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THE ASYMPTOTIC BOUNDS OF SOLUTIONS OF A GENERALIZED
PANTOGRAPH EQUATION

Huan Dai! and Mengfeng Sun?'

Abstract This paper studies the asymptotic behavior of solutions of the generalized panto-
graph equation y'(t) = Ay(qt) + By(t) + Cy'(qt), where A, B, C are n X n complex matrices.
By considering two cases of the coefficient matrix B: Diagonalizable and non-diagonalizable,
the asymptotic boundaries of solutions are discussed, respectively. When B is diagonaliz-
able, the asymptotic boundary of solutions is dominated by the largest positive real part
of the eigenvalues: If the smallest positive real part of eigenvalues exceeds the product of
the delay parameter and the largest positive real part, then the components of solutions
grow exponentially according to the corresponding eigenvalues, otherwise, all solutions are
constrained by the largest positive real part of eigenvalues. When B cannot be diagonalized,
the asymptotic boundary of solutions depends on the distribution of eigenvalues: If B has
a unique multiple eigenvalue, then the real part of this eigenvalue determines the growth
rate of solutions, otherwise, the components of solutions grow exponentially according to the
corresponding eigenvalues in the Jordan blocks. Hence, every solution has an exponential
asymptotic boundary, which depends on the eigenvalues of the coefficient matrix B.

Keywords Asymptotic bounds, generalized pantograph equation, diagonalizable and non-
diagonalizable, exponential form.
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1. Introduction

In 1971, Ockendon et al. [19] firstly put forward the pantograph equation y'(t) = ay(qt) + by(t),
where a is a complex constant, b is a real constant, and ¢ is a non-negative constant. This
equation refers to an industrial problem involving wave motion in the overhead supply line of
the railway system. The term “pantograph” comes from Ockendon and Tayler [19] and Iserles
[12,13], reflecting its connection between the trolley and the overhead trolley wire. Fox et al. [7]
investigated the properties of solutions to the pantograph equation by analytical and numerical
methods, the theoretical results provide strict mathematical support for the dynamic modeling,
parameter design, stability analysis and numerical simulation of pantograph system, and ensure
the controllability and robustness of the system dynamics in practical applications. Let ¢t = e®,
q = e y(t) = z(s), we get the equation e *2/(s) = az(s + ¢) + bz(s), i.e., the pantograph
equation is also a type of functional differential equation. When 0 < ¢ < 1, ¢ = In(q) < 0,
the equation belongs to the retarded functional differential equation; when ¢ > 1, ¢ > 0, the
equation belongs to the advanced functional differential equation. Such functional differential
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systems have been extensively studied, which mainly focus on equation solving and numerical
methods [1,3,4, 18, 20], stability analysis [11,22], and asymptotic behaviors [5,8,15,23].

If y(t) is a vector in the pantograph equation, then the equation becomes y'(t) = Ay(qt) +
By(t), where A, B are n x n matrices. Many scholars studied this kind of generalized panto-
graph equation and obtained a lot of results. In 1976, Lim studied the asymptotic behavior of
solutions to this equation with 0 < ¢ < 1. He proved that: If matrix B can be diagonalized
and the real parts of its eigenvalues are all negative, then there is a constant a such that ev-
ery solution is O(t%) as ¢t — oo; if matrix B can be diagonalized with eigenvalues b; such that
0 < Reb; < Reby < --- < Reb,, and qReb,, > Reby, then every solution is O(e’t) as t — oo [16].
When n = 2, the pantograph equation with matrix coefficients transforms into a system of
coupled pantograph equations. This form of equation has wide applications in various fields
of science and engineering, including complex networks [17] and delay-coupled semiconductor
lasers [14]. Additionally, the corresponding fractional differential equations play a crucial role in
mathematical modeling, particularly in areas such as seismic nonlinear oscillations, nanotech-
nology, and materials [2,9,10, 21].

In 1993, Iserles gave the condition for the well-posedness of the following pantograph equation

y'(t) = Ay(qt) + By(t) + Cy'(qt), (1.1)

and derived the conditions for lim; .~ y(t) = 0 [12]. For the discretized form of equation (1.1),
Buhmann et al. analyzed the stability of its numerical solutions [6].

Motivated by the previous work [12,16], particularly the insights from Lim [16] regarding how
the spectral properties of matrix B delineate solution boundaries through eigenvalues, in this
study, we concentrate on estimating the boundaries of the solution to equation (1.1), especially on
the dynamic structural alterations induced by incorporating the term Cy’(gt), where 0 < ¢ < 1,
y(t) is the n-dimensional column vector, and A, B, C' are n X n complex constant matrices. Our
research is divided into two parts: (i) The matrix B is diagonalizable; (ii) The matrix B is
non-diagonalizable. In case (i), we make a discussion when the real parts of characteristic roots
are greater than zero and less than or equal to zero. In case (ii), the equation can be regarded
as a non-homogenous system, which is more difficult.

The paper is organized as follows. In Section 2, some definitions are introduced for conve-
nience. In Section 3 and Section 4, the asymptotic behavior of solutions of equation (1.1) is
studied with matrix B being diagonlizable and non-diagonlizable, respectively.

2. Some preliminary notations

For convenience, we introduce several definitions from [16] and [12].

Definition 2.1. [16] Let y(¢) be a column vector in C™ and f(¢) be a complex-valued function
defined on [0, 00). We say that y(t) is O(f(t)) as t — oo if there are constants K > 0 and N > 0
such that |y(t)| < K|f(t)| for t > N.

Definition 2.2. [16] Let y(¢) be defined in Definition 2.1. We say that y(¢) is o(f(t)) as t — o0
if for any € > 0, there is a constant N > 0 such that |y(t)| < €|f(t)| for t > N.

Definition 2.3. [12] The ordered pair {P,Q} is said to be “g-canonical” if, given the set of
eigenvalues of matrix P is {A1, Ag, -+ , A} and the set of eigenvalues of matrix @ is {u1, po, - -,
fn}, it is true that uy # ¢!\ for all k,j € {1,2,--- ,n} and [ =1,2,---.
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In [12], Iserles gives the theorem about existence and uniqueness for solutions Y (¢) (a n x n
matrix) of the equation Y'(t) = AY (qt) + BY (t) + CY'(qt) with the initial-value condition
Y (0) = I, which is shown as follows.

Lemma 2.1. The initial-value problem (1.1) with initial-value condition Y (0) = I is well-posed
if and only if the pair {C,q I} is q-canonical.

To analyze the asymptotic behavior of solutions y(t) of equation (1.1), it is necessary to give
a sufficient condition for the existence of solutions. According to the above lemma, and the
transformation from matrix to column vector: y(t) = Y (¢)yo with yo being an n-dimensional
unit column vector, we suppose the matrix C' in equation (1.1) satisfies that the ordered pair
{C,q~ I} is g-canonical in the whole paper.

3. Diagonalized matrix B

If B can be diagonalized, then there is a non-singular matrix P, such that P~!BP = diag(by, b,
,bn). By replacing y(t) with Py(t), equation (1.1) becomes y'(t) = Ay(qt) + By(t) + Cy/(qt),
where 4 = P~ AP, B=P~'BP,C = P~'CP. Let A = (a;;),C = (¢i), then

Zal]yj qt +b1yz +Zcuy] qt (3.1)
7=1

Denote 3; = Re(b;). In general, if B can be diagonalized with eigenvalues b;, then there exists
an integer r € [0,n], such that Reb;, Rebs,--- ,Reb, > 0 and Reb,41,--- ,Reb, < 0.

Theorem 3.1. If B can be diagonalized to diag(by,ba,--- ,by) with
Reb; > Rebs > --- > Reb, > 0 > Reb,4+1 > Rebyr2 > --- > Reby,

and Reb, > qReby, then
(i) yi(t) are O(e??) ast — oo, fori=1,2,--- ,r.
(ii) y;(t) are O(et) ast — oo, fori=r+1,r+2,--- n.

Proof. Equation (3.1) can be written as
d n
dt Z aijy;(qt)e " + Z 6”3/; (qt)e bit, (3.2)
j=1

For t € [=r, %], we let

qm— 17q

Mmzsup{‘yi(t)e_l :1)2"" 7T}7
Mm—sup{\yz( bt|‘2—r+1 r—|—2---,n},
By, = max{M,,, M, },

@ = ma {303 (g + P00 L7

=1 j=1 Zl_]l
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Define s € [ = qm1+1] Integrating (3.2) from qu to s and taking modulus, we have

) [yi(t)e_bit};n ’ < Ji:l | /q; }yj(qt)e bt

The last integral of the above equation is equal to f 1 qe‘bitdyj(qt). Using the method of

q"L

S
) y}(qt)e_bitdt .
qm

integration by parts, the above equation becomes

) 1 _p. L
yi(s)e V| — yi(qu)e b“fl”‘

- |bi]| 351 s (3.3)
- i||Ci _
<Y (lag| + : )/ [y (atye™1dt + Z’%“ {y] (gt)e }L ‘
= ! a J 1 qm
Dividing Y7 into 37, + 37, and rewriting the exponential term: e~ = ¢~bid!e(ab—bo)t
as j =1,--+,r; e7bit = e7brate(@br=bt a5 j =y 41, n, we have
lyi(s ) —bis)
i bl )
<‘yz( q ‘+Z ‘ ’L]‘ ‘ H 74] )/ |y] qt bqt|e qﬁj Bl)tdt
qm
Y |b ¢
+ Z (’ il + sl ) / |yj(qt)e_b’"‘1t’e(qﬂr—ﬂi)tdt
' ! a 3.4
]_T+1 qnr ( ' )
S
t Z (&1 [y] (qt)e i (ql’j_b")t]i
qm
1 & s
*y > léil [yj(qt)efbrqte(qb“bi)t] L
j:T+1 qm

(i) For i = 1,2, -+ ,r, inequality (3.4) is reduced to

[yi(s)e™"|

<M,, + aM,, / (aB1— Br)tdt—i—aM / e(@Br—Br)t 44

+ *Zléz’j!
q

—bjgs (qgj—ﬂz‘)q%

y;(gs)e

_ b
olaBi=B0)s az\@m‘yj(qnﬁ)e T ¢

1 & o o
+2057 Jal [y (gs)etraselat—pos 4. 2 Z ‘C”Myﬂ L e |t B
qj:r—H C] —rt1
1 (5 B ) 1 —(1—¢)Br -1
SB +aB r—4p1 +O[B [t q T
" "B —ab” (1—q),8r

+2OCB e (ﬂr Qﬁl) +2OJB e (1 Q)

From f, < f1, we have —(1 — ¢)8, < (8, — qf1). Then

M1 < By |1+ 0(e”Fmo)am) . (3.5)
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(ii) For i =r+ 1,7+ 2,--- ,n, it is clear that 8; = Reb; < 0. Inequality (3.4) becomes

. 1 _p. 1 a1 S s
’yi(8)6_618’ S|y2(q7m)€ by P |€(BT Bz)qm 4 OéMm /1 e(q,B1 ﬁz)tdt
qm

ll s e WBr=Btqt 1+ 20, M,, e 151 =B)s 4 9q NI, e(4Pr—Bi)s
1
qm

~ (q/Bl _/Bi)s ~ e(qﬁ'r—ﬂi)s
<M e(ﬂr—ﬂi)%m +OéM € +O[M J
- " B — B " 4B — Bi

+ QaMme(QIi’l—Bi)S + QQMme(qﬁ’"_’Bi)s.

Since |y;(s)e5| = |yi(s)ebr*|eBr=B)s and —(1 — q)B,s < —(B, — qB1)s, we obtain that

_(ﬁ'r‘_qﬁl)s _(]-_q),Brs
—brs| <1 oBr—Bi) (g —) € 7€

(s)e <Mpe q +aMy,——— +aM,;,———

|yl( ) | " mQﬁl - Br+1 mQﬁr - Br+1

+ 20sz67(&*‘1’31)S + ZaMme*(lfq)ﬁTs

<Bn, [1 + ( + 40[)6_(67'_(]51)‘1%}.

2
qb1 — Bry1
Thus

N1 < By |1+ 0(e” i) . (3.6)

From (3.5) and (3.6), we have that By41 < Bp[1+ O(e” " "9)7m)] then
m—1 3 3 1
Bm SBI H [1+O(€ (Br ‘Iﬂl)qk)].
k=1

L (Br—aB) L
Since the infinite product []p2; [1 4+ O(e (& qﬂl)qk)] converges, B, is bounded for all m.
Therefore, M,,, M,, are bounded. The proof is completed. ]

Theorem 3.2. For r € {1,2,---,n — 1}. If B can be diagonalized to diag(by,--- ,b,) with
Reb; > Reby > --- > Reb, > 0 > Reby4+1 > Reb,42 > --- > Reb,,, then every solution of (1.1) is
O(e") as t — oo.

Proof. From Theorem 3.1, we only need to analyze equation (3.3). For t € [¥ L], we set

qm—l 9 qm
M; = sup {]yi(t)e_b1t|}, M, = maxi<j<n{M;im}. Fori=1,2,--- r, we need to discuss the
relationship between ¢f1 and (;.

(1) If QB1 < 517525 e 751”7 then

|yi(8)€_bi8 < yi(q}n)e_biq%n + Mm(ﬁ + 204)@_(51 aB1) g
Since
lyi(s)e %] = [yi(s)e 15|15 > Jy;(s)e s | A
we have
lyi(s)e 1% < ‘yi(q}n)e_blq}"’ + Mm(ﬁ + Qa)e—(l—q),@l[%m
< Mm[l + (L + Qa)e—(l—q)61q%}

Bn — qb1
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fori=1,2,---,r.
(i) If gB1 < Bi1,B2,--+,Pn and ¢B1 > Bhrit, Bri2s -+, Pr, then it can be divided into two

cases: ¢ > Pry1 and ¢B1 = Ppy1- In the case of ¢B1 > P41, for i =1,2,---  h, we have
s « 1 1
Mim < M 1+ ( +2a)6*( *q)ﬂqu], m=234,---.
P Br — 4P
Fori=h+4+1,h+2,---,r, we have
1. p 2 «
. —b;s (= N\ ligm (g81—Bi)s
s)e < e ‘'a ‘ + M, + 2a)e .
(s)e™ < [l ) (5 + 20)
Substituting |y;(s)e | = |yi(s)e~t15|e(P1=F)s into the above equation, yields
1V oL | (=B )(s— L «
. —b1s N b1 m (B1—=Bi)(s—zmr) —(1—q)B1s
s)e < e Td"|e ™’ + M, +2a)e
i (e) | yl(qm) m(Q51—5z‘ )
& ~(1=a)B1 g
< M, [1—1— — 4 2q)e UG }
" (QBl — Br+1 )
fori=h+1,h+2,---,r.
To sum up, for i =1,2,--- ,r, it follows that
m—1 1 8
Mi < My [ 1+ 0(e 7 0%0)]
k=1

C(1—q)8; L
form =2,3,4,---. Then M,, < M; Zl:_ll [1 + O(e (=0 ik )] for m = 2,3,4,---. Therefore,
M,,, is bounded for all m.

In the case of ¢81 = Bht1, we have ¢B81 < B1,02, -, Bn and ¢B1 > Bp+2,- -, Br. From the
above analysis, it follows that

m—1
My, <My [[ [1+0(e 27F)], m=2,34,.
k=1

forie {1,2,--- ,r} \{h+ 1}. For i = h + 1, equation (3.3) becomes
—bpa1$ 1 —bp g1
[ynea ()™ < Jman (C)e ™| + 200,

Then we have

_b L
lqm

e*(51*ﬁh+1)(3*q%) + 2aMmse*(51*5h+1)S

_ 1

|yt (s)e | < ‘?/h+1(qu)€
20— (B1—Bhi1) i

SMm[1+We 1=Br1)gm],

We have
2

e*(51*ﬁh+1)q%].
qm+1

Mpi1,m41 < My, [1 +
Let h = min{f, — ¢B1,qB1 — Brt2}. By Br+1 = qB1, we have

Myt < max { My [L+ (5 + 2a)e” 0% ] ag, [14 qiﬁle‘“‘qw%] } (3.7)
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fori=1,2,---,r, where h = min{Bj, — qf1, ¢41 — Bri2}. Equation (3.7) is always true regardless
of the relationship between ¢8; and §;, for i =1,2,--- ,r.
Fori=r+1,7+2,---,n, we have 8; < 0. Then ¢f1 > Br+1,- - , Bn, equation (3.3) becomes

\yi(s)e_bis\ < + 205)6(1151—@')5‘

1 _b.;‘ «
(—Ye Vi | M, (———
yl(qm) m(qﬁ1 —Bi

Similar to the above process, based on |y;(s)e %% = |y;(s)e=1%|e(P1=8)3  we have

lyi(s)e %) <

1 fblﬂ —(B1=B:) (s i) o ~(1-
i(—)e tdT e DT L My, (———— 4 2a)e 9P
uiGm) (o= %)

< Mm[1+ (%+2a)e—(l—q)ﬁlqim]

fori=r+1,7r4+2,--- ,n. Together with (3.7), we have

2
qm+1 €

M1 < max {Mm[l + —(1—q)51q%},Mm[1 + (% 4 204)6_(1_(1)&‘1%] }’

where h = min {B, qﬁl}. The convergence of infinite products

ﬁ [1 + 2.7(16_(1_(1)& q%]

+1
o 7

and

= a (-0 %

[T+ +29) 7]

- h

j=1
implies M., is bounded for all m. O

4. Non-diagonalized matrix B

If B can not be diagonalized, then we consider the following two cases: (i). Matrix B has an n-
multiple eigenvalue b; (ii). Matrix B has eigenvalues by, ba, - - - , b; (where [ is a positive constant
and | < n).

4.1. Matrix B with a unique multiple eigenvalue b

If B has a unique multiple eigenvalue b, then there is a non-singular n x n matrix @, such that

bni 0 --- 0
B=Q 'BQ = b

Th—1
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with 71,72, -+, Nn—1 are equal to 0 or 1. By replacing y(t ) with Qy(t), equation (1.1) is reduced

to y/(t) = Ay(qt) + By(t) + Cy/(qt), where A = Q"'AQ, B=Q 'BQ, C = Q~'CQ. Then
t) =" an,yi(at) + > gyi(at) + bya(t) + mya(t), (4.1)
j=1 j=1
Y1 (D) = D an—1,95(at) + Y En1,395(at) + byn—1(t) + a-1ya(t), (4.2)
j=1 j=1
Yn(t Z an,jy5(qt) + Z Cn ]y] (qt) + byn(t). (4.3)
7j=1 7j=1

Theorem 4.1. If B can not be diagonalized and has an n-multiple eigenvalue b, then for any real

number ﬁ with Reb <

B < éReb, the solutions of (1.1) satisfy y1(t),y2(t), - ,yn—1(t) = O(eBt)

and y(t) = O(e), as t — oo.

Proof. Fort e [¢~(™1 ¢, we define

)

1=1,2,"

M;m = - sup {’yi(t)eiét‘}a Mn,m = sup {|yn bt’} My, = max {Mz m}

2, n—1 1<i<n

Equation (4.3) can be rewritten as

d —bt —bt = ~ —bt
%l Z iy (qt)e™ " + > ényf(qt)e ™.

J=1

Let s € [¢™, ¢~ (™t1)], integrating the above equation from ¢~™ to s and taking modulus, we

have

’yn(s)eibsl -

si(!dw
—Z (1an sl +

+ |b||én7]‘ i | ( t) —bt‘dt_'_lzn:r ’ ( t) —bt]°
q ) yjlqr)e q Cnjl| |YslQL)e 1
j=1

1 —b—L
Z/n(qu)e ’

Q

qm

q

bl|cn, P
|b]|¢ J‘)/ ly;(qt)e qﬁtye (B—aB)t 44

-

m

®» Q

bl|Cn,n _ _(1—
+ (‘dn,n| + | || ) |)/ |yn(qt)€ Qﬁt|6 (1 q)ﬁtdt
q

T Z’Cnd“ yj(at)e —abte= (b qﬁ)t "" |Cnnl

1 1 _(1—q)8-L
<aM,,——e (8~aB) s + oM, ———e (=08 gm + 2aM,

B—qB
+ 2aM,,

L
qm

[yn(qt)e qbt ,—(1—q)b } )

qm

—(8- QB)Tn

~€

1
"(1—-q)B "B —qB
o (1=0)B

"(1-q)p
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Then 6
Q  _(g—gB)-L
Mn,m+1 < My, [1 + ——7e (6-ah) qm]-
B—ap
For equation (4.2), if n,—1 = 0, then it is equal to (4.3); we can easily get the same estimate:

My 1mi1 < My [1+ ﬁe%ﬁ*qm‘%’"]. If 9,—1 = 1, then equation (4.2) becomes

d _ _
[yn 1 bt Zan 1,5Y5 qt bt"‘zcn 1]yj(qt) t+yn(t)e bt’

dt
j=1
then
- L bt 6o _(-qB)Lr
yn-1()e ™) = yn-1 (o )e "7 | < My ™ g,
qm B—qB
< My |1+ _ba ]
B—qpB

According to |y,_1(s)e | = \yn,l(s)e*Bﬂe(B*fB)S, we have

_(B—pB)_L 6 1 apy Ll
My g € My [1 4" B9 4 22 =0-09)7ie ],
B—ap

To sum up, the above formula is true whether 7 = 0 or n = 1. The other equations follow the
same steps. Then

M;mi1 < Mp, [1 + e (BB + 5 6o Be(lq)ﬁ)ﬁz}
—q

fori=1,2,--- ,n. Together with ¢8 < 3, we have

1

m- )L 6 (B
H 1+e (B-8) P R 8 'B)q’“].
k1 B —qB

_(G—B)L
The convergence of the infinite product [[,~, [1 + O(e (B=8) 3 )} implies that M,, is bounded
for all m. n

Corollary 4.1. If B can not be diagonalized with eigenvalue b, then for any real number B >
Reb, every solution of (1.1) satisfies y;(t) = O(e®) fori=1,2,--- ,n as t — cc.
4.2. Matrix B with eigenvalues by, bs, ...,

If B can not be diagonalized, and possess eigenvalues b1, by, - - - , by, then there is a non-singular
n X n matrix R, such that

J1 bp 1 --- 0

_ 71 Jo O by
B=R "BR= . , Where J, =

0 0
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for k =1,2,---,l, and ny + ng + --- + n; = n. By replacing y(t) with Ry(t), equation (1.1)
becomes
y'(t) = Ay(qt) + By(t) + Cy/ (qt), (4.4)

where A = R~'AR, C = R™'CR are n x n matrices.
Theorem 4.2. If B can not be diagonalized, its eigenvalues by, by, - -+ by saAtz'sfy Reby > Relp >

- > Reb, > 0> Rebrﬂ > Reby4o > -+ > Reby, then for any real number B with Reb; < 51 <
1Reb and any i, with By, > Reby, (k=2,---,r), solutions of (1.1) satisfy

(i) yi(t) = (eﬁlt)fmw—l 2,---,n1—1 ast — oo.

(i) yi(t) = (eﬂkt) forz-m—l— +ng—1+1,--- n1 4+ +np—1ast — oo.

(i) Yny (1) = O(™), Yz (8) = O(€P'), -+ Yy ngoin, () = O(eP) as t — oo,

(iv) y;(t) = O(eb?) as t — oo, for integer i € [ny +ng +--- +n, + 1,n].

Proof. We just need to analyze equation (4.4). From Bk > Ok (k=1,2,--- ,r), there are some
constants such that

B1> P11 > P2 > > Bin—1 > P,

Br > Br,n1+n2+---+m—1+l > > ﬁr,n1+n2+---+nr71 > ﬁr-

Fort e [ 7T ql |, we set M, = maxk:L.._’T{Mi7m7nk,Mi,m, My, m} with

M; mn, = sup {\yi(t)e_ﬁl’it|}, fori=1,2,---,n1 — 1,
M; iy, = sup {|yi(t)e_ﬁk’it|}>
fori=ny+no+---+np_1+1,--- 0y +ng+---+ng — 1,
M; = sup {|yi(t)e""|},
fori=ny+np+-+n+1ngFngtodn,+2,0 0,

and My, m = sup {|yn, 0)e ™|}, My, fopnem = sup {|yn(t)e |}, Similar to the proof of
Theorem 4.1, we easily get that

R ) .
Myt < My [1+0(e” P99y 4 [, 07077 4 K,,0(e” P 9P)7m))] (4.5)
fore=1,--- ,n1 + -+ n,, where
K= max {2or b L s i (B B
= 1,2, ,r qm+1 q2(m+1) q(nk—l)(m-i-l) ’ k=12, n—1

Fori=n;+na+---+n,+1,---,n, we have §; < 0. Equation (4.4) is equal to

Yyttt 1(E) = D Gy gt 1595 (@) + > oyt 41,595 (t) (4.6)
=1 i=1

+ br1Yny+nottn+1(8) + Yny ot tn,42(8),
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Y1 (8) =) an—159(qt) + Y Cn1,9j(qt) + bign—1(t) + ya(t), (4.7)
]'71 j:l
Zanﬂyj qt + ch ]y] qt + blyn( ) (48)
J=1

For equation (4.8), we have

| .
’yn(s)e bls‘ N yn(ﬁ)e blqm
. 16]nj
<3 (Jan| + 21l / ly; (qt)e " dt + — Zw] [yi(at)e™"]"s
j=1 q qm J 1 !
d plieasl [* i
=32 (ongl+ =2 [, et Peielrd et (1.9
1
j=1 q qm
1 — 3
+ *Z|Enj|“y1(qt)€_ﬁlqt (gBr—bi)t ]%
4= a
o .
§Mm(A7+2a)€(qB1_’Bl)s-
b1 — B

Substituting |y, (s)e~"%| = |yn(s)e=*|e(Br=F)s into (4.9), we obtain

2 1
|yn(8)e_brs‘ S Mm 14+ AL + 2« e_(BT_qﬁl)an .
{ (CIﬁl - B ) ]

Similar to the above analysis, we can easily get that

M € ML+ (2 20)e” 905
ab1 — B

fori=mni;+mna+---+mn,+1,--- ,n Together with (4.5), we have
- ) o
Mm+1 < maX{Mm[l + O(e_(ﬁr'_qﬁl)qw) + Kme_(sqw + Kmo(e_(BW‘_QBl)qw)]7
M, [1 + (# + Qa)e—(ﬂr—Q51)q%]}'

abr — Bri1
Therefore,
m—1 B o o X
Mm SMl max{ H []_ —+ O(e (Br q'Bl)qj) + KJC éqj 4 KJO( —(Br— ‘Iﬂl) @ )]7

7=1

T 3,y L

H - +20[)6_(6T_q51)4j]},

j=1 qﬁl 6r+1

The infinite products corresponding to the above products are convergent, which implies that
M,,, is bounded for all m, and the proof is completed. O

Corollary 4.2. If B can not be diagonalized, its eigenvalues by, ba, - - - , by satisfy Reby > Reby >
- > Reb, > 0> Reby1 > Rebrgjo > --- > Reby forr=1,2,--- ,1—1, then for any real number
Bo that satisfies By > Reby, every solution of (1.1) is O(eP) ast — oc.
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5. Numerical simulations

We give some numerical examples to verify the theoretical results. For the convergence of
solutions in [12], we choose the matrices that satisfy p(B~'A4) < 1.

Example 5.1. Let n =3 and

12401 0 0
A=0.052+i)I, B= 0 08405 0 |, C=0.
0 0 —05

Equation (1.1) becomes
y1(t) = 0.05(2 +i)y1(gt) + (1.2 + 0.11)y1 (¢),
yo(t) = 0.05(2 +1)y2(qt) + (0.8 + 0.51)ya(t),
y5(t) = 0.05(2 + 1)ys(qt) — 0.5y3(t).
Let ¢ = 0.5 and the initial value
0.1
Yo=10.1
0.1

We obtain that the matrix B has eigenvalues by = 1.2 + 0.1i, bo = 0.8 + 0.5i, b3 = —0.5, with
Re(b1) > Re(bz) > 0 > Re(bs) and Re(by) > qRe(by).

1.2 — lya(B)]/(0.1 % e12)
1.0+
0 5 10 15 20 25 30
o 1.1 — 1y2(8)I/(0.1%e%%)
2
©
o
1.0+ ; . . . . . :
0 5 10 15 20 25 30
14
L —— |ys(B]/(0.1%e0%)
0 5 10 15 20 25 30
Time t

Figure 1. The ratio of |y1(t)|/(0.1e'?%), |y2(¢)]/(0.1e°%), and |y3(t)|/(0.1e***) (Example 5.1).

By separating the real and imaginary parts of the matrix, a python program is used to
draw the graph of numerical solution using the implicit Runge-Kutta (RK) method. The com-
parison with the exponential function is shown in Figure 1, which shows that the ratios of
ly1 (£)]/(0.1e12), |y2(¢)]/(0.1e98%), and |y3(t)|/(0.1e"8!) are bounded. As time ¢ increases (simu-
lating t — o0), the graph is similar and the ratios are bounded. We get that |y (t)] < CpeRe()?
and |ya(t)], lyz3(t)] < Caele2)t as t — oo for some constants C; < 0.125, Cy < 0.12. This is
consistent with the results of Theorem 3.1.
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Example 5.2. Let n =3 and

210
A=011+4+1)I, B=1|02 1|, C=0.5I
00 2
! — lyaBlest
0
0 5 10 15 20 25 30
° 0.5 R |y2(t)|/e2.5t
2
0.0 ; ; " - ; ; :
0 5 10 15 20 25 30
0.500
— lya(t)|/e
0.495
0 5 10 15 20 25 30
Time t

Figure 2. The ratio of |y1(t)|/e®", |y2(t)]/e*, and |ys(t)|/e** (Example 5.2).

2001 — adle*

100+

Ratio 0 5 10 15 20 25 30

154
— |y2(t)|/e?t

104

0 5 10 15 20 25 30
Time t

Figure 3. The ratio of |yi(t)|/e*" and |y2(t)|/e** (Example 5.2).

Equation (1.1) becomes

Y1 (t) = 0.1(1 + 1)1 (qt) + 2y1(t) + ya(t) + 0.5; (qt),
Yo (t) = 0.1(1 + 1)ya(qt) + 2y2(t) + y3(t) + 0.5y5(qt),
y3(t) = 0.1(1 +1)ys(qt) + 2y3(t) + 0.5y3(qt).

Let ¢ = 0.8 and the initial value Yy = [1, 0.5, 0.5}T. We obtain that the matrix B has a 3-multiple
eigenvalue b = 2, and RQT(b) = 2.5. The comparisons with exponential functions are shown in
Figures 2-4. From Figure 2, we get that |yi(t)], |y2(t)] < C3e*% and |y3(t)| < Cye? as t — oo
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15
— Iyalt)l/e?

10

— ly2(t)l/e*

Time t

Figure 4. The ratio of |y1(t)|/e*!" and |y2(t)|/e* " (Example 5.2).

for some constants C3 < 1.5, Cy < 1. From Figures 3 and 4, we get that [y1(2)],[y2(t)| < Csebt
as t — oo for some constant C5 < 15 and 2 < 8 < 2.5 (in Figure 4, we choose § = 2.1). This is
consistent with the results of Theorem 4.1.

6. Conclusion

In this paper, we have investigated the asymptotic bounds of solutions of the generalized pan-
tograph equation
y'(t) = Ay(qt) + By(t) + Cy/ (qt).

By discussing whether the coefficient matrix B can be diagonalized, we know it plays an impor-
tant role in the boundary of solutions. When B can be diagonalized to diag(by, b, -+ ,by), we
assume that

Reb; > Rebg > --- > Reb, > 0 > Reb,+1 > Reby12 > -+ > Reb,.

According to whether these eigenvalues satisfy Reb, > qReby, there are two cases:

(1) Every solution is O(e’*) as t — oo.

(2) If Reb, > gReby, then y;(t) are O(e¥?) as t — oo for i = 1,2,--- ,r; y;(t) are O(e!) as
t—socfori=r+1,r+2,--- n.

When B cannot be diagonalized. According to the distribution of eigenvalues, there are two
cases: )

(1) If B has a unique multiple eigenvalue b, then 41 (), -+ ,yn_1(t) = O(e’*) and y,(t) =
O(e), as t — oo, for any real number 3 with Reb < 8 < %Reb.

(2) If B has eigenvalues by, ba, - -+ ,b; and

Reb; > Rebs > --- > Reb, > 0 > Reb,+1 > Rebr42 > --- > Reby,

then for any real number 3; with Reby < 8 < %Rebr and any 3, with 8 > Reby, (k=2,---,r),
we have

(i) yi(t) = O(eP1t) for i = 1,2, ,ny — 1 as t — oo

(ii) vi(t) :O(eBkt) fori=ny+---+ngp_1+1,--- ,n1+---+np—1last— oo

(iii) Yny (t) - O(eblt)v Yni4na (t) - O(eth)v U Yng4tny (t) = O(ebrt) as t — 00.
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(iv) yi(t) = O(eb?) for integer i € [ng + -+ +n, + 1,n] as t — oo.

The results show that all solutions have exponential boundaries, and their asymptotic bound-
aries are closely related to whether the coefficient matrix B can be diagonalized and the real
part of its eigenvalues. In the future, we intend to explore the asymptotic behaviors of solutions
when the parameter g > 1, possessing new complexities in the system’s dynamics. Additionally,
extending the current framework to fractional-order pantograph equations is another promising
direction, as fractional-order models can capture memory effects and anomalous dynamics in the
real world. These directions not only broaden the applicability of our findings, but also align
with the growing interest in fractional calculus in the scientific community.
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