [21], pattern
recognition [14] and so on. As we know, fractional calculus serves as a highly effective mathemat-
ical tool for depicting the inherent non-locality and hereditary characteristics of real materials
and processes. Besides, it can accurately capture the memory characteristics of neural networks,
thereby enhancing their realism [2,25,28]. Consequently, the research of fractional-order neural
networks aligns more closely with reality. Time delay is a prevalent phenomenon that often
leads to instability and oscillations within the neural network systems [7, 19, 24]. Given the
existence of various types of time delays, each type manifests distinct dynamic characteristics.
Hopf bifurcation is a significant dynamic issue that typically arises in a category of differen-
tial equation systems featuring nonlinear coupling terms. Within these systems, as a particular
parameter undergoes variation, the stability of the systems will be altered. This induces remark-
able changes in the behavior of the systems [8, 16, 18]. Thus, it is of paramount importance to
investigate the bifurcation issues in different systems. We have conducted extensive research on
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the asymptotic stability analysis of various types of neural networks with time-varying delays.
The Hopfield neural network is the most prevalent type. Regarding the Hopfield neural network,
relevant research has yielded significant findings, covering scenarios ranging from integer-order
to fractional-order, from one-dimensional and two-dimensional to high-dimensional, and even
from single-delay to multi-delay [9, 10,23].

In 1997, Wheeler and Schieve pioneered the introduction of a second-order inertial neural
network model [26]. They examined the stability, bifurcation, and chaos phenomena at the
system’s equilibrium point. It has been demonstrated that the dynamic behavior becomes more
sophisticated when inertial terms are included in neural networks, which has sparked scholars’
interest in studying inertial neural networks [1]. The issue of anti-synchronization in switched
inertial neural networks with constant leakage delay and time-varying mixed delay was explored
in [29]. In [22], the Lyapunov comparison principle was utilized to investigate the dynamic
behavior of fractional-order generalized reaction-diffusion inertial neural networks with time de-
lay. In the practical scenarios, the dynamic behavior of some systems is influenced not only
by delays in their state variables but also by delays in the derivatives of these state variables.
Such systems are specifically categorized as neutral systems. Consequently, the authors initi-
ated research on neural networks featuring neutral time-varying delays and introduced delays
in the neutral case [6]. When set against their integer-order counterparts in neural networks,
neutral fractional-order neural networks exhibit superior stability performance. In contrast to
traditional delayed neural networks, they can achieve shorter convergence times by selecting ap-
propriate parameters. For instance, in [12], the authors concentrated on the stability analysis of
fractional-order neural networks with neutral delay and effectively created bifurcation diagrams
for various delays. It was demonstrated that both time delay and fractional order significantly
affect the stability of the developed fractional-order neural networks. It was also observed that
fractional-order neural networks with neutral delay can delay the occurrence of bifurcation.
In [5], the Lyapunov functional method was employed to study the global exponential stability
of neutral Cohen-Grossberg neural networks incorporating multiple discrete neutral delays with
time-varying characteristics.

Building upon previous research, a new research domain has emerged, known as neutral in-
ertial neural networks. In [4], the authors developed novel neutral-type differential inequalities
and Lyapunov methods to investigate the global exponential dissipation rate of neutral-type
BAM inertial neural networks with mixed time-varying delays. Furthermore, in [27], the au-
thors explored the global dissipation issue of memristive neutral inertial neural networks with
distributed and discrete time-varying delays. A review of existing literature reveals that research
in this area is rather limited, with only a handful of papers available. In comparison with previ-
ous models, neutral inertial neural networks possess more intricate dynamic characteristics and
hold greater research value.

The aim of this paper is to explore the dynamic characteristics of a fractional-order neutral-
type inertial neural network with time delay. The key innovations of this study are outlined as
follows.

(1) Currently, research on fractional-order neural networks that incorporate time delay, iner-
tia term and neutral delay is quite limited. This paper extends the model in [13] by introducing
neutral delay, thereby making it more aligned with the characteristics of realistic complicated
networks.

(2) This paper explores the dynamic properties of the system under two conditions. We
investigate the dynamic characteristics of the system without time delay and also analyze the
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system that incorporates time delay. Subsequently, we derive precise criteria for identifying the
bifurcation point.

(3) In our study, we find that fluctuations in time delay or fractional order can shift the
bifurcation point of the system. By manipulating the variations of two orders, we analyze the
changes in fractional order at the system’s bifurcation point.

(4) It is observed that fractional-order neural networks can enhance the stability of the
system more effectively compared to integer-order neural networks.

The primary structure of this paper is summarized as below. Section 2 introduces the
definition of Caputo fractional derivative along with its associated Laplace transform. Section 3
constructs the main model studied in this paper. In Section 4, the conditions for the existence
of Hopf bifurcation and the accurate expression of bifurcation points are obtained by selecting
time delay as bifurcation parameter. In Section 5, the validity of the key findings is illustrated
by two examples. Finally, a summary of this paper is provided in Section 6.

2. Principal conceptions

In this section, we introduce Caputo fractional derivative along with its corresponding Laplace
transform.

Definition 2.1. [17] The definition of Caputo fractional derivative is given below

Dhf(t) =
1

Γ(µ− h)

∫ t

0
(t− s)µ−h−1f (µ)(s)ds,

where µ− 1 < h ≤ µ ∈ Z+ and Γ(·) is the Gamma function.

The corresponding Laplace transform of Caputo fractional derivative is

L{Dhf(t); s} = shF (s)−
µ−1∑
k=0

sh−k−1f (k)(0), µ− 1 < h ≤ µ ∈ Z+.

If f (k)(0) = 0 with k = 1, 2, . . . , µ, then L{Dhf(t); s} = shF (s).

3. Model formulation

In this section, the system is established to discuss the dynamical behavior. The model analyzed
in this paper is given below.

Dh1χ1(t) = −m1D
h2χ1(t)− p1χ1(t) + µ11F11(χ3(t− ς)) + µ12F12(χ4(t− ς))

+ α11D
h3χ3(t− ς) + α12D

h3χ4(t− ς),

Dh1χ2(t) = −m2D
h2χ2(t)− p2χ2(t) + µ21F21(χ3(t− ς)) + µ22F22(χ4(t− ς))

+ α21D
h3χ3(t− ς) + α22D

h3χ4(t− ς),

Dh1χ3(t) = −m3D
h2χ3(t)− p3χ3(t) + ν11G11(χ1(t− ς)) + ν12G12(χ2(t− ς))

+ β11D
h3χ1(t− ς) + β12D

h3χ2(t− ς),

Dh1χ4(t) = −m4D
h2χ4(t)− p4χ4(t) + ν21G21(χ1(t− ς)) + ν22G22(χ2(t− ς))

+ β21D
h3χ1(t− ς) + β22D

h3χ2(t− ς),

(3.1)
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where Dh1χı(t) symbolizes the inertial terms with ı = 1, 2, 3, 4, χı(t) denotes state variables
with ı = 1, 2, 3, 4, hı stands for the fractional orders and hı ∈ (0, 1] with ı = 1, 2, 3, mı > 0 is the
coefficient of damping terms with ı = 1, 2, 3, 4, pı > 0 represents self-regulating parameters with
ı = 1, 2, 3, 4, µıȷ and νıȷ signifies connection weights with ı, ȷ = 1, 2, αıȷ and βıȷ mean neutral
connection weights with ı, ȷ = 1, 2, Fıȷ(·) and Gıȷ(·) indicate activation functions with ı, ȷ = 1, 2,
and ς is communicate delay.

Remark 3.1. The system considered in this paper is revised from [13], which investigated the
subject in the matter of bifurcations in a fractional-order neural network incorporating time
delay and inertia terms. This paper adds neutral delay to the model in [13].

Remark 3.2. It is worth noting that if αıȷ = βıȷ = 0 with ı, ȷ = 1, 2, system (3.1) becomes
an inertial neural network. In [13], Huang et al. carefully studied this type. In addition, when
mı = 0 with ı = 1, 2, 3, 4, system (3.1) converts to the neutral type neural network. In [11], the
fractional-order neutral bidirectional associative memory neural network under this type was
considered.

Remark 3.3. It is noteworthy that system (3.1) can be transformed into the retarded fractional-
order neural network when both mı = 0 and αıȷ = βıȷ = 0 are satisfied. It should be pointed
out that system (3.1) is more complex and has higher research value.

Remark 3.4. In system (3.1), there is no need to sustain a fixed size relationship between h1 and
h2. Whether h1 > h2 or h2 > h1, system (3.1) can also be turned into the form of a generalized
fractional-order neutral-type inertial neural network by implementing some measures.

4. Key results

In this section, we will analyze the dynamic properties in two circumstances. The first scenario
involves system (3.1) without time delay, while the second scenario focuses on investigating the
system that incorporates time delay.

In order to continue the derivation, we are required to put forward the following premise.

(H1) Fıȷ(·), Gıȷ(·) ∈ C(R,R), and Fıȷ(0) = Gıȷ(0) = 0 where ı, ȷ = 1, 2.

According to the hypothesis (H1), we notice that there is an equilibrium point E∗ =
(0, 0, 0, 0) for system (3.1). By the Laplace transformation, the linearization modality of system
(3.1) can be denoted as

Dh1χ1(t) = −m1D
h2χ1(t)− p1χ1(t) + k11χ3(t− ς) + k12χ4(t− ς)

+ α11D
h3χ3(t− ς) + α12D

h3χ4(t− ς),

Dh1χ2(t) = −m2D
h2χ2(t)− p2χ2(t) + k21χ3(t− ς) + k22χ4(t− ς)

+ α21D
h3χ3(t− ς) + α22D

h3χ4(t− ς),

Dh1χ3(t) = −m3D
h2χ3(t)− p3χ3(t) + λ11χ1(t− ς) + λ12χ2(t− ς)

+ β11D
h3χ1(t− ς) + β12D

h3χ2(t− ς),

Dh1χ4(t) = −m4D
h2χ4(t)− p4χ4(t) + λ21χ1(t− ς) + λ22χ2(t− ς)

+ β21D
h3χ1(t− ς) + β22D

h3χ2(t− ς),

(4.1)

where kıȷ = µıȷF
′
ıȷ(0) and λıȷ = νıȷG

′
ıȷ(0) with ı, ȷ = 1, 2.
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4.1. Case 1. ς = 0

In this section, we analyze the dynamic characteristics of system (3.1) in the absence of time
delay. Under this condition, system (4.1) transforms into

Dh1χ1(t) = −m1D
h2χ1(t)− p1χ1(t) + k11χ3(t) + k12χ4(t) + α11D

h3χ3(t) + α12D
h3χ4(t),

Dh1χ2(t) = −m2D
h2χ2(t)− p2χ2(t) + k21χ3(t) + k22χ4(t) + α21D

h3χ3(t) + α22D
h3χ4(t),

Dh1χ3(t) = −m3D
h2χ3(t)− p3χ3(t) + λ11χ1(t) + λ12χ2(t) + β11D

h3χ1(t) + β12D
h3χ2(t),

Dh1χ4(t) = −m4D
h2χ4(t)− p4χ4(t) + λ21χ1(t) + λ22χ2(t) + β21D

h3χ1(t) + β22D
h3χ2(t).

(4.2)

The above system’s characteristic equation (4.2) can be attained as

ℵ0 + ℵ1s
h1 + ℵ2s

2h1 + ℵ3s
3h1 + ℵ4s

4h1 + ℵ5s
h2 + ℵ6s

2h2 + ℵ7s
3h2 + ℵ8s

4h2 + ℵ9s
h3 + ℵ10s

2h3

+ ℵ11s
3h3 + ℵ12s

4h3 + ℵ13s
h1+h2 + ℵ14s

h1+h3 + ℵ15s
h2+h3 + ℵ16s

h1+h2+h3 + ℵ17s
h1+2h2

+ ℵ18s
h1+2h3 + ℵ19s

h2+2h3 + ℵ20s
2h2+h3 + ℵ21s

h1+3h2 + ℵ22s
2h1+h2 + ℵ23s

2h1+h3

+ ℵ24s
2h1+2h2 + ℵ25s

2h1+2h3 + ℵ26s
3h1+h2 + ℵ27s

h1+h2+2h3 + ℵ28s
2h2+2h3 = 0, (4.3)

where

ℵ0 = −k21λ12p1p4 − k22λ22p1p3 + p1p2p3p4 + k11k22λ11λ22 − k11λ11p2p4

− k12k21λ11λ22 − k11k22λ12λ21 + k12k21λ12λ21 − k12λ21p2p3,

ℵ1 = −(k21λ12p1 + k21λ12p4 + k22λ22p1 + k22λ22p3 + k11λ11p2 + k11λ11p4

+ k12λ21p2 + k12λ21p3 − p1p2p3 − p1p2p4 − p1p3p4 − p2p3p4),

ℵ2 = −(k21λ12 + k22λ22 + k11λ11 + k12λ21 − p1p2 − p1p3 − p1p4 − p2p3

− p2p4 − p3p4),

ℵ3 = p1 + p2 + p3 + p4,

ℵ4 = 1,

ℵ5 = −(k21λ12m1p4 + k21λ12m4p1 + k22λ22m1p3 + k22λ22m3p1 + k11λ11m2p4

+ k11λ11m4p2 + k12λ21m2p3 + k12λ21m3p2 −m1p2p3p4 −m2p1p3p4

−m3p1p2p4 −m4p1p2p3),

ℵ6 = −(k21λ12m1m4 + k22λ22m1m3 + k11λ11m2m4 + k12λ21m2m3 −m1m2p3p4

−m1m3p2p4 −m1m4p2p3 −m2m3p1p4 −m2m4p1p3 −m3m4p1p2),

ℵ7 = m1m2m3p4 +m1m2m4p3 +m1m3m4p2 +m2m3m4p1,

ℵ8 = m1m2m3m4,

ℵ9 = −(α21λ12p1p4 + α22λ22p1p3 + β12k21p1p4 + β22k22p1p3 − α11k22λ11λ22

+ α12k21λ11λ22 + α21k12λ11λ22 − α22k11λ11λ22 − β11k11k22λ22 + β11k11p2p4

+ β11k12k21λ22 − β22k11k22λ11 + β22k12k21λ11 + α11k22λ12λ21 − α12k21λ12λ21

+ α12λ21p2p3 − α21k12λ12λ21 + α22k11λ12λ21 + β12k11k22λ21 − β12k12k21λ21

+ α11λ11p2p4 + β21k11k22λ12 − β21k12k21λ12 + β21k12p2p3),

ℵ10 = −(α21β12p1p4 + α22β22p1p3 − α11α22λ11λ22 − α11β11k22λ22 + α11β11p2p4

− α11β22k22λ11 + α12α21λ11λ22 + α12β11k21λ22 + α12β22k21λ11 + α21β11k12λ22
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+ α21β22k12λ11 − α22β11k11λ22 − α22β22k11λ11 − β11β22k11k22 + β11β22k12k21

+ α11α22λ12λ21 + α11β12k22λ21 + α11β21k22λ12 − α12α21λ12λ21 − α12β12k21λ21

− α12β21k21λ12 + α12β21p2p3 − α21β12k12λ21 − α21β21k12λ12 + α22β12k11λ21

+ α22β21k11λ12 + β12β21k11k22 − β12β21k12k21),

ℵ11 = α11α22β11λ22 + α11α22β22λ11 + α11β11β22k22 − α12α21β11λ22 − α12α21β22λ11

− α12β11β22k21 − α21β11β22k12 + α22β11β22k11 − α11α22β12λ21 − α11α22β21λ12

− α11β12β21k22 + α12α21β12λ21 + α12α21β21λ12 + α12β12β21k21 + α21β12β21k12

− α22β12β21k11,

ℵ12 = α11α22β11β22 − α12α21β11β22 − α11α22β12β21 + α12α21β12β21,

ℵ13 = −(k21λ12m1 + k21λ12m4 + k22λ22m1 + k22λ22m3 + k11λ11m2 + k11λ11m4

+ k12λ21m2 + k12λ21m3 −m1p2p3 −m1p2p4 −m1p3p4 −m2p1p3 −m2p1p4

−m2p3p4 −m3p1p2 −m3p1p4 −m3p2p4 −m4p1p2 −m4p1p3 −m4p2p3),

ℵ14 = −(α21λ12p1 + α21λ12p4 + α22λ22p1 + α22λ22p3 + β12k21p1 + β12k21p4

+ β22k22p1 + β22k22p3 + β11k11p2 + β11k11p4 + β21k12p2 + β21k12p3 + α11λ11p2

+ α11λ11p4 + α12λ21p2 + α12λ21p3),

ℵ15 = −(α12λ21m2p3 + α12λ21m3p2 + α21λ12m1p4 + α21λ12m4p1 + α22λ22m1p3

+ α22λ22m3p1 + α11λ11m2p4 + α11λ11m4p2 + β21k12m2p3 + β21k12m3p2

+ β12k21m1p4 + β12k21m4p1 + β22k22m1p3 + β22k22m3p1 + β11k11m2p4

+ β11k11m4p2),

ℵ16 = −(β21k12m2 + β21k12m3 + β12k21m1 + β12k21m4 + β22k22m1 + β22k22m3

+ β11k11m2 + β11k11m4 + α21λ12m1 + α21λ12m4 + α22λ22m1 + α22λ22m3

+ α11λ11m2 + α11λ11m4 + α12λ21m2 + α12λ21m3),

ℵ17 = m1m2p3 +m1m2p4 +m1m3p2 +m1m3p4 +m1m4p2 +m1m4p3 +m2m3p1

+m2m3p4 +m2m4p1 +m2m4p3 +m3m4p1 +m3m4p2,

ℵ18 = −(α21β12p1 + α21β12p4 + α22β22p1 + α22β22p3 + α11β11p2 + α11β11p4

+ α12β21p2 + α12β21p3),

ℵ19 = −(α21β12m1p4 + α21β12m4p1 + α22β22m1p3 + α22β22m3p1 + α11β11m2p4

+ α11β11m4p2 + α12β21m2p3 + α12β21m3p2),

ℵ20 = −(α21λ12m1m4 + α22λ22m1m3 + α11λ11m2m4 + α12λ21m2m3

+ β12k21m1m4 + β22k22m1m3 + β11k11m2m4 + β21k12m2m3),

ℵ21 = m1m2m3 +m1m2m4 +m1m3m4 +m2m3m4,

ℵ22 = m1p2 +m1p3 +m1p4 +m2p1 +m2p3 +m2p4 +m3p1 +m3p2 +m3p4

+m4p1 +m4p2 +m4p3,

ℵ23 = −(α21λ12 + α22λ22 + α11λ11 + α12λ21 + β12k21 + β22k22 + β11k11 + β21k12),

ℵ24 = m1m2 +m1m3 +m1m4 +m2m3 +m2m4 +m3m4,

ℵ25 = −(α21β12 + α22β22 + α11β11 + α12β21),

ℵ26 = m1 +m2 +m3 +m4,

ℵ27 = −(α21β12m1 + α21β12m4 + α22β22m1 + α22β22m3 + α11β11m2
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+ α11β11m4 + α12β21m2 + α12β21m3),

ℵ28 = −(α21β12m1m4 + α22β22m1m3 + α11β11m2m4 + α12β21m2m3).

Assuming that all roots s of Eq. (4.3) satisfy |arg(s)| > hıπ/2 with ı = 1, 2, 3. According to
Corollary 1 of [3], we can obtain that system (4.2) is asymptotically stable when ς = 0.

4.2. Case 2. ς ̸= 0

This part delves into the bifurcation analysis of system (3.1) incorporating time delay. By
applying the theoretical results presented in [3], the characteristic equation of system (4.1) can
be expressed as the equation below

ℜ0(s) + ℜ1(s)e
−2sς + ℜ2(s)e

−4sς = 0, (4.4)

where

ℜ0 = p1p2p3p4 + (p1p2p3 + p1p2p4 + p1p3p4 + p2p3p4)s
h1

+ (p1p2 + p1p3 + p1p4 + p2p3 + p2p4 + p3p4)s
2h1 + (p1 + p2 + p3 + p4)s

3h1 + s4h1

+ (m1p2p3p4 +m2p1p3p4 +m3p1p2p4 +m4p1p2p3)s
h2

+ (m1m2p3p4 +m1m3p2p4 +m1m4p2p3 +m2m3p1p4 +m2m4p1p3 +m3m4p1p2)s
2h2

+ (m1m2m3p4 +m1m2m4p3 +m1m3m4p2 +m2m3m4p1)s
3h2 +m1m2m3m4s

4h2

+ (m1p2p3 +m1p2p4 +m1p3p4 +m2p1p3 +m2p1p4 +m2p3p4 +m3p1p2 +m3p1p4

+m3p2p4 +m4p1p2 +m4p1p3 +m4p2p3)s
h1+h2 + (m1m2p3 +m1m2p4

+m1m3p2 +m1m3p4 +m1m4p2 +m1m4p3 +m2m3p1 +m2m3p4 +m2m4p1

+m2m4p3 +m3m4p1 +m3m4p2)s
h1+2h2 + (m1m2m3 +m1m2m4 +m1m3m4

+m2m3m4)s
h1+3h2 + (m1p2 +m1p3 +m1p4 +m2p1 +m2p3 +m2p4 +m3p1

+m3p2 +m3p4 +m4p1 +m4p2 +m4p3)s
2h1+h2 + (m1 +m2 +m3 +m4)s

3h1+h2

+ (m1m2 +m1m3 +m1m4 +m2m3 +m2m4 +m3m4)s
2h1+2h2 ,

ℜ1 = −k11λ11p2p4 − k12λ21p2p3 − k21λ12p1p4 − k22λ22p1p3 − (k11λ11p2

+ k11λ11p4 + k12λ21p2 + k12λ21p3 + k21λ12p1 + k21λ12p4 + k22λ22p1

+ k22λ22p3)s
h1 − (k11λ11m2p4 + k11λ11m4p2 + k12λ21m2p3 + k12λ21m3p2

+ k21λ12m1p4 + k21λ12m4p1 + k22λ22m1p3 + k22λ22m3p1)s
h2 − (α11λ11p2p4

+ α12λ21p2p3 + α21λ12p1p4 + α22λ22p1p3 + β11k11p2p4 + β12k21p1p4

+ β21k12p2p3 + β22k22p1p3)s
h3 − (k11λ11 + k12λ21 + k21λ12 + k22λ22)s

2h1

− (k11λ11m2m4 + k12λ21m2m3 + k21λ12m1m4 + k22λ22m1m3)s
2h2

− (α11β11p2p4 + α12β21p2p3 + α21β12p1p4 + α22β22p1p3)s
2h3 − (k11λ11m2

+ k11λ11m4 + k12λ21m2 + k12λ21m3 + k21λ12m1 + k21λ12m4 + k22λ22m1

+ k22λ22m3)s
h1+h2 − (α11λ11p2 + α11λ11p4 + α12λ21p2 + α12λ21p3

+ α21λ12p1 + α21λ12p4 + α22λ22p1 + α22λ22p3 + β11k11p2 + β11k11p4

+ β12k21p1 + β12k21p4 + β21k12p2 + β21k12p3 + β22k22p1 + β22k22p3)s
h1+h3

− (α11λ11m2p4 + α11λ11m4p2 + α12λ21m2p3 + α12λ21m3p2 + α21λ12m1p4



Delay-induced Hopf bifurcation of a fractional-order neural network 369

+ α21λ12m4p1 + α22λ22m1p3 + α22λ22m3p1 + β11k11m2p4 + β11k11m4p2

+ β12k21m1p4 + β12k21m4p1 + β21k12m2p3 + β21k12m3p2 + β22k22m1p3

+ β22k22m3p1)s
h2+h3 − (α11λ11m2 + α11λ11m4 + α12λ21m2 + α12λ21m3

+ α21λ12m1 + α21λ12m4 + α22λ22m1 + α22λ22m3 + β11k11m2 + β11k11m4

+ β12k21m1 + β12k21m4 + β21k12m2 + β21k12m3 + β22k22m1 + β22k22m3)s
h1+h2+h3

− (α11β11p2 + α11β11p4 + α12β21p2 + α12β21p3 + α21β12p1 + α21β12p4 + α22β22p1

+ α22β22p3)s
h1+2h3 − (α11β11m2p4 + α11β11m4p2 + α12β21m2p3 + α12β21m3p2

+ α21β12m1p4 + α21β12m4p1 + α22β22m1p3 + α22β22m3p1)s
h2+2h3

− (α11λ11 + α12λ21 + α21λ12 + α22λ22 + β11k11 + β12k21 + β21k12 + β22k22)s
2h1+h3

− (α11λ11m2m4 + α12λ21m2m3 + α21λ12m1m4 + α22λ22m1m3

+ β11k11m2m4 + β12k21m1m4 + β21k12m2m3 + β22k22m1m3)s
2h2+h3

− (α11β11 + α12β21 + α21β12 + α22β22)s
2h1+2h3 − (α11β11m2m4 + α12β21m2m3

+ α21β12m1m4 + α22β22m1m3)s
2h2+2h3 − (α11β11m2 + α11β11m4 + α12β21m2

+ α12β21m3 + α21β12m1 + α21β12m4 + α22β22m1 + α22β22m3)s
h1+h2+2h3 ,

ℜ2 = k11k22λ11λ22 − k12k21λ11λ22 − k11k22λ12λ21 + k12k21λ12λ21 + (α11k22λ11λ22

− α11k22λ12λ21 − α12k21λ11λ22 + α12k21λ12λ21 − α21k12λ11λ22 + α21k12λ12λ21

+ α22k11λ11λ22 − α22k11λ12λ21 + β11k11k22λ22 − β11k12k21λ22 − β12k11k22λ21

+ β12k12k21λ21 − β21k11k22λ12 + β21k12k21λ12 + β22k11k22λ11 − β22k12k21λ11)s
h3

+ (α11α22λ11λ22 − α11α22λ12λ21 + α11β11k22λ22 − α11β12k22λ21 − α11β21k22λ12

+ α11β22k22λ11 − α12α21λ11λ22 + α12α21λ12λ21 − α12β11k21λ22 + α12β12k21λ21

+ α12β21k21λ12 − α12β22k21λ11 − α21β11k12λ22 + α21β12k12λ21 + α21β21k12λ12

− α21β22k12λ11 + α22β11k11λ22 − α22β12k11λ21 − α22β21k11λ12 + α22β22k11λ11

+ β11β22k11k22 − β11β22k12k21 − β12β21k11k22 + β12β21k12k21)s
2h3 − (α12β11β22k21

− α12β12β21k21 + α21β11β22k12 − α21β12β21k12 − α22β11β22k11 + α22β12β21k11

− α11α22β11λ22 + α11α22β12λ21 + α11α22β21λ12 − α11α22β22λ11 − α11β11β22k22

+ α11β12β21k22 + α12α21β11λ22 − α12α21β12λ21 − α12α21β21λ12 + α12α21β22λ11)s
3h3

+ (α11α22β11β22 − α11α22β12β21 − α12α21β11β22 + α12α21β12β21)s
4h3 .

Multiplying Eq. (4.4) by e2sς and e4sς respectively, yields{
ℜ0(s)e

2sς + ℜ1(s) + ℜ2(s)e
−2sς = 0,

ℜ0(s)e
4sς + ℜ1(s)e

2sς + ℜ2(s) = 0.
(4.5)

We postulate that Eq. (4.4) has one imaginary root, which is s = w(cos π
2 + i sin π

2 )(w > 0).
For the convenience of calculation, we label the real part and imaginary part of ℜı(s)(ı = 0, 1, 2)
as ℜR

ı and ℜI
ı , respectively. Then the following results can be derived

κ11 cos 4wς + κ12 sin 4wς + κ13 cos 2wς + κ14 sin 2wς = κ15,

κ21 cos 4wς + κ22 sin 4wς + κ23 cos 2wς + κ24 sin 2wς = κ25,

κ31 cos 4wς + κ32 sin 4wς + κ33 cos 2wς + κ34 sin 2wς = κ35,

κ41 cos 4wς + κ42 sin 4wς + κ43 cos 2wς + κ44 sin 2wς = κ45,

(4.6)
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where
κ11 = 0, κ12 = 0, κ13 = ℜR

0 + ℜR
2 , κ14 = ℜI

2 −ℜI
0, κ15 = −ℜR

1 ,

κ21 = 0, κ22 = 0, κ23 = ℜI
0 + ℜI

2, κ24 = ℜR
0 −ℜR

2 , κ25 = −ℜI
1,

κ31 = ℜR
0 , κ32 = −ℜI

0, κ33 = ℜR
1 , κ34 = −ℜI

1, κ35 = −ℜR
2 ,

κ41 = ℜI
0, κ42 = ℜR

0 , κ43 = ℜI
1, κ44 = ℜR

1 , κ45 = −ℜI
2.

After the above substitutions, the determinant of the coefficient matrix of Eq. (4.6) can be
abbreviated as

ϱ1 =

∣∣∣∣∣∣∣∣∣∣∣∣

κ11 κ12 κ13 κ14

κ21 κ22 κ23 κ24

κ31 κ32 κ33 κ34

κ41 κ42 κ43 κ44

∣∣∣∣∣∣∣∣∣∣∣∣
.

To ensure the existence and uniqueness of solutions to Eq. (4.6), we assume that the coef-
ficient matrix associated with Eq. (4.6) is invertible. Then we exploit Cramer’s rule to obtain
the following system: 

cos 2wς =
ϱ2
ϱ1

= Ξ1(w),

sin 2wς =
ϱ3
ϱ1

= Ξ2(w),
(4.7)

where

ϱ2 =

∣∣∣∣∣∣∣∣∣∣∣∣

κ11 κ12 κ15 κ14

κ21 κ22 κ25 κ24

κ31 κ32 κ35 κ34

κ41 κ42 κ45 κ44

∣∣∣∣∣∣∣∣∣∣∣∣
,

ϱ3 =

∣∣∣∣∣∣∣∣∣∣∣∣

κ11 κ12 κ13 κ15

κ21 κ22 κ23 κ25

κ31 κ32 κ33 κ35

κ41 κ42 κ43 κ45

∣∣∣∣∣∣∣∣∣∣∣∣
.

It follows that

Ξ2
1(w) + Ξ2

2(w) = 1, (4.8)

cos 2wς = Ξ1(w). (4.9)

In order to make sure the fidelity of this conclusion, we commit the following assumption.
(H2) Eq. (4.8) possesses one positive real root.
On the basis of Eq. (4.9), we can derive the expression of ς(ι) as

ς
(ι)
1 =

1

2w

[
arccos Ξ1(w) + 2ιπ

]
, ι = 0, 1, 2, . . . . (4.10)



Delay-induced Hopf bifurcation of a fractional-order neural network 371

Then the bifurcation point can be signalled as

ς0 = min{ς(ι)1 }, ι = 0, 1, 2, . . . ,

where ς
(ι)
1 is defined by Eq. (4.10).

Remark 4.1. What we need to know is that the method in [13] can still be used in this paper,
but we adopt analytical methods of characteristic equations and Cramer’s rule to derive Hopf
bifurcation criteria.

To establish the conditions for determining the bifurcation, we further propose the following
assumption.

(H3) ℘1ℑ1+℘2ℑ2

ℑ2
1+ℑ2

2
̸= 0, where ℘1,℘2, ℑ1 and ℑ2 are characterized in Eq. (4.14).

Lemma 4.1. Let s(ς) = ζ(ς) + iw(ς) be the root of Eq. (4.4) near ς = ς0 complying with

ζ(ς0) = 0 and w(ς0) = w0. Then the transversality condition Re
[
ds
dς

]∣∣∣
(ς=ς0,w=w0)

̸= 0 is tenable.

Proof. Taking the derivative of both sides of Eq. (4.4) with respect to ς by the implicit
function theorem, we can derive

ℜ′
0(s)

ds

dς
+

[
ℜ′
1(s)

ds

dς
e−2sς + ℜ1(s)e

−2sς
(
− 2ς

ds

dς
− 2s

)]
+
[
ℜ′
2(s)

ds

dς
e−4sς + ℜ2(s)e

−4sς
(
− 4ς

ds

dς
− 4s

)]
= 0. (4.11)

Then we have

ds

dς
=

℘(s)

ℑ(s)
, (4.12)

where

℘(s) = s[2ℜ1(s)e
−2sς + 4ℜ2(s)e

−4sς ],

ℑ(s) = ℜ′
0(s) + [ℜ′

1(s)− 2ςℜ1(s)]e
−2sς + [ℜ′

2(s)− 4ςℜ2(s)]e
−4sς . (4.13)

It follows that

Re
[ds
dς

]∣∣∣
(ς=ς0,w=w0)

=
℘1ℑ1 + ℘2ℑ2

ℑ2
1 + ℑ2

2

, (4.14)

where

℘1 = w0(2ℜR
1 sin 2w0ς0 − 2ℜI

1 cos 2w0ς0 + 4ℜR
2 sin 4w0ς0 − 4ℜI

2 cos 4w0ς0),

℘2 = w0(2ℜR
1 cos 2w0ς0 + 2ℜI

1 sin 2w0ς0 + 4ℜR
2 cos 4w0ς0 + 4ℜI

2 sin 4w0ς0),

ℑ1 = ℜ′R
0 + (ℜ′R

1 − 2ς0ℜR
1 ) cos 2w0ς0 + (ℜ′I

1 − 2ς0ℜI
1) sin 2w0ς0

+ (ℜ′R
2 − 4ς0ℜR

2 ) cos 4w0ς0 + (ℜ′I
2 − 4ς0ℜI

2) sin 4w0ς0,

ℑ2 = ℜ′I
0 + (Q

′I
1 − 2ς0ℜI

1) cos 2w0ς0 − (ℜ′R
1 − 2ς0ℜR

1 ) sin 2w0ς0

+ (ℜ′I
2 − 4ς0ℜI

2) cos 4w0ς0 − (ℜ′R
2 − 4ς0ℜR

2 ) sin 4w0ς0.

Under the condition that (H3) is constructed, Lemma 4.1 holds true.
The above process indicates that the following theorem is correct.
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Theorem 4.1. By using hypotheses H1−H3, the following main results are achieved.
(1) If the ς ∈ [0, ς0) is satisfied, the equilibrium point E∗ of system (3.1) is asymptotically

stable.
(2) When ς = ς0, system (3.1) undergoes Hopf bifurcation at the equilibrium point E∗.

Remark 4.2. We study the factors that affect system stability through two numerical simula-
tions. The results indicate that except time delay, changes in fractional order can also influence
the stability of system (3.1). We change one fractional order and control the other two fractional
orders to further analyze the spillover effects of fractional order changes at the bifurcation points
of the system. For system (5.1) and system (5.2), the impact of sequential changes on ς are
shown in Figure 5 and Figure 14. With the increase of h1 and h2, the value of system bifurcation
can be reduced, and the increase of h3 will delay the bifurcation time. Hence, the variation of
fractional order may lead to premature or delayed bifurcations of the system.

Remark 4.3. In Section 5, we compare the simulation results of the fractional-order neural
networks and corresponding integer-order neural networks. The continuous state diagrams of
the two systems are shown in the Figures 6-9 and Figures 15-18. It can be observed that the
bifurcation of integer-order neural networks emerges ahead of time compared with fractional-
order neural networks.

5. Experimental verifications

This section verifies the correctness of the previous theoretical results through two numerical
examples.

5.1. Example 1

In this example, we take the following system into consideration.

Dh1χ1(t) = −0.2Dh2χ1(t)− 0.5χ1(t)− 0.4F11(χ3(t− ς))− 0.4F12(χ4(t− ς))

− 0.9Dh3χ3(t− ς)− 0.4Dh3χ4(t− ς),

Dh1χ2(t) = −0.3Dh2χ2(t)− 0.5χ2(t) + 0.2F21(χ3(t− ς))− 0.2F22(χ4(t− ς))

− 0.8Dh3χ3(t− ς)− 0.3Dh3χ4(t− ς),

Dh1χ3(t) = −0.7Dh2χ3(t)− 0.6χ3(t) + 0.6G11(χ1(t− ς))− 0.2G12(χ2(t− ς))

− 0.1Dh3χ1(t− ς)− 0.4Dh3χ2(t− ς),

Dh1χ4(t) = −0.3Dh2χ4(t)− 0.8χ4(t) + 1.8G21(χ1(t− ς))− 0.7G22(χ2(t− ς))

− 0.9Dh3χ1(t− ς)− 0.6Dh3χ2(t− ς).

(5.1)

The activation functions are set Fıȷ(·) = Gıȷ(·) = tanh(·), ı, ȷ = 1, 2. The incipient values
are prescribed as (χ1(0), χ2(0), χ3(0), χ4(0)) = (0.2, 0.3,−0.3, 0.2), h1 = 0.95, h2 = 0.96 and
h3 = 0.97. When ς ̸= 0, we specify ς as a bifurcation parameter. By the above deduction, it can
be calculated that w0 = 0.726 and ς0 = 0.9733.

The waveform and phase diagrams of ς = 0.85 < ς0 = 0.9733 under stable conditions
are simulated in Figures 1-2 and the correctness of the first result in Theorem 4.1 is verified.
Similarly, regarding the instability of ς = 1.1 > ς0 = 0.9733 as shown in Figures 3-4, it follows
the description of the second result in Theorem 4.1.
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Figure 5 displays the difference in ς0 caused by fractional-order changes. It can be seen
that as h1 and h2 increase, the value of system bifurcation will reduce, and the enhancement
of h3 will delay the bifurcation time. Meanwhile, it shows that when h1 = h2 = h3 = 1, the
bifurcation point of system (5.1) is calculated to be ς0

∗ = 0.7774 < ς0 = 0.9733. The results as
shown in Figures 6-9 reveal that fractional-order neural networks have better stability compared
to integer-order neural networks.
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Figure 1. The waveform diagrams of system (5.1)
with ς = 0.85 < ς0 = 0.9733.
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Figure 2. The phase diagrams of system (5.1) with
ς = 0.85 < ς0 = 0.9733.
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Figure 3. The waveform diagrams of system (5.1)
with ς = 1.1 > ς0 = 0.9733.
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Figure 4. The phase diagrams of system (5.1) with
ς = 1.1 > ς0 = 0.9733.
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Figure 5. Influence of hi on ς0 of system (5.1).
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Figure 6. Comparison on the stability of system
(5.1) in integer-order and fractional-order.
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Figure 7. Comparison on the stability of system
(5.1) in integer-order and fractional-order.

5.2. Example 2

In this example, the following system is studied.

Dh1χ1(t) = −0.3Dh2χ1(t)− 0.3χ1(t)− 0.5F11(χ3(t− ς))− 0.4F12(χ4(t− ς))

+ 0.8Dh3χ3(t− ς)− 0.5Dh3χ4(t− ς),

Dh1χ2(t) = −0.4Dh2χ2(t)− 0.5χ2(t) + 0.3F21(χ3(t− ς))− 0.5F22(χ4(t− ς))

− 0.6Dh3χ3(t− ς)− 0.4Dh3χ4(t− ς),

Dh1χ3(t) = −0.6Dh2χ3(t)− 0.4χ3(t) + 0.5G11(χ1(t− ς))− 0.2G12(χ2(t− ς))

− 0.5Dh3χ1(t− ς)− 0.4Dh3χ2(t− ς),

Dh1χ4(t) = −0.4Dh2χ4(t)− 0.7χ4(t) + 1.5G21(χ1(t− ς))− 0.3G22(χ2(t− ς))

− 0.6Dh3χ1(t− ς)− 0.5Dh3χ2(t− ς).

(5.2)

The activation functions are set Fıȷ(·) = Gıȷ(·) = tanh(·), ı, ȷ = 1, 2. The incipient values are
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Figure 8. Comparison on the stability of system
(5.1) in integer-order and fractional-order.
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Figure 9. Comparison on the stability of system
(5.1) in integer-order and fractional-order.

prescribed as (χ1(0), χ2(0), χ3(0), χ4(0)) = (0.2, 0.2, 0.3, 0.4), h1 = 0.91, h2 = 0.94 and h3 = 0.96.
When ς ̸= 0, we specify ς as a bifurcation parameter. By the above deduction, it can be
calculated that w0 = 0.4894 and ς0 = 0.8025.

The waveform and phase diagrams of ς = 0.65 < ς0 = 0.8025 under stable conditions are
simulated in Figures 10-11 and the correctness of the first clause in Theorem 4.1 is verified.
Similarly, regarding the instability of ς = 0.9 > ς0 = 0.8025 as shown in Figures 12-13, it follows
the description of the second clause in Theorem 4.1.

Figure 14 displays the difference in ς0 caused by the changes of fractional order. We can see
that as h1 and h2 increase, the value of system bifurcation will reduce, and the enhancement of
h3 will delay the bifurcation time. Meanwhile, we find that the bifurcation point of system (5.2)
is calculated to be ς0

∗ = 0.4338 < ς0 = 0.8025 when h1 = h2 = h3 = 1. The results as shown
in Figures 15-18 reveal that fractional-order neural networks have better stability compared to
integer-order neural networks.
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Figure 10. The waveform diagrams of system (5.2)
with ς = 0.65 < ς0 = 0.8025.
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Figure 11. The phase diagrams of system (5.2)
with ς = 0.65 < ς0 = 0.8025.
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Figure 12. The waveform diagrams of system (5.2)
with ς = 0.9 > ς0 = 0.8025.
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Figure 13. The phase diagrams of system (5.2)
with ς = 0.9 > ς0 = 0.8025.
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Figure 14. Influence of hi on ς0 of system (5.2).

6. Conclusion

This paper has examined the dynamic properties of an inertial neutral fractional-order neural
network. The primary findings of this paper encompass the following aspects. By applying
Cramer’s rule, the characteristic equation has been analyzed. And the stability results and bi-
furcation conditions for the above system have been obtained. We further analyzed the spillover
effects of fractional-order changes at system’s bifurcation points by changing one fractional or-
der and controlling the other two fractional orders. We also have compared the bifurcations
of fractional-order neural networks and corresponding integer-order neural networks, and found
that fractional-order neural networks can better improve the stability of the system compared
to integer-order neural networks.

According to this paper, there are latent and worthwhile research directions that can be
explored. (1) Based on previous studies, leakage delay has a significant impact on the stability
of neural networks. In the future models, the influence of leakage delay on bifurcations can be
considered. (2) Time delays are inherently present in neural networks. Although this paper
focused on equal time delay, models with unequal time delays are equally important. We will
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Figure 15. Comparison on the stability of system
(5.2) in integer-order and fractional-order.
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Figure 16. Comparison on the stability of system
(5.2) in integer-order and fractional-order.
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Figure 17. Comparison on the stability of system
(5.2) in integer-order and fractional-order.
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Figure 18. Comparison on the stability of system
(5.2) in integer-order and fractional-order.

further investigate this more complex model.
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