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EXISTENCE OF POSITIVE SOLUTIONS FOR COUPLED FRACTIONAL
DIFFERENTIAL SYSTEM WITH IMPROPER INTEGRAL BOUNDARY
CONDITIONS ON THE HALF-LINE

Minghui Liu! and Jigiang Jiang®t

Abstract This article is devoted to proving the existence of positive solutions for a class of
coupled fractional boundary value problems involving an improper integral and the infinite-
point on the half-line. By making use of the monotone iterative technique along with Ba-
nach’s contraction mapping principle, some explicit monotone iterative sequences for approx-
imating the extreme positive solutions and the unique positive solution for the problem are
constructed, an error estimate formula of the positive solution is also given. In the end, a
numerical simulation is given to illustrate the main results.
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1. Introduction

Fractional differential equations are utilized to explain a wide range of phenomena across nu-
merous natural science fields. These include physics, mechanics, epidemiology, biology, and
other disciplines, see [1, 14,22, 30]. Fractional-order differential equations are a natural ex-
tension of the integer-order case. For example, in fluid dynamics, the authors in [4, 9] show
that solutes moving through a highly heterogeneous aquifer do not abide by Fick’s first law.
Thus, the fractional-order advection-dispersion equation can be utilized to characterize the
convection-diffusion process to improve the model’s accuracy. Viscoelastic media demonstrate
intricate nonlinear behaviors in their internal structures, which can no longer be accurately
described by classical integer-order mechanical constitutive models. Fractional differential sys-
tems are more suitable for precisely capture and predict the viscoelastic behavior of systems
with their flexible non-local properties, see [6,28]. Due to their extensive use in mathematical
models and applied sciences, they have attracted significant attention, especially when dealing
with a wide range of boundary conditions, some latest results on the topic can see for exam-
ple [2,3,7,8,10,12,13,17-19, 21,23, 25, 26].

In recent years, boundary value problems for fractional differential equation have become
a hot research topic, and lots of excellent results have been obtained by means of fixed point
theorems, such as Guo-Krasnosel’skii fixed point theorem [24, 30, 33], Avery-Henderson fixed
point theorem [31], Leggett-Williams fixed point theorem [24,33], Avery-Peterson fixed point
theorem [15], topological degree methods [27], upper and lower solutions technique [32], and so
forth. In particular, the monotone iterative technique is regarded as an effective and significant
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approach for handling sequences of monotone solutions in initial and boundary value problems,
see [11,16,20,29].

In [20], the authors studied the following Hadamard fractional integro-differential equation
on an infinite interval

DR u(t) + f(tu(t),”

I"u(t),? Diﬂr_lu(t)) =0, l<a<?2, te(l,00),
u(1) =0, HD‘l"jlu(oo) =

m
> A u(n),

i=1

where # Df denotes Hadamard fractional derivative of order o and H IQ is a Hadamard type
fractional order integral, r,n, B;, \i(i = 1,2,3,--- ,m) are some given constants satisfy I'(a)) >

oy F?ig%)) (logn)®*tP~1, By using the monotone iterative technique, the existence of positive
solutions was established.
In [16], the authors discussed the following Hadamard type fractional-order differential sys-

tem

HDY () + filt, 2(t), y(t), " DT e(t), T DI (1))
D 5(0)+ falt (0 (0" P a0 DI (o)

:L‘(l) =0, HD1+ $ ZAHller y ME [17 OO),

0, 1<p<2tell,c0),
0, 1<qg<2tell,o00),

y(1) =0, DI y(c0 ZUHI’B] ), &€l,00),

where Diﬂ are Hadamard fractional derivatives of ¢ € {p,q} and T Iﬁ are Hadamard fractional
integrals of ¥ € {a;, B}, Ni,o5 > 0(i = 1,2,--- ,m,j = 1,2,--- ,n). By using the monotone
iterative technique, iterative sequences of the positive extremal solutions were acquired.

On the other hand, an improper integral and infinite-point boundary value conditions is more
general than those of multipoint boundary value conditions in the known papers, see [5,26].

In [26], the authors investigated the following fractional boundary value problems involving
an improper integral and the infinite-point on the half-line

Dy,a(t) +a(t) fi(t,x(t),a' (1) =0, t € [0,00),

o(0) = /() =0, Jim DI at) = [ hO e+ Y- DG a(6).
=1

t—o0

where 2 < < 3,0 <~y < -1, and Dg:r denotes Riemann-Liouville fractional derivative,
0 <& <& < - <& < &1 < -+ <oo,m >006=1,2,---). By utilizing the Green
function and Avery-Peterson fixed point theorem, the existence of multiple positive solutions
were obtained.

Motivated by the excellent results above, in this paper, we consider the following coupled
fractional differential systems on the half-line

{Dg;u(t) +a(t) fu(t,ult), v(t), DO u(t), DI o(t) =0, t € R, 4

DE w(t) + b(t) folt, ult), v(t), DI ult), DI o(t) =0, te Ry,
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subject to an improper integral and the infinite-point boundary conditions

o _ . a—1 o > -
ul(0) =/(0) = 0. Jim D5 u(t) = | (O @)t + 3D ol

_ = (1.2)
o(0) = /(0) =0, Jim DY v(t) = [ halenl ()t + 30 ADF(E),
j=1

0

where Dg . are Riemann-Liouville fractional derivatives of ¢ € {«, 3,71,72}, 2 < a < 3,2 <
<3, 0<<pB-1L0<1m<a-10<0 <0< <0 <041 < < 00,
0 <& <& < <& <& < <oo,m >0, N >00=1,2,--,j=12--),
fi, f2 : RT x R* = R* are continuous, in which R = (—o0, 00), RT = [0, 00) and R = (0, 00).

The purpose of this paper is to investigate the existence of positive solutions for problem
(1.1)-(1.2) on an infinite interval. Compared with [16,20], we investigate the problem which
involves an improper integral and infinite-point boundary value conditions on the half-line. For
any given initial value, we use numerical algorithms to generate a series of iterative process.
Compared with [26], through the application of the monotone iterative technique, we have
obtained some explicit monotone iterative sequences for approximating the extreme positive
solutions as well as the unique positive solution, an error estimate formula of the positive solution
is also given. This endeavor is of greater value and interest compared to merely verifying the
existence of solutions.

The structure of this paper is as follows. Some necessary preliminaries from fractional
calculus are recalled in Section 2. Next, we obtain the Green functions corresponding to the
problem. Section 3 is devoted to the existence and uniqueness of positive solutions for boundary
value problems (1.1)-(1.2). Also, two example are prepared to validate the theoretical results in
Section 4. Finally, we propose some conclusions.

2. Preliminaries and lemmas

In this section, for the convenience of reader, we present some notations and lemmas that will
be used in the proof of our main results.

Definition 2.1. [14] The Riemann-Liouville fractional integral of order a > 0 of a function
Y RS‘ — R is given by

1 t
IS y(t) = — [ (t—9)1y(s)d
Feult) = g [ (=97 ule)ds,
provided that the right-hand side is pointwise defined on Rg .

Definition 2.2. [14] The Riemann-Liouville fractional derivative of order o > 0 of a continuous
function y : Ra' — R is given by

Do) = ()t = o () [ s,

where n — 1 < a < n, provided that the right-hand side is pointwise defined on Rf{.

Lemma 2.1. [14] Assume that y € C(0,+00) N LY (0, +00) with a fractional derivative of order
a > 0 that belongs to C(0,+00) N LY(0, +00). Then

I8DSy(t) = y(t) + Ot + Cot™ 2 4 -+ Cpt® ™™,
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for some C; e R (i=1,2,--- ,n), wheren — 1 < a < n.

Lemma 2.2. Let g1,go € C(RT,RT), then the solution of boundary value problem

{D8‘+u(t)+gl(t) teRy, 2<a<3,

pu— 0’
(2.1)
DYv(t)+g2(t) =0, teRy, 2<pB<3

with boundary conditions (1.2) is equivalent to the integral system

u(t) = /000 Gi(t,5)g1(s)ds + /000 Ga(t, s)ga(s)ds,

oft) = /0 G (t, 8)ga(s)ds + /0 Ga(t, 5)g1(s)ds,

where
Dot = Aj95, (&35 8) | Qb (s)t*
A = Ia—72) Ma—1)A"

LB N mighy (07, 5) n (B —1)da(s)to!
A HTB-m) A ’
UtP 1 S nigh, (03, ) Jr9152(3)755*1
A ZTB-m) TE-1HA’

D)7 S 0% (5,8) (o — 1)dy ()67
A XTa I

gl(tv S) = ga(ta S) +

g2(t, S) =

g3(t7 5) = gﬂ(tv S) +

Q4(t, S) =

j=1
with
oo

Z1(s) = /°° ho(T) (T — 8)° 2dr, Zs(s) = hi(7)(r — )P~ 2dr,

S

51(s) = /D T ha(r)ro2dr — / T ha(F) (7 — 8)°=2dr = Z1(0) — Za(s),

S

5a(s) = /O " (r)rP2dr — / T () (r — )2 = Z5(0) — Za(s),

s

[ele] )\qu—w—l
J

Tla—72)’

0.5—71—1

_ [T P 2dr 00772‘17
2= [ (6= Do eI 3 FE—

Q) = /Doo(a — Dha(r)r*2dr + T(a)
j=1

A =T(a)T(8) — 0 > 0

and

1 [t l—(t—s)%t,  0<s<t<oo,
gw(t,s):

L(p) | 971, 0<t<s< oo,

g:Z(pv 5) = {

with p e {avﬁ}; 1/} € {71772}: pe {Ulagj}(%] = 1727)

pPrYT —(p—s5)P" 0<s<p<oo,
pf v 0<p<s<oo
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Proof. By means of Lemma 2.1, applying the Riemann-Liouville fractional integral of orders
a and [ to both sides of the two equations of system (2.1), respectively, we obtain

1 t
u(t) = ——=—— / (t —s)* tgi(s)ds 4+ e ¥ + et 4 31273,
I'(a) Jo

1 t
F(B)/ (t — 5)%Lga(s)ds + dit? ! + dot’ =2 4 dstP 73,
0

where ¢;,d; € R(i = 1,2,3) are constants to be determined. Since u(0) = «/(0) = 0, v(0) =
v'(0) = 0, we can get ¢ = ¢3 =0, do = d3 = 0. Hence

u(t) = —

u(t) = _F(loz) /Ot(t )2 gy (s)ds + 1, y
o(t) = —F(lm /Ot(t )8 Lgy(s)ds + dyt?L. .
By (2.4), we obtain
A1) = _r(al—n /Ot(t — 5)7 2, (s)ds + 1 (0 — )12,
V0 =~ | ¢ (o)t + a5 - 165,

and
Dg‘jlu(t) = _/0 g1(s)ds + c1'(a),
D3 o(t) = = [ m(s)ds + air(d).

By applying the Riemann-Liouville fractional derivative of orders 72 and ~; to (2.4), and
also substitution ¢ = §; and t = o; respectively, we get

1 & r o
Dgiu(&) = _F(O‘_'Y?)/O (fy — S)Oé*'ygflgl(s)ds + Cllj(oz(iy)'yg)gj Y2 17
Dyiv(o) = _F(ﬁl—vl)/ i(Gi — 5)P gy (s)ds + dlr(g(_ﬁ)’mgiﬁ—w—l'

Using the boundary conditions (1.2), by Cramer’s rule and simple calculations, it follows

that
= F(AB) /000 s)ds — / hi(t (/ T — 3)5_292(8)d5> dr

[e.o]

— A Z T(B— 71)/( ,— )P 1g2(s)ds+% g2(s)ds
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4 =1 Omgg<s>ds—“;1/o°°hz<7> ([fr=or <>ds) dr

Q) — 7 &
—F(A)Z s [em @ [ aas

1A/ ha(r </ (r— 8)P~ (s)ds)dT
Ql

I [ e s
=1

Substituting the values of ¢; and d; in (2.4), one has
' e [~
- - _ a1 ds tafl / d
u(t) m) [ = tmas+ et | S [ s

/ hi(r </ (r—5)"2% (s)ds)dT

F( ) i 7 1—

a—lA/ ha(r </ (r - 5) )dr—i—/ ga(s

QQ )‘j & ._Sozfgl S L a—1 s)ds
e [ 6 s |+ s [

G ) ( )>AQ QQ/O t* g1 (s)ds

I'(a
(%) a—1 .
- / gt (s)ds + - ’7’
0

L' —m) /OOO 95, (01 5)g2(s)ds

Q ta—l e A] o o o0 —1)0o(s ta_l
L ] g mss [T IR g )

A st INa— 72 A

00 a—1
—i—/ ?3(51( )t)A 91(s)

/gltsgl dS-i-/ Ga(t,s)ga(s

In a similar way, we have

u(t) = F(lﬁ)/ot(t—s)ﬁ Lyo(s)ds + t°P~1 F(Aa)/ooogQ(s)ds
- a; ! /000 ha(T) </OT(7‘ —5)“ 291(s)ds> dr
I(a) Aj
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+1“(1,8)/0 tﬁflgg(s)ds

OELY
0

< M)t &
= t d
[ st m(sids 1 NS A

| /0 0 (6, 9)g1(s)ds

J=1

T . /°O s /°° (0 = D3 (s)t~!
+ i) ds +

% 0169 (s)tP1
+/0 7;(;_ DA 92(s)

— / - Gs(t, s)ga(s)ds + / h Ga(t,s)g1(s)ds
0 0

which proves that (2.2) holds. This completes the proof.

O]

Lemma 2.3. Let g1,go € C(RT,RT), then the subsequent expression can be derived from the

integml equations (2.2)
D 1 t = g* t d * d
OC" u 1 ,sgls S+ Q2 t,8928 S

0+v /Q3t592 ds—|—/ Gi(t,8)g1(s

where
a) e= N\g2 (&, s o — s
Gi(t,s) = Go(t,s) + QZZ( ) Z ;(9;2(_5372)) ( 129251( )7
j=1
v o D(@T(B) = migh (i, 8) (8= 1)T(a)da(s)
Gy(t,s) = A - F(;_%) + A ,
. _ s UT(B) < migh, (0,8) (B —1)Q2105(s)
it =l A i=1 LB —m) N A ’
o © Nig% (&, s o — s
Gi(t,s) = I( g(ﬁ) S ;?:(—5;2)) n ( 1)1;(5)51( )7
j=1
and

Golt, s) 0, 0<s<t< o0,
78:
0 1, 0<t<s<oo.

Proof. Using Lemma 2.2, we can obtain

DS‘Jr—lu(t) =— /0 g1(s)ds +I'(«) F(Aﬁ) /OOO g1(s)ds

(2.6)
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S e ([[ -9 eis) ar

—F(f)Z s [T (s

L(B—m
a—lA/ ha(T </ T —5)% gl(S)dS)dT
% & - )\] & _\a—y2—1
A " a(s)ds - A 2 T(a—’YQ)/o (& =) gl(s)ds]

+/O°o (s)ds—/ooogl 5)ds

QQF(CK >
/ 9’0 t,s gl dS + A Z F

Jj=1

/ g (€, 5)gn(s)ds

0472

i Ooﬁa- s ds

Dy u(t) == [ (s +T(5) [F(j) | s

Q 00 Q o o;
+A1/0 g1(s)ds KZ (G — 71/ Uz‘—S)B_“_lgz(S)dSI

+/00092(s)ds—/00092(5)d5

o0 IT(B) ; >
:/ Go(t, s)ga(s)ds + 1A(6)ZF( n 1)/0 92 (0i,8)g2(s)ds

—1Q
1/ 5 92




404 M. Liu & J. Jiang

+W‘2”mﬂm&@m@w
= [ gt + [ gi s )is
0 0

which proves that (2.5) holds. This completes the proof. O

In the rest of the paper, we make the following assumptions:
(H1) The functions f1, fo € C(RT x R*, R*) and A = T'(a)T(B) — Q12 > 0.

(Hz) The functions a, b, hy, hy € C(RT,R") are not identical zero on any closed subinterval
of RT.

(H3) There exist nonnegative functions a;(t), b;(t) € L(RT)(i = 0,1,2,3,4) and the nonneg-
ative constants 0 < v, 7, < 1(k = 1,2, 3,4) satisfy

it 2y, w,2)] < ao(t) + ar(B)]al + as(B)]y]"? + as(O)lw] + as(®)]z1, ae. t € RY,
[Falt,2,y,w,2)] < bo() + buO)le™ + ba(Olyl™ + bs(O)|w]™ + ba(D)|2™, ae. te R,

where z,y,w, 2z € R and
o o0
/ a(t)ao(t)dt = ag < oo, / a(t)ay (t)(1 + t*TF~1)dt = af < oo,
0 0

[e.e]

o¢]
a(t)az(t)(1 4+ TP~ 12dt = ol < oo, / a(t)as(t)dt = a3 < 0o,
0

g

a(t)as(t)dt = aj < oo,

oo

b@m@ﬁ:%<w,/ b(E)b1 (£) (1 + 1)1t = bt < o0,
0

oo

mmmm+wwlwﬁ:@<m,/ b(#)bs ()dt = b, < o,
0

oo

b(t)ba(t)dt = b < oo.

S— S — — 5

(Hy) The functions fi(t,u1,ug,us, uq) and fo(t, u1,ug, us, uqs) are increasing with respect to
the variables uy, us, us, uq, and V t € RT, f1(¢,0,0,0,0) £ 0, f2(,0,0,0,0) # 0.

(Hs) There exist nonnegative functions ¢jx(t) € L(RT)(j = 1,2,k = 1,2, 3,4) such that

4

|1t s ug, ug, ug) — f(t, T, 02, s, Wa)| <D cji(t)|uge — g, ae. ¢ € R,
k=1

J= 12w € R(k=1,2,3,4)

and
[e.9]

/ a(t)ery () (1 + 9PN dt = ¢f; < oo, / t)cis(t)dt = ci5 < 00,
0
(e e}

/o«

Ders()(1 + 17Nt = ¢y < oo, /’ Dera(t)dt = ¢y < oo,
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o0 oo

/ b(t)ear (1)(1 + t*P ) dt = ¢, < o0, / b(t)ca3(t)dt = ¢33 < 00,
OOO OOO

/ b(#)eaa(t)(1 + 4PV dt = ¢, < oo, / b(#)eaa(t)dt = ¢ < oo,
0 L

/ 1£1(£,0,0,0,0)|dt = my < oo, / | fo(t,0,0,0,0)|dt = ms < .
0 0

Before establishing some properties of the Green’s functions, we set

1 92 o NESTTET 1+ 0:7,(0) _ T(B)

e ) “T(a—92) Tla-1HA A

Ky — F(Aﬁ) Zm; 71711 (8- 1A)Zg(0) B %7
=y R A=
K, = F(Aa) j: ?j(i;“j;)l G 1A)Zl(0) _ %,
T
Q2 = o~ o, L B=D(e)Z5(0) _ F(a)(227

“T(B—m) A A

Osm14 QJA(B) i n,; “/1%1 (8 — 1)2122(0) _ p(a§(5)7
04 = r(ﬁf(a) jf; ?f.iw;)l G 1)1;(,8)21(0) _ F(@m.

Lemma 2.4. If (Hs) holds, then the function 0 < Z;(s) < Z;(0),s € R™ and Z;(s) is nonin-
creasing on RT, i =1,2.

Proof. From hypothesis (H), (H2) and (2.3), we have
Zi5)=—@-2) [ (=5 ha(r)ir
25 =—~(6-2) [ (=5 *m(r)ar

Consequently, Z;(s) is nonincreasing on Rt and 0 < Z;(s) < Z;(0), i = 1, 2. O
Lemma 2.5. The Green functions G;(t,s) and G/ (t,s)(i = 1,2,3,4) defined in (2.2) and (2.6)
have the following properties:

(1) Gi(t,s) are continuous and G;(t,s) >0, for allt,s € RY, i =1,2,3,4;

(2) Gi(t,s) < Kit*™', Gj(t,s) < K;t#~L, for allt,s € RT, i =1,2, j = 3,4;
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(3) 1&53; C < K;, forallt,s e RY, i=1,2,3,4;

(4) 0 < GF(t,s) < Q, for allt,s e RT, i=1,2,3,4.

Proof. It is easy to prove that (1) hold, and we omit it.
To prove (2) and (3), for (¢,s) € Rt x R*, it is obvious that

G i i
gp(t,s) < (o)’ 0(&.8) ST g8 (ai,s) <ol 7T 6i(s) < Zi(0),
and then for any (¢,s) € RT x RT, we have

() st MNa—v) INa-1)A A
F(ﬁ) 10 et (5 - 1)Z2(0) 1 1 1
Gao(t,s) < [ L + t“ t* Kot®
69 < | 7a < T(B—n) A A ?
Furthermore,
Gi(t, s) Go(t, s) + +
OSWgKI, OSWSKQ, (t,S)ER x RT.

By a similar calculation, we can prove other inequality results about Gs(t,s) and G4(t, s). So
properties (2) and (3) hold. From the Green functions G/ (¢,s)(i = 1,2,3,4) in Lemma 2.3, it is
easy to observe that property (4) holds. O

Define two spaces

- |u(?)]
X = {U (S C(R+),Dg+ lu € C(R+) : tsel]gi W < 00, tSIIlRIJ)r |D8é+ lu( )| < 0

B + B—1 . [v(t)]
Y—{UEC’(R ), Dor v €CR ).tsetﬁgm<ootsup |D0+ Lo(t)| < oo b,

equipped with the norms

|lullx = max { sup Lﬂl,
ter+ 1 + toth

sup D <>|},

v(®)]
[v]ly = max {tsellgi W’ SUP |D0+ o(t)] ¢
We can obtain (X, | - ||x) and (Y, || - ||y) are Banach spaces. Moreover, it is straightforward to
observe that the product space (X X Y| - ||xxy) is also a Banach space with the norm

I sy = max{[Jullx, [[o]ly}-

Lemma 2.6. [23] Let U C X be a bounded set. Then U is relatively compact in X if the
following hold:

(i) For anyu € U, Htua(% and Dg‘jlu(t) are equicontinuous on any compact interval of R™;
(ii) For any € > 0, there is a constant C = C(e) > 0 such that

1#(1&2%_1 — Htitfg - <€ and | DS u(ty) — Doy Mu(ts)| < € for any ti,ts > C and u € U.
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3. Main results

We define the cone P C X xY as P = {(u,v) € X xY : u(t) > 0,v(t) > O,Dg‘jlu(t) >
0 D0+ Yu(t) > 0,t € R*}, and the operator

F:P—>XXxY

as
.F(u,v)(t) = (fl(uvv)(t)va(u7v)(t))
for all t € RT, where the operators F; : P — X and F, : P — Y are given by

( ;l(w(t)) ([ e nanris+ [ g i 1as -
JTQ(U’ U)(t) / g3(t7 S)f2(u,v) (3>d3 + / g4(t7 3)f1(u,v) (S)ds
0 0
for (u,v) € P, t € R*, where
{fl(u,v)(s) = a(s) fi(s, u(s), v(s), Dg "u(s), Dy= Ho(s)),
Fatua)(8) = b(s) fals, u(s), v(s), D§: "u(s), Dy "o(s))-
From Lemma 2.3 and (3.1), for (u,v) € P, t € RT, we have
(Dgﬁrl}](u, v)(t)) _ /0 gi(t, 5)f1(u,v)(5)d3+/0 g;(tvs)f2(u,'u)(s)ds 52)
ngl]:z(u’ U)(t) / g‘:’: (t7 S)fZ(u,v) (S)dS + / gZ (tv S)fl(u,'u) (S)ds
0 0

Clearly, if (u,v) € P is a fixed point of F, then (u,v) is a solution of system (1.1)-(1.2).

Lemma 3.1. If (Hy)and (H3) hold, then

/ fl(uv)( )d5<a0+zaz H u, U)HXXY7 (u U) € X xY,

=1

/ f2(uv) d8<b0+ZbHUUHX><Y7 ( 7U)€X><Y
Proof. By hypotheses (H;) and (Hj), for all (u,v) € X x Y, we have

| s < [~ ats) () + @)
+as(s)lofs)|* + as(s)| DG uls)| + as(s)| DG ()1 ) ds

* > a+B—1\t ‘U(S)VI
<aj+ [ alar() (1 417 s
> a+B—1\t |U(S)|L2
+/O a(s)a2(3)<1+t ) 2(1+to¢+ﬁ—l)bzds
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" /O a(s)as(s)| DS u(s) [ ds + /0 a(s)a(s)| DI u(s)|ds

<ap + ailullx + aal|vlly + azllul + ailjolly

4
SGS + Z a;kH(ua ’U)H?(XY'
i=1
Similarly,
(o]
/O fauw) (s)ds < bp + blullx + b3[[vlly? + b3 l[ullg + billvfl3*
4
< b+ b (1(w,0) [ F ey
i=1
This completes the proof. ]

Lemma 3.2. If (Hy),(H2) and (Hs) hold, then the operator F : P — P is completely continu-
ous.

Proof. To complete the proof, we divide it into the following five steps:

Step 1. We will show that F : P — P. Since G;(t,s) > 0, G/ (t,s) > 0(i = 1,2,3,4) and f1, fo >
0, it follows (3.1), (3.2) that Fi(u,v) > 0, Fa(u,v) > 0, Dg‘;l]:l (u,v)(t) >0, Dg;lfg(ujv)(t) >
0, for any (u,v) € P, t € RT. Consequently, F : P — P.

Step 2. We will prove that FU is uniformly bounded.

Let U = {(u,v) : (u,v) € P,||(u,v)||xxy < L} for some L > 0. For all (u,v) € U, from (3.1),
Lemma 2.5 and Lemma 3.1, we have

Fwn)®l /0“’ ) ()

ter+ 1HtoTP=1 = gl
o g2 (t7 8)
/0 1+ fotB-1 f2(u,v)(5)d8

+ sup
teR+

<K W d +K/ U d
1/0 | f1(u,w)(8)|ds 2 ; | f2(u,0) () ds (3.3)

<(K1 + K2)

4 4
azs+Zaz\|<u,v>||szxy+bS+Zb:||<u,v>||§éXy]
i=1 =1
4
ap + b5+ Y (ai L' + b;L™)
=1

<(K; + K>)

and from (3.2), Lemma 2.5 and Lemma 3.1, we have

sup |Dgy LF (u,v)(t)] < sup
teR+ teR+

/gltsfuw()

+ sup
teRt

<01 /0 ity (8)]ds + Q2 /0 Fatu (3)ds

/ G5 (t,8) fo(uw (s)ds
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4 4
<(Q1+Q2) aS+Zaz‘ll(u,v>||32xy+béﬁ+sz‘ll(u,v)ll}xy]
=1 i=1
4
<(Q1+Q2) |ap+b5+ Y (aL' +b;L™) (3.4)
i=1

Thus

LR —
Filw,v)lx = sup | D A, o)
1730l = { sup DO s 105173 (0, 0)0)

<max{K; + K2,Q1 + Q2}

4

af + b5+ Y (aiL" + b;‘L”)] ,
i=1

and similarly

4
ag + 5+ > (aj L' +bfL™)
=1

[F2(u, v)|ly < max{Kz+ Ky, Q3+ Qa}

Therefore

1 (u, 0) Ly

= max{||F1(u,v)| x, [|[F2(u,v)|y}
4

ap + b5+ Y (aL" + bfL”)] :
=1

<max{K; + K2, Q1 + Q2, K3+ K4,Q3 + Q4}

which implies that FU is uniformly bounded.
Step 3. Let I C Ry be any compact interval. For all t1,t2 € I, to > t; and (u,v) € U, we have

| F1(u,v)(t2)| | F1(u,v)(t1)] | Gi(ta,s) Gi(t1,s)
- S - ‘fl )‘dS
145! 145! 0 (145 14! () 35)
& g2(t27 ) g2(t17 '
+/0 1ot g tA [Fou) ()] ds

In fact, for all (u,v) € U, we have

/OOO 1%%24;)1 - 1%221;5 | i (5)] s
S/goo 1%%2;;)1 - 1%5;14;5 1 }fl (uv) )‘ds
_4_/000 1%5;1;;)1 - 1%5;;5 1 ‘fl (uv) )‘ds
:/OOO gl(ti’+)ta+gﬁl 1t1’ | 1w (5)] ds
Y o [ (o]

0 (1+ta+6 1)(1+t04+ﬁ
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Gi(t2,8) — Gi(t1, s) Gi(t2,8) — Gi(t1, s)

t1 to
< ds +/ ds
/0 1+ toHrB 1 )| 4 1+ ta+ﬁ 1 )’
o gl (t2a ) gl t17 d
+ . 1 _|_ta+ﬁ 1 )’ 8
2

ootoz—i—ﬁ l—ta+’8 1
+K1/O 1+to¢+ﬁ 1 }fl(u;u)(s)‘ds—)o tl _>t2,

and similarly

Ga(ta, s) Ga(t1,s)

1+ta+ﬁ 1 1+toz+ﬂ 1

(o.]
/ ‘f2uv )|d3—>0, t1 — to.
0
So the function % is equicontinuous on I.
Note that Gy (¢,s),G5(t,s) € C(Ry x Ry) and by Lemma 2.5, for all ¢1,t2 € I, t2 > t; and
(u,v) € U, we have

+00
| Do Fu(u, ) (t2) — DS Fi(u,v) ()] S/O |G} (ta, s) — Gi (t1,8)] | fi(uw) (s)] ds

oo (3.6)
[ 1G502:5) = G501, Fau (5] s
In fact, for all (u,v) € P, we have
—+00
| 16ttt = Gt ) ()]
t1 to
S/0 ‘gik(t%s)_gik(tlvs)‘ ‘fl(u,v)(s)|ds+/ ’gik(t%s) _gik(ths)’ ‘fl(u,v)(s)‘ds
t
+o0 '
b [ 101 5) = Gi 19 | ()] ds
to
—)0, t1 — to,
and similarly
“+oo
| 105029) = G519 | ey (9] ds 0 11 >t
0
So Dg‘jl}'l (u,v)(t) is equicontinuous on I. In the same way, we can show that % and

Dg;l]:g (u,v)(t) are equicontinuous. Thus condition (i) of Lemma 2.6 is satisfied.

Step 4. We will show that operators JF7, Fo are equiconvergent at co. Since

gl(t,s) gz(t, S)

5o 1 4 fatB-1 A et = O

=0,
We can infer that, for any € > 0, there exists a sufficiently large constant C' = C(e) > 0, such
that for any t1,to > C and s € R™, we have

Gi(t2, s) Gi(t1,s) e ‘ Go(t2,s) Go(t1,s)

1+ta+51_1+ta+51 1+ta+ﬁ1_1+ta+ﬁ1<6'
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Similarly,

. Dol(@) = 295, (&5 8) | (a = 1961 (s)
<
Hm Gr(ts) <1+ =3 & T(a—7) A

e DQD(B) gl (01,5) | (B — DT ()da(s)
ARG 8) = T 2 (g ) A

< +00,

< +00.

Also we can infer that, for any € > 0, there exists a sufficiently large constant C' = C(e) > 0,
such that for any t1,to > C and s € RT, we have

|G1(t2,8) = Gt s)| <& |Ga(t2,8) — Ga(tr, s)| <e.

By Lemma 3.1, (3.5), (3.6), we obtain that %, Dg‘;l]:l (u,v)(t) are equiconvergent at
1

+o0o. In the same way, we can show that %

+00. Thus condition (ii) of Lemma 2.6 is satisfied.

and Dg; ! Fa(u, v)(t) are equiconvergent at

Step 5. We will check the continuity of the operator F.
Let (up,vn), (u,v) € P, such that (up,v,) — (u,v)(n — o0). Then ||(un,vn)|lxxy <
00, [[(u, v)||xxy < oco. Similar to (3.3) and (3.4), we have

up Fi0:0)(1)

jer+ 1+ tothl <(F1+ Ke) [aa 8
€

4
3 )y 8 0 )
=1

<00,
and
sup DB (v (8)] (@1 + Qo) [azs e

teRT

4
) oy + 80 o)
=1

<00.
By the Lebesgue dominated convergence theorem and continuity of f1, fo, we have

F1(tn, vp) ()
n—oo 1 4 tat+B-1

= lim |:/Oo mfl(un,vn)(s)ds + /oo g2(t’$)f2(un,fun)(8)d5:|
0 0

n—00 1+ totB—-1 1 + tatp-1
* Git,s) Gyt s) Fi(u,v)(t)
= /0 T3 oo 1 1w (s)ds + /O Top pespt 20 (8)ds = T-5005 T

and

lim DS Fi (un, vn) (2)

n—o0

=i | [T 0109 ) () [ G3(0.8) g ()

n—o0
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- / GE(t, ) Fiu (3)ds + / G5 (1, ) ot (5)ds
0 0
=D§ Fi(u, v)(t).

So we have

[ F1(un, 0n)(E) = Fa(u, v)(1)]

tER+ 1_|_ta+5*1
* Gi(t,s)
< —_— — d
_tsel]gi/o 1+ta+f871 ’fl(un,vn)(s) fl(u,v)(s)‘ S

00 t,
+ sup /0 M ‘f2(un,vn)(8) - f2(u,v) (8)‘ ds

teR+ 1 4 tatp-1

[e.o]

S(Kl + KQ) [/0 ‘fl(un,vn)(s) - fl(u,v)(*S)} ds + /0 ‘f2(un,vn)(s) - f2(u,v)(3>} ds

—0, n— oo,

and
sup [ DT () (1) — DI (1, 0) (1)
teR+
> Gl s)
< — - d
_tselllz&lzr/o 1+ totB-1 ‘fl(un,vn)<3> fl(u,v)(s)‘ S
> G3(ts)
+ tSEIIlRIJ)F/O 15 gatp-1 ‘fQ(un,vn)<s) - f2(u,v)(3)‘ ds
<(Q1+Q2) [/0 | F1(umvm) (8) = fi(uw) (8)| ds +/O | Fotum,vm) () = fo(uw) (5)] ds}
—0, n — oo.
Thus

| F1(tns vn) — F1(u, v)| x
| F1 (tn, vn) — Fi(u,v)(t)] a1 a1
= max {g};{g T 5B [DF F (s ) (1) = DG () 1)

—0, n — oo.

In consequence, F; is continuous. In a similar way we can show that F is continuous. Thus
F is continuous.
From the above steps, the operator F : P — P is completely continuous. O

Define a partial order on the product space:

if i () > ua(t), vi(t) > va(t), DGT ua () > DO ua(t), DI oi(t) > DI oa(t), t € R
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Theorem 3.1. If (Hy)— (Hy) hold, then the problem (1.1)-(1.2) has positive maximal and mini-

mal solutions (u*,v*) and (z*,y*) satisfying 0 < ||(u*,v*)||xxy < R and 0 < ||(z*,y*)[|xxy < R

with lim (up,v,) = (u*,v*) and lm (xn,yn) = (2%, y*), where R is a given real constant,
n—r—+00 n—+0o00o

(Un,vp) and (Tn,yn) can be given by the following monotone iterative sequences:

un(®)) _ [ F1lun-1,vn-1)(8) n=1,2,--- with w(®)) _ fe , (3.7)
’Un(t) fg(un_l,vn_l)(t) Uo(t) Rtﬁ_l
and
@) _ (Frlen-nym-)®) o (@) 2 () (3.8)
Yn (1) Fo(Tn-1,Yn-1)(t) Yo(t) 0

In addition

 ~
< )
(=) o
=3
~_
IA
-
s s
= =
~
AN
AN
~/
< 8
3 3
= =
~
AN
AN
~
< 8
* *
= =
~
A
IN
/
S g
* *
= =
~_ —

(3.9)
o un<t>) o uQ<t>) <(u1<t>) _ (w0
Un () v(t) v1(t) vo(t)
Do wo(t)) _ (D6 () _ (P )
Dy o)) \ Do) A\ D5 ()
Dyt (t) <... < Dy ' (t) <. < Dg unt) (3.10)
o) T T o) T B e |
Dy ua(t)) [ Df () _ (D uo(t)
D tea(t))  \ DG () \ DG o)

Proof. Recall FP C P. Let
1 1
R > max {10@a3, 1005;, (100a}) ™4, (100b}) =7 i = 1,2, 3,4} :

where
© =max {K; + K2, Q1 + Q2, K3+ K4, Q3 + Q4} .

Set Ur = {(u,v) € P: ||(u,v)||xxv]| < R}. For any (u,v) € Ug, similar to (3.3) and (3.4),
we have
4

ap+ b5+ > (aj R + b R™)
=1

<R,

and

4
ap + b5+ Y _(a;R" + bjR™)
=1

sup ‘Dg‘jlfl(u,v)(tﬂ <O
teERT

<R,
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which infers that || Fi(u,v)||x < R. In a similar way, ||F2(u,v)||y < R for all (u,v) € Ug. Then
we know for all (u,v) € Ug,

| F (u, )| xxy = max {||F1(u,v)|| x, [[F2(u, )|y} < R.

That is FUr C Ug. From (3.7) and (3.8), we obtain that (ug(t),vo(t)), (zo(t),yo(t)) € R. By
the continuity of the operator F, we define the sequences (un,v,) and (z,,yn) as (up,vy) =

F(up—1,vn-1), (Tn,Yn) = F(Tp-1,Yn—1) for n = 1,2,---. Since FUr C Upg, we see that
(Un,vn), (Tn,yn) € FUR, for n = 1,2,---. For t € RT, via Lemma 2.5, (3.1) and (3.7), we
have
_ 4 -
ul(t) = fl(u(),vg)(t) <O 06 + ba + Z(afR“ + b:RT’) ta_l < Rta_l = uO(t),
L i:]- =
and
- 4 -
vi(t) = Faluo, v0)(t) < O |af+ b5+ > _(aj R + b R™) |71 < RtP~1 = wy (),
L ,L:1 -
that is

ui(t)) _ [ Filuo, vo)(?) < Rt _ [ uo(®) ‘ (3.11)
vi(t) Fa(ug, vo)(t) RtP~1 vo(t)
For t € RT, via Lemma 2.5 and (3.11), we have

Dy un (t) = Dy Fi(uo, vo) (¢)

4
ap+by+ > _(aj R + b R™)
i=1

<T'(x)O

<TI'(a)R
= D% (1),

and ) )
DY i (t) = DY Fa(ug, vo) ()

4
ap + b5+ Y (a;R" + biR™)
=1

<TI(p)e

that is
DSYIIQM (t) _ 'Dgﬂr_lfl(uO, Uo)(t) < F(Oé)R _ ’Dgﬂr_luO(t) . (3.12)
Dy v (t) Dy ' Faluo, vo) (?) L(B)R)  \Dg: wo(t)

For t € R™, via (3.11), (3.12) and (Hy), we get

ua(t) _ Fi(ur,v1)(t) - F1(uo,vo)(t) _ uy (1)
v (t) Falur,01)(t)) ~ \ Faluo, vo)(t) n(t))
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DS:__IUQ (t) . Dg_:lfl (ul, Ul)(t) < Dg:lfl (UQ, ’Uo)(t) Da_flul (t)
Dy; ua(t) Dy Falur,v)(t) ) \ Dy Faluo, vo) (1) Dy o)

By recursion, for t € RT, and n = 0,1,2,---, we have

Un1(t) Un(t) Dgglun-&-l(t) < Da:lun (t)

— Y _1

< (3.13)
U g1 (t) n(t) Dy o (t) Dy on(t)

Applying the complete continuity of F and (un41,Vn+1) = F (un, vp), there exists a (u*,v*) €
Ur such (up,, vy, ) — (u*,v*) as k — oo, which can be obtained through that {(uy,vy)}>2, has
a convergent subsequence {(un,,vn,)}5> . From (3.13), we have (up,v,) — (u*,v*) as n — oo.
We can also have F(u*,v*) = (u*,v*) by F is continuous, that is (u*,v*) is a fixed point of F.

For the sequence { (@, yn)}5°,, we take a similar discussion. For ¢t € RT, and n =0,1,2,-- -,

we have
x1(t) _ F1(wo,y0)(t)
y1(t) Fa(zo,y0)(t)
/OO Gi(t, S)fl(zo,yo)(s)ds + /Oo Ga(t, 5)f2($07y0)(8)d8
0 0
J

g3 (t’ S)f2(1'0,y0) (S)dS + /0 g4(t7 S)fl(wo,yo) (S)dS

0
>
0
. l‘o(t)
Yo (t) 7
Do () _ DY Fu(wo, yo) ()
D§+ M0 Dgflﬂ(ﬂﬂo, yo)(t)
/ GE(t, 5) Fu(oouge) (5)d5 + /0 G (£, 5) Fagun.yn (5)ds
/ G (8, 5) Fatmouge) (5)d5 + /0 G (1, 5) Frgan.gm (5)ds
>
0
. Dg+1$0(t))

Dg+ 1y0 (t)

From (Hy) we have

xa(t) _ Fi(x1,y1)(t) S Fi(zo,y0) (%) _ x1(t)
Y (t) Folar,y)®) ]~ \Falwo, o)(®) n())
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Do (1) Dy Fi(an, 1) (1) - D Fi(wo,y0) ()| [ Dgy taa(t)

Dy; ya(t) Dy Falzr,y)(t))  \Dos ' Falo, o) (1) Dys i (t)
Analogously, for n =0,1,2,--- and t € RT, we get

Tnt1(t) > zn(t) Doy lxn—&-l(t) > Daflmn(t)
Yn+1(t) - Yn(t) D0+ yn+1(t) - D0+ yn( )
Applying the complete continuity of F and (zn+41,Ynt1) = F(Tn,yn), we have (z,,yn) —
(x*,y*) as n — oo and F(z*,y*) = (z*,y*), that is (z*,y*) is a fixed point of F.
Finally, we will show that (u*,v*) and (z*, y*) are the positive maximal and minimal solutions
for the system (1.1)-(1.2). Suppose that ({(t),n(t)) is any positive solution of system (1.1)-(1.2),

then F(C(t),n(t)) = (¢(t), n(t)) and
e O o S ey R
yolt) Rt )\ wo(t)
(D&lxmw) (D@l«t) ( mumw)'
Diye)) ~ \DETtne)) T\ D u(t)

Applying the monotone property of the operator F, we get

x1(t) _ fl(xg,yo)(t) ¢(t) F1(uo,v0)(t) - u(t)
Y1 (t) Folzo,y0)(t) ) — \n(t) Fa(ug,v0)(t) v1(t)
DY (t) - ng DY (t)
i) \pitw)  \ Dl
Repeating the above process, we have
n(0) _ (o) _ (o)
Yn(t) n(t) n(t)
Daﬂt_lxn (t) < Dy () < Doflun(t)
D0+ yn(t) D€+1 (t) D0+ Un(t)
Combining limy, e (tn, v,) = (u*,v*) and limy, o0 (Tn, yn) = (x*,y*), the results (3.9) and

(3.10) hold.

Since f1(¢,0,0,0,0) # 0, f2(¢,0,0,0,0) # 0,V ¢t € [0,00), then the system (1.1)-(1.2) have
no zero solution, it is follows that (u*,v*), (z*,y*) > (0,0) are the extreme positive solutions of
system(1.1)-(1.2), which are given by two monotone iterative sequences in (3.7) and (3.8). O

Theorem 3.2. If (Hy), (H2), (Hs) hold, and

4 4
B = © max {Z c”{k,Zczk} <L (3.14)
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Then (1.1)-(1.2) has a unique positive solution (»*,0*), which can be obtained by the following
iterative sequence:

7, (1) _ Fi(tun—1,vn—1)(t) n—=1.92...

on(t) Fo(un—1,vn-1)(t)

for any (30, 00) € P. Furthermore, the following error estimate formula holds:

Bn
H(%*7Q*)_(%’VZ7Q7L)HXXY S IR H<%1’Ql)_(%0’go)HXXY’ n = 172,"' . (315)
1-B8
Proof. For any (u,v) € X xY, by (Hs), we have

|13t u®),0(0), D (), DY o)
< ‘fj(tu(t)ﬂ’(t)apgil“( ) D0+ U( )) - fj(t,0,0,0,0) + |fj(t70707070)’

Sep(t)(L+ ) ﬁfﬁgl ()4 ngflLl +¢j3(t) DG u(t)]
+ eia(t) [P u(t)] + 1£5(£,0,0,0,0)

<ein ()1 + N ullx + @) (1 + T o]y
+ep@lullx +ea@®vlly +1;(£0,0,0,0), 5 =1,2.

So we have

/ Fituw (8)ds < i (®)||ullx + Ga@[vlly + iz (Ollullx + Ga(®)vlly +m;
4

<3l vy +my, j=1.2
k=1

Thus take r > %, where m = max{m, mo}. Next we show that FU, C U,, where U, =
{(u,v) € P:||(u,v)||xxy <r}. For any (u,v) € Uy, we have

4
max{Zc kT ,Zczkr} +m
k=1 k=1

J—.'
up 0O _
teRt 1+ tath

and
4
sup |Dg LF (u,v)(t)| < © |max Z Zc%r
teERT =1
which infers that || F1(u,v)||x < 7. In a similar way, ||F2(u,v)|ly < r for all (u,v) € U,. Then

we know for all (u,v) € U,
1F (u, 0) [ xxy = max {[|F1(u, v) || x, [ Fa(u, 0) [y} <7

That is FU, C U,.
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Now we show that operator F is a contraction. In view of (Hs), for any (z,v), (u,v) € Uy,
we can get

Filz,y)(t)  Fi(w,0)(t)
1+ ¢toetp-1 1 4 potfp-1

o0 gl(ts
S/O W‘flxy s) — fl(u,v)(s)’ds

ot s)
+/0 W‘ﬁwy f2uv )‘ds

<K1/Oooa(3) |:011( )(1+Sa+,3 1)m+ ( )(1+Sa+,3 1)W

+ c13(s)| DG a(s) — Dy Muls)] + cra()| Dy y(s) = Dy ols )I]ds

+ Ko Am b(S) [021(5)(1 + SOlJrﬁl)M + 622(8)(1 + Sa+ﬁl)w

T eas(5) D2 r(s) — DO u(s)| + eaa(s) D7 y(s) — DI (s >|]ds
4 4
s(m S e+ I Zczk> 1@s9) = (1) lxcy
k=1 k=1

and
D5 Fu(w,y)(t) — DS Fu(u, 0) (1)

é/0 gik(t78)’f1(;r,y)( fl uv) |d$+/ g2 t S |f2(zy f2(uv) )‘ds

4 4
<(@ X e+ @3 i) w) ~ ()l
k=1 k=1

which implies

4 4
IF1(z,y) = Fi(u, v)|x < O max {Z ks Y G k} 1z, y) = (u, )] xxy-
k=1 k=1

In the same way, we can get

4 4

[F2(,y) = Fa(u, v)|x < Omax {Z s D Cék} 1, y) = (u, )l xxy-

k=1 k=1

So we have
Hf(:l),y) _‘F(U7U)||X><Y < BH(ZL‘,y) - (U7U)||X><Y7 v ($,y), (u,v) € Uy

Due to B < 1 as shown in (3.14), then operator F is a contraction map. With the help of the
Banach contraction mapping principle, F has a unique fixed point (»¢*, 0*) in U,. And the error
estimate formula (3.15) holds. O
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Theorem 3.3. If (Hy)— (Hs) hold, then (1.1)-(1.2) has a unique positive solution (»*, 0*) such
that ||(>c*, 0*)|| € (0, R], which can be obtained by the following iterative sequence:

%n(t) _ fl(un—lavn—l)(t) n—129...

on(t) Fo(tn—1,vn-1)(1)

with the initial value (30(t), 00(t)) = (0,0) or (35(t), 00(t)) = (Rt*~, RtF~1).

Proof. By using Theorems 3.1 and 3.2, the conclusions are obvious. O

4. Applications

Example 4.1. Consider the following coupled fractional differential system
D2'5u(t) —|—€_t 2 teit’u(tﬂo.l t672t’v(t)|0'3

(U (9+1)2 " (1+36)01 (1 + ¢36)03
|D0+U( )|O'1] -0

+te 0Dy Pu(t)| 4 +

1+t (4.1)
t —3t t 0.2 t —4t t 0.4 :
T L O | e (o)
LT+02 " (1+36)02 7 (14 36)04
L DR
(1+13)2 5(1+12) |
with an improper integral and the infinite-point boundary conditions
u(0) = o/(0) = 0, Jim DjPu(t / b (60 ()dt + Z Lpoou( - ﬁ)
(4.2)
v(0) ='(0) =0, lim D§iv(t) = dt—i—z — D¢ u(l ! —)
’ t—o00 0 0 0 + 1 ’
where hy(t) = Te7!, ho(t) = Te 2, a(t) = e7t, b(t) = e 2" and
2 te O temH ug|*? 1o, j04 , lual™?
t = te~ .
f1(t, w1, u2, us, ug) CEnE + 15 B0y + (15 130)03 + |us| el
1 t€_3t|u1|0‘2 te_4t|u2|0'4 t3]u;3|0'2 |u4‘0.3

t =
fat ua uzyus,va) = e + meye Y T E A0 T 1482 T 514 )
and t; =0.1,12=0.3,13=04, 14 =01, 71 =02, 75 =04, 3 =0.2, 74 = 0.3.

By calculating, we can obtain ; ~ 1.286806, 2 ~ 0.614382, A = I'(2.5)I'(2.1) — ;0 =~
0.600546 > 0, and we take R = 100. Thus hypothesis (H1), (H2) are satisfied.

Also we have

2 te_t‘u1|0'1 te_2t|u ‘0.3

0.1

2 —10t),, 0.4, |u4l
t < t :
|f1(t; w1, w2, us, ug)] (9 +1)2 T (1 + 36)01 T (1 + 36)03 +te” ug + 1+ 2

=ao(t) + a1 (t)|ur]"* + az(t)ua|® 4 az(t)|us|"® + as(t)|ual*,




420 M. Liu & J. Jiang
1 tei3t|u1’0'2 t€f4t|u2‘0.4 t3|U3|0'2 ‘U4’0'3
t < )
|2, w1, uz, us, ug)] (1462 " (1 +136)02 7 (14 ¢36)04 T (1+3)2 T 5(1+12)
=bo(t) 4 b1 (t)[ur[™ + ba(t)|ua|™ + b3 (t)|us|™ + ba(t)|ua|™,
and
ap = / a(t)aodt = 0.0199, by = / b(t)bo(t)dt = 0.2325,
0 0
al = / a(t)ay (t)(1 + t36)%1dt = = by = / b(t)by (t)(1 + t36)02qt = —
0 4 0 25
00 1 o0 1
0= [ e+ 00— g b= [ b0+ 0= o
0 9 0 36
oo 1 oo
o = / a(Das(t)dt = ——, b — / b(£)bs(£)dt ~ 0.1343,
0 121 0
o = / a(t)as(t)dt ~ 0.4971, b = / b(t)ba(t)dt = 0.0994,
0 0

so hypothesis (H3) is satisfied.

It is easy to verify that fi, fo are increasing with respect to the variables u,v,x,y and
f1(¢,0,0,0,0) £ 0, f2(¢,0,0,0,0) # 0,V ¢t € R4. Thus hypothesis (Hy) is satisfied. By Theorem
3.1, it follows that the fractional differential system (4.1)-(4.2) has positive maximal and minimal
solutions, which can be established via two explicit monotone iterative sequences in 3.7 and 3.8.

Also the fractional differential system (4.1)-(4.2) simulate iterative process curve are provided
using the iterative method and numerical simulation in Table 1, Table 2, Figure 1 and Figure 2.

Table 1. Iterative process zn, yn(n =1,2,3,4,5,6) in Example 4.1.

0.0 2.0 4.0 6.0 8.0 10.0
z1(t)  0.000000 0.225935 0.616439 1.108379  1.692811  2.353756
xz2(t)  0.000000  3.048702  7.578297 13.086848 19.54175  26.787124
z3(t)  0.000000 4.041659 10.074574 17.421678 26.035894 35.707984
xz4(t)  0.000000 4.194344 10.459264 18.090858 27.039519 37.087653
z5(t)  0.000000 4.215256 10.511972 18.182569 27.177086 37.276785
ze(t)  0.000000 4.218076 10.51908  18.194938 27.19564  37.302294
y1(t)  0.000000 0.312061  0.571329 0.837741 1.114685  1.397957
y2(t)  0.000000 3.526149  7.325612 11.277563 15.403331 19.632984
y3(t)  0.000000 4.695581  9.722778 14.949905 20.406363 25.99991
ya(t)  0.000000 4.876775 10.092658 15.515701 21.176582 26.979638
ys(t)  0.000000 4.901619 10.143339 15.593207 21.282077 27.113819
ye(t)  0.000000 4.90497  10.150173 15.603659 21.296303 27.131914
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Figure 1. The iterative process of Ty, yn.

Table 2. Iterative process un, vn(n =1,2,3,4,5,6) in Example 4.1.

0.0 2.0 4.0 6.0 8.0 10.0
wi(t)  0.000000 7.301772 18.345892 31.859098 47.731960 65.571558
uz(t)  0.000000  4.549036 11.353965 19.648333 29.376408 40.301066
uz(t)  0.000000 4.261714 10.629085 18.386363 27.482800 37.697106
ug(t)  0.000000  4.224304 10.534779 18.222254 27.236616 37.358630
us(t)  0.000000 4.219293 10.522148 18.200275 27.203647 37.313302
ug(t)  0.000000 4.218619 10.520450 18.197320 27.199214 37.307207

vi(t)  0.000000 8.613898 17.645020 27.025490 36.814290 46.847301
va(t)  0.000000  5.298957 10.952844 16.830606 22.965920 29.255204
v3(t)  0.000000 4.956835 10.255948 15.765405 21.516449 27.411912
va(t)  0.000000 4.912370 10.165268 15.626 743 21.327722 27.171875
( 0.000000  4.906416 10.153123 15.608170 21.302443 27.139723
( 0.000000  4.905615 10.151490 15.605673 21.299044 27.135400
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Figure 2. The iterative process of up, vn.

Example 4.2. Consider the following coupled fractional differential system

1 5t te tu(t)| te=2tu(t)]
10t (1+t)2 (1+t3'6)0'2 (1+t3-6)0'4

Dllu(t
e Dpu(o) + D o,

DiPu(t) +

Lt (4.3)
oty 4 L[ ] e (o)
o+ 1062 | (141)2 " (1+36)03 7 (1 436)05
FIDEu(] | ADL()]]
(141t3)2 5(1 + e?t) ’
with an improper integral and the infinite-point boundary conditions
L5 -
o - . . _ .
u(0) = /(0) = 0, tlggoDwu(t)_/O dt+z Lposui +2)
(4.4)
. 1.1 x
v(0) ='(0) = 0, lim Dylo(t) = i hol(t dt+z —Dhu(l o 1),
where hy(t) = 17, ho(t) = 172, a(t) = 14, b(t) = # and
5t te |y | te 2! ug| _10t |ua]
t = t
Fi(t ur, uz, uz, ua) 1112 T (11 136)02 T (11 (36)04 +te” T lug| + 11 e2t’
t2 t2e 3 uy | t3e 4 |ug| 3 |ug 4y

t =
Jaltswnsuauswa) = s+ mes FraEees T i e T s+ ey
and t1 = 0.2, 10 =0.4,13=04, 14 =0.1, 7 =0.3, 2 =0.5, 3 =0.2, 74, = 0.3.

By calculating, we can obtain ©; ~ 1.286806, Q2 ~ 0.614382, A = I'(2.5)I'(2.1) — 21 =
0.600546 > 0. Thus hypothesis (H1), (H2) are satisfied.

Also we have

|f1(t,U1,UQ,U3,U4> - fl(t7ﬂ17ﬂ27ﬂ37ﬂ4)‘
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te™? _ te—2t B o - ) }
§W|ul_ul|+mlu2—u2|+t6 ‘u3_u3|+m|U4—U4

=c11(t)|ur — 1| + c12(t)|ug — ua| + c13(t)|us — ug| + c14(t)|ug — w4/,

| f2(t, ur, ug, ug, ua) — folt, U, Uz, Uz, Us)|
- t2€_3t ‘ B | N t3€_4t ’ B | N 3 | B ‘ N 4
=1 4 36)03 1 T T T sEy0s 112 T LT T ey 1S TS T paT o

=co1(t)[ur — 1| + coa(t)uz — Ua| + co3(t)|us — Us| + caa(t)|us — Tal,

|ug — g

and

o0 o0
= / a(t)err () (1 + t3%)dt ~ 0.0455, Cly = / a(t)era(t)(1 + t39)dt =~ 0.0194,
0 0

o0 1 o0
iy = / a(t)eis(t)dt = 155, Ciy = / a(t)eia(t)dt = 0.0347,
0 0

= /0 b(t)cor (t)(1 + t30)dt = 0.0067,  chy = /O b(t)eaa(t)(1 + t3%)dt = 0.0012,

[o¢] 1 o0
Chg = /O b(t)eas(t)dt = =, chy = /0 b(t)coa(t)dt =~ 0.0036,

so hypothesis (H3) is satisfied. By direct computation, we can obtain that K; + Ko = 2.7633,
Q1+ Q2 = 3.1005, K3 + K4 = 4.0297, Q3 + Q4 = 4.1755, © = 4.1755, B = @max{Zizl i
St Cor b < O x max{0.1096,0.0442} ~ 0.4576 < 1.

Hence all presupposed conditions of Theorem 3.2 are satisfied. Then the fractional differential
system (4.3)-(4.4) has a unique positive solution.

5. Conclusion

In this article, we demonstrated the solvability of the coupled system of fractional boundary
value problems involving an improper integral and the infinite-point on the half-line through
the monotonic iterative method, obtaining the iterative relation of the system. Using Banach’s
contraction mapping principle, the existence and unique of the positive solution is demonstrated.
Finally, a numerical simulation is given to illustrate the main results.
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