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JOINT COMPUTATIONAL STUDY OF GLOBAL STABILITY AND
PARAMETER ESTIMATION IN SEIR MODELS USING A
PHYSICS-INFORMED NEURAL NETWORK

Shahbaz Ahmad!", Gunesh Kumar! and Manuel De la Sen?

Abstract This study presents a Physics-Informed Neural Network (PINN) framework for
simulating disease dynamics governed by the Susceptible-Exposed-Infectious-Recovered
(SEIR) model. Utilizing a fully connected neural network implemented in PyTorch, the
approach employs automatic differentiation to enforce initial conditions and solve the sys-
tem of ordinary differential equations (ODEs) associated with the SEIR model. The PINN
is trained using a composite loss function that integrates boundary conditions with physics-
based constraints, allowing for accurate modeling of the temporal evolution of all SEIR
compartments. Beyond forward simulation, this work addresses the inverse problem of pa-
rameter estimation specifically, identifying the time-dependent contact rate using temporal
epidemiological data. By training the network on observed data for the susceptible, exposed,
infectious, and recovered populations, the model approximates the solution vector and si-
multaneously minimizes a loss that combines data fidelity with the residual of the SEIR
system. A key contribution of this study is the numerical demonstration of the SEIR sys-
tem’s global stability without assuming a constant population size, achieved via a generalized
Lyapunov theorem. Additionally, physical constraints embedded directly into the learning
process enhance the model’s ability to inform control strategies and ensure long-term system
stabilization. This machine learning-based framework offers a robust and flexible tool for
both understanding disease spread and conducting real-time epidemiological inference. It
highlights the potential of PINNs for solving complex inverse problems, improving predictive
accuracy, and supporting data-driven decision-making in public health. The code can be
downloaded from https://github.com/shahbaz1982/SEIR.

Keywords SEIR model, non linear dynamics, epidemic modeling, global stability, physics-
informed neural networks.
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1. Introduction

Mathematical modeling plays a crucial role in epidemiology by identifying the most effective
strategies for disease prevention and control, while also offering insights into the underlying
factors that influence disease transmission. In 1766, Daniel Bernoulli made the first known
application of mathematical modeling to the study of infectious disease spread [12]. In his
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study, which is still highly significant today, he created and resolved a differential equation
that described the dynamics of infection. In 1927, Kermack and McKendrick [21] presented
the first fundamental compartmental model that clarifies the dynamics of infectious disease
transmission. Their SIR model utilizes ordinary differential equations to track the numbers
of susceptible, infected, and recovered individuals throughout an outbreak. In [4], Ander-
son et al. presented standard mathematical models for infectious disease transmission, which
have been valuable in studying various diseases worldwide. The progress of mathematical
epidemiology was slow due to a limited understanding of infection spread until the early 20th
century.

Most conventional compartmental models are derived from Kermack and McKendrick’s orig-
inal SIR model [21], which categorizes the population into three classes: susceptible (S), infected
(I), and recovered (R) individuals. For certain diseases, such as influenza and tuberculosis, a sus-
ceptible individual can be exposed for a period after coming into close contact with an infectious
person; during this time, they may become ill but are not yet contagious. In order to create
a Susceptible-Exposed-Infectious-Recovered (SEIR) model, it makes sense to add an exposed
(E) compartment. The SEIR model is one of the most important compartmental models of
epidemics [20]. It is very popular and widely used in different contexts [8,33,34,36,37,51]. The
evolution of the relative proportions of four types of individuals within a particular population
is described by this model. Specifically, susceptible individuals (S) can contract the disease and
transmit it to others; asymptomatic individuals (E) and symptomatic individuals (I) are conta-
gious and can spread the disease to susceptible individuals. In contrast, recovered individuals
(R) acquire lifelong immunity after recovery or, in some cases, death. Generally speaking, SEIR
models incorporate diseases with an incubation period and generalize SIR models. The SEIR
model is widely studied in the literature [4,5,10,11,13,17,19,28,40] due to its theoretical and
practical significance. Many significant results have been established on threshold values that
determine whether an infectious disease will vanish, as well as on the local and global stability
of disease-free and endemic equilibrium points [44,50,57]. Additionally, studies have analyzed
equilibrium points to assess whether an epidemic will persist (endemic equilibrium) or die out
(disease-free equilibrium) in the host population [2,29,54].

In the study conducted by [29], the global stability of the SEIR model was established us-
ing a general criterion for the orbital stability of periodic orbits related to higher-dimensional
nonlinear autonomous systems, under the assumption of a constant population size. However,
it’s noteworthy that Li’s demonstration relies on the conclusions of Hirsch, which were validated
only for n = 3 and not extended to n = 4 (here, “n” refers to the dimension of the system of
differential equations describing the SEIR model). This limitation necessitates Li’s assumption
of a constant population size. Furthermore, in the works of [24-26, 30] and [35], the authors
also assumed a constant population size, enabling them to simplify the system and focus solely
on the reduced system described by the first three equations. Subsequently, they applied the
LaSalle invariance principle to demonstrate the global stability of this reduced system. In our
study, we extend the findings of [35] by numerically demonstrating the global stability of the
SEIR system using Physics-Informed Neural Networks (PINNs), without assuming a constant
population size. While Runge-Kutta (RK) solvers, as used in [35], are well-suited for determin-
istic, well-posed problems, PINNs offer significant advantages in scenarios involving real-world
data, parameter inference, and generalization across different conditions. This makes PINNs
particularly valuable for solving SEIR models in epidemiological research, where uncertainties
and incomplete information are common.

Deep learning techniques for partial differential equation (PDE) solving have gained popu-
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larity recently because of their ease of use, mesh-free methodology, and efficiency when dealing
with inverse problems and high-dimensional spaces [32,41,43,52]. The deep Ritz method [56],
the deep Galerkin method [46], and physics-informed neural networks (PINNs) [42] are impor-
tant methods in scientific machine learning. These methods use deep neural networks (DNNs)
to minimize a loss function that takes into account domain-specific information and physical
laws in order to approximate differential equation solutions [14,15,38]. In particular, the loss
function integrates the differential equation residual, boundary and beginning conditions, and
occasionally observational data in the case of PINNs [42], which are the subject of this work.

In this paper, specifically, we analyze the findings of [35] using PINNs and establish the
global stability of the full SEIR system numerically, without imposing constraints on population
size. This is accomplished by leveraging a generalized version of the Lyapunov theorem proposed
by [7]. A key objective of this study is to develop a control law aimed at eradicating infection per-
sistence within the host population. Recognizing the importance of control and stabilization in
epidemiological models such as SEIR, various strategies have been proposed [3,31,35,39,49,55].
Among these, PINNs have demonstrated effectiveness by incorporating physical constraints di-
rectly into the learning process. By employing a recursive Lyapunov-based approach, PINNs
enhance global stability and tracking accuracy for systems with strict feedback [27], making
them a powerful tool for solving complex differential equations. In addition to forward simula-
tion, this work tackles the inverse problem of parameter estimation, focusing on identifying the
time-varying contact rate from temporal epidemiological data. The neural network is trained on
observed data from the susceptible, exposed, infectious, and recovered compartments, allowing
it to approximate the system’s solution while minimizing a loss function that balances data ac-
curacy with the residuals of the SEIR model’s governing equations. Additionally, we investigate
the conditions required to ensure the positivity and boundedness of solutions [44,45,50,57], as
well as factors that may lead to oscillatory behavior in the system’s dynamics [1,2,45]. Our
research shows that solutions that begin with positive initial conditions stay positive after some
fluctuation by taking advantage of the solutions ongoing dependence on the initial data. This
insight is significant in real-world scenarios, as diseases often emerge with initially positive data
rather than strictly positive values. Furthermore, our examination of the local stability of the
SEIR model, numerically, deviates from previous approaches in the literature (see [9,35,53]).

The structure of this paper is organized as follows: We introduce the SEIR epidemic model
in the next section. Section 3 examines the existence, boundedness, and positivity of solutions,
evaluates the local stability of system (2.1). In Section 4, we outline the Physics-Informed
Neural Networks (PINNs) approach for solving the SEIR model. Section 5 presents the results
obtained with the PINNs and compares them with existing literature. Section 6 presents the
information of parameter identification using PINNs. Finally, the last section discusses system
synchronization and provides a brief summary.

2. The SEIR epidemic model

In this paper, we introduce the SEIR epidemic model governed by the following equations [1] to
analyze and study the key objectives defined earlier:

% = A— puS(t) — BS(H)I(E),
dE

— = BSOIW) ~ (0 + WE®),
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% =0E(t) — (o + p+7)I(1),
Cin =I(t) - uR(t), >

subject to the initial conditions S(0) > 0, £(0) > 0, 1(0) > 0, and R(0) > 0, the SEIR model
is formulated as follows. In this model S(t), E(t), I(t), and R(t) represent the number of sus-
ceptible, exposed, infectious, and recovered individuals at time ¢, respectively. The parameters
are defined as follows: A is the recruitment rate of new individuals into the susceptible class, o
is the rate at which exposed individuals become infectious, 3 is the average number of contacts
per infectious individual per unit time, v is the natural recovery rate of infectious individuals,
w1 is the natural mortality rate of the population and « is the disease-induced mortality rate.
Note that % represents the average latency period.

3. Some properties of the SEIR epidemic model

In this section, we analyze the well-posedness of the solutions to (2.1), establishing their global
existence, uniqueness, nonnegativity, and boundedness, though without providing detailed proofs.
For a thorough examination of these properties, we refer the reader to [1,24-26,30,35]. For con-
venience, we define (u1 := o + p) for the subsequent discussions and throughout the remainder
of this work.

3.1. Boundedness and positivity of the solutions

Theorem 3.1. Let Sy, Ey, Lo, Ro € R be given. (2.1) has a single non-extendable solution
(S,E,1,R) that confirms that (S, E, I, R)(0) = (So, Eo, Io, Ro). This solution is defined on a
mazximal interval [35].

Theorem 3.2. For any given initial conditions Sy > 0, Ey > 0, Iy > 0, Ry > 0 pertaining to
system (2.1), the non-extendable solution provided by Theorem 3.1 is global and remains positive
for allt >0 [35].

Theorem 3.3. Let € be the set defined by
4 A
Q=4q(S,E,I,R)e R} / OSS—i-E—l—I—l—RSE .

As a result, Q is positively invariant, ensuring that all solutions of (2.1) initiated in Ri are
ultimately bounded and will eventually enter the attractive set 2 [35].
3.2. Local stability of the equilibria

Now, we investigate the model to compute the basic reproduction number, identify the conditions
required for the existence of a non-trivial equilibrium, and assess the local and global asymptotic
stability of the equilibrium points.

3.2.1. Basic reproductive number

In this subsection, we define the basic reproduction number Ry for the system represented by
(2.1). The basic reproduction number Ry indicates the average number of secondary infections
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caused by one infectious individual in a fully susceptible population [11,13]. In various deter-
ministic epidemiological models, an infection can take hold in a fully susceptible population
only when Ry > 1. Consequently, the basic reproduction number Ry is frequently considered
a threshold parameter that dictates whether an infection can invade and persist within a new
host population.

A disease-free equilibrium Ey = (%,0,0,0) is clearly present in the system described by
(2.1). In this framework, the variables F and I denote the components related to infection. The
transition matrix V and the new infection matrix F' are defined as follows:

A
0 56— o+p 0
H and V = . (3.1)

0 0 —0 p1tY

F=

For the model represented by (2.1), the basic reproduction number is defined as the spectral
radius of the next generation matrix (FV 1) [18], which is expressed as follows:

oBA
p(o+p) (p+7)’

which provides a quantification of the disease risk.
In addition, another endemic equilibrium point E* = (S*, E*, I'*, R*) is present when Ry > 1
in the system outlined by (2.1),

Ry :=p(FV!) = (3.2)

A
st =2
R
e (R0 = D +7)
op3 ’
* 1% (Ro—l)
I'=——-=,
B
-1

s

Within the context of linear ordinary differential equations (ODEs), it is generally acknowledged
that the eigenvalues of the system exclusively dictate its stability properties. Nevertheless, given
that our model (2.1) is nonlinear, it is necessary to implement linearization and apply a theorem
from [16] to connect the local dynamics of the linear and nonlinear systems.

We will analyze the local stability characteristics of the equilibrium points by linearizing the
nonlinear system represented by the differential equation (2.1) around the points Ey and E*.
Next, we will apply small perturbations to the system at these equilibrium points and investigate
the long-term behavior that follows. To achieve this, we linearize the system at each equilibrium
point using the Jacobian matrix related to system (2.1). The Jacobian matrix of the system
described by (2.1) at an arbitrary equilibrium point E, = (S, F4, I, R.)” can be represented
as follows:

jEy < | P et 8Se 0 (3.3)
0 o —(m+v) 0

0 0 Y K
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Hence, the corresponding characteristic equation can be written as:
A+ p) A +aX +bA+¢) =0, (3.4)
where

a=(m+7)+(0+p)+p+ Bl
b=—(—p—BL) (11 +7)+ (0 +p) + (g1 +7)(0 + p) — oS,
c=—(—p—BL) (11 +7)(0 + p) — 0BS. + 01,55,

Following this, by looking at the linearized system,

Z'(t) = J(E,)Z(t).

The stability of each equilibrium point, namely F, = Ey and F, = E*, can be evaluated.
According to (3.2), the fundamental reproduction number, Ry, is the only value that determines
this stability quality, as will be shown in the sections that follow. In the following two subsections,
we will present two theorems that demonstrate the relationship between the local asymptotic
stability of the equilibria and the value of Ry.

3.2.2. Stability of disease-free equilibrium Fj

This section will discuss the local stability of the disease-free equilibrium Fy. Initially, we select
E, = Ey. Consequently, the characteristic equation (3.4) becomes

(At 02| X2 Al +7) + (0 + )] + (1 +7)(0 + 1) — aﬂ‘/j —0. (3.5)

Theorem 3.4. (i) If Ry < 1, then the disease-free equilibrium Ey exhibits locally asymptotically
stable.
(ii) If Ry > 1, then the equilibrium point Ey becomes unstable [35].

3.2.3. Stability of endemic equilibrium E*

This section will examine the local stability of the endemic equilibrium E*. We suppose that
E. = E* = (S*,E*, I*, R*) at this position. Consequently, the characteristic equation (3.4)
becomes

A+ p) A +aX2+bA+c) =0, (3.6)
where
A
a=(pu1+7)+ 5——— + Rop,
(w1 +7) Ro (1 + fow
oBA
b:uR()( n+y +>
( ) (1 + ) Ro

c:aﬂA(Ro_l).

The following theorem follows as a result.
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Table 1. The associated values and the parametric description [35].

Parameter | Description Value
A Population recruitment rate Varied
I5] Transmission rate Varied
o Rate at which exposed individuals become in- | 0.25
fectious

7 Natural mortality rate 0.07

Q Mortality rate due to the disease 0.07

v Natural recovery rate 0.07
So Percentage of initial susceptible individuals 0.8

Ey Percentage of initial exposed individuals 0.02
Iy Percentage of initial infected individuals 0.07
Ry Percentage of initial recovered individuals 0.01

=

Theorem 3.5. If Ry > 1, then the equilibrium point E* is asymptotically stable [35].

As a discretization approach for the SEIR model, we will employ Physics-Informed Neural
Networks (PINNs). By leveraging PINNs, we can incorporate the underlying epidemiological
dynamics directly into the learning process, ensuring that the model adheres to the governing
differential equations. This method enables us to approximate the solution in a continuous
manner while preserving the essential structural properties of the system, such as stability
and conservation laws. Additionally, PINNs provide a flexible framework for handling complex
boundary and initial conditions, making them well-suited for studying disease progression and
control strategies in epidemiological models.

4. Physics-informed neural networks

In this section, we describe the structure of Physics-Informed Neural Networks (PINNs) for
solving the SEIR epidemic model. The fundamental concept of PINNs is to incorporate prior
knowledge in the form of physical laws or domain expertise typically expressed through ordinary
or partial differential equations into a deep learning framework. This is achieved by computing
derivatives of the neural network with respect to its input variables and model parameters;
see [42] for further details. Consequently, the loss function not only minimizes data error but
also reduces the residual of the differential equation using a least-squares approach.

4.1. The basics of neural networks for ODEs

We begin by analyzing the solution u(t) of an ordinary differential equation (ODE), where
the approximate solution for different values of t is expressed as ug ~ wu , with 6 denoting
a set of model parameters. For boundary value problems (BVPs), the variable ¢ is typically
reinterpreted from a time parameter, as used in initial value problems (IVPs), to a spatial
coordinate parameter. A classical neural network that approximates the intended result allows
us to write,

up(t) = (NT o NETL NOY(1), (4.1)
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in this context, the operator o denotes composition, and the trainable parameters of the network,
including weight matrices and bias vectors are represented as § = {W!, b’} . Refer to [6] for
additional details about the functions N?. The network architecture, illustrated in Figure 1,
comprises L + 1 layers, with neurons in each layer connected to those in the neighboring layers.
The input layer is linked to L — 1 hidden layers and contains the input variable ¢. In the
schematic example shown in Figure 1, there are four hidden layers, each consisting of n neurons.
This architecture culminates in an output layer that generates the solution ug. The objective is
to modify the parameters 6 so that ugy closely matches the target solution u(t). Furthermore, an
activation function is essential for introducing non-linearity into the output of each neuron. In
this research, the hyperbolic tangent function tanh, a commonly employed activation function,
has been chosen for this role. The optimization problem involves minimizing a loss function,

hidden layers

(@) (@)
n )=\ Op " ) I 2 /
U NN AN

@) @)

4 b \

- ARG ®—
N =

Figure 1. This schematic illustrates a typical neural network structure. The input layer consists of a single input
variable, represented by one neuron as ¢?, which may, for instance, indicate a time coordinate. There are four
hidden layers, each containing n neurons that connect to both the input layer and the output layer. The output
layer features a single neuron, denoted as o3, which represents the desired solution wug.

which can be expressed as follows:

; (4.2)

where it is assumed that a set of Ny, data points is available for the known solution at various
time instances ¢; (referred to as the training data, where i = 1,..., Nqata), including initial
and/or boundary conditions.

4.2. The basics of PINNs for ODEs

An ordinary differential equation (ODE) with the residual form shown below will now be pre-
sented:
du d?u

t
‘F( ’u7 dt’ dt2 )

..... )=0, te [to,T]. (4.3)

The number of initial and/or boundary conditions necessary to solve the equation is contingent
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1 S
du d*
= Fltou PR )=0 t € [to, T
S
,’/G.(l) Li(g) % = A S 4 BS(OI(),
\\ 2 ODE equation i JdE
_71 ’ . L3(8) TR BS(M(t) + (o 4+ p)E(1),

iuﬂ and derivatives . ol
+ Li(8) E—aﬂ'[.‘)+(u+u+1)!(r].

~ UD '5..3‘.’.2.?’.".‘1“.3.7.., R B o S,
\E, Ie T T :
- M 4 2
] v ].
o Laata Lr(0) =~ Flug(t;
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Figure 2. A Physics-Informed Neural Network (PINN) that is intended to estimate the solution of an ordinary
differential equation (ODE) is shown in this picture. The neural network architecture shown in the previous figure
is employed to assess the residual of the ordinary differential equation (ODE) by utilizing ug and its associated
derivatives. After integrating two partial loss functions, Lqata and Lz, a comprehensive loss function is produced.
It is then minimized and weighted as needed (as described in the text).

upon the specific problem being considered and the order of the equation itself. It is noteworthy
that for an ordinary differential equation (ODE) of order n equal to or greater than two, one can
also employ an equivalent system of n equations (as detailed [6]). The fundamental principles of
Physics-Informed Neural Networks (PINNs) in their original formulation rely on incorporating
a secondary loss function defined as follows:

1 e
Lr(0) =+ >
¢ =1

which needs to be assessed at a collection of N, points, also referred to as collocation points,
which don’t have to line up with the training data points. In our work we define

2

Flug(ti)]| (4.9)

LL(0) : % — A+ pS+ BSH)I(t),
L360) - 57— BS(MI0) + (0 + WE(),
LH0) S~ 0 B(1) + (o + p+)I(0),
L(9) : %f —~I + uR,
so the here
1< 2
L) = 3 3 | Fluft] (4.5)

where 6 = (S, E, I, R). Interestingly, automatic differentiation allows for precise computation of
the differential operators in Lz and F at the collocation points. In order to calculate derivatives
with regard to the network weights (i.e., 8), which are essential for completing the optimization
process (as explained below), this automatic differentiation technique is used. This approach
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enables the creation of derivatives with machine precision, in contrast to conventional numerical
approaches. To make these processes easier, utilizing a fully connected neural network (FCN)
built with PyTorch open-source software in our work. In this study, mostly the architecture of
the neural network comprises four hidden layers, with each layer featuring 64 neurons, allowing
the model to adeptly capture and represent the intricate dynamics of the SEIR system.

The expression for a composite total loss function is so

L(0) = A1 Ldata(0) + A2L#(0), (4.6)

in which the potential discrepancies between the partial losses during the training process are
minimized by selecting the hyperparameters A; and Ay with the best possible values. These
weights can be adjusted automatically or manually. To keep things simple, the weight parame-
ters, such as A\; and Ao, are decided by the particular situation. To reach convergence, a gradient
descent method is used, aiming for either a predetermined accuracy or a maximum number of
iterations, as explained below:

okt = gk — vy L(6%). (4.7)

The goal of the k-th iteration, which is sometimes referred to as an epoch in the literature, is
to minimize the loss function so that

0" = arg I%il’l L(6), (4.8)

with (n) serving as the learning rate parameter. In this work, we apply the well-known Adam
optimizer. The derivatives (i.e., Vy) pertaining to the neural network parameters, such as
weights and biases, are calculated using a common automatic differentiation approach [42].
A schematic representation of the Physics-Informed Neural Networks (PINNs) is presented in
Figure 2. It is crucial to emphasize in this image that for partial differential equations (PDEs)
that exhibit spatiotemporal relationships, two neurons should be used in place of the single input
neuron, which represents a time or spatial coordinate for ODEs (x,t). Furthermore, the output
neuron needs to be swapped out with n neurons, each of which represents one of the n solution
variables that need to be learned, when working with a set of n differential equations.

5. The experiments

In this section, we present some results derived using Physics-Informed Neural Networks (PINNs)
to illustrate the theoretical findings we have listed above. The graphical results for the SEIR
model have been generated using PINNs to highlight the dynamics of the system (2.1).

5.1. Parameters of the PINNs

Here is a detailed description of the parameters involved in the PINNs implementation for
simulating the SEIR model:

e The framework used is PyTorch, with the model type being a Fully Connected Network
(FCN).

e CPU Utilization: AMD A12-9720P RADEON R7, 12 COMPUTE CORES 4C+8G 2.70
GHz.
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Table 2. The associated values and the parametric description.

Parameter
description

Input units
Hiden layers

Neuron units
per  hidden
layers

Output units
Learning rate
Batch Size

Number
Epochs

of

Optimizer
Lambda Val-
ues

Weight
cay

Da-

Grid parameter Finest parameter
1 1

4,19, 33 4

64, 100, 150 64

4 4

0.01, 0.0001, 0.00001 0.01

200 200

5000, 10000, 14000, 15000, 40000, | 5000

50000

Adam Adam

A1 = 0.0001,0.001,0.01,0.1,0.5,1.0,5, | A1 = 0.01, X =
A2 =0.8,1.0,1.996, 2.8958.999, 9.9 1.0

0.001 0.001

These parameters collectively contribute to the performance and effectiveness of the PINNs in
simulating the SEIR epidemic model. Adjusting these parameters based on the specific dataset
and problem context can enhance the model’s predictive capabilities and stability.

We also compared the results of our PINNs with the results of the Runge-Kutta fourth-order
(RK4). In the PINNs and RK4 simulations, the SEIR parameters used are described in Table

1.

Population

— RK4 5(t)
PINN S(t)
— RK4 E(t)
PINN E(t)
— RK4 I(t)
PINN I(t)
—— RK4R(t)
PINN R(t)

iD 4b 6b
Time(Days)

T T
80 100

Figure 3. Results by using RK4 and PINNs.

Remark 5.1. If we set A = 0.05 and 8 = 0.01, this results in Ry = 0.0266. According to
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Theorem 3.4, the disease-free equilibrium E(I]%K 4 = (0.7144,0,0,0.0001) is locally asymptotically
stable. Utilizing the PINNs, we compute EJ'VN = (0.7145, 0, 0, 0.0004). This implies that
the disease dies out (see Figure 3). In Figure 3, it is noted that the number of susceptible
individuals declines over the initial 10 days and subsequently stabilizes at a constant value. The
number of people who are infected, exposed, and eliminated decreases to zero, as this graph also
demonstrates. After 10 days, the disease appears to be eradicated from the host population.

Next, if we choose A = 0.09 and 8 = 0.9, then we have Ry = 4.3048. According to Theorem
3.5, the endemic equilibrium E*#K4 = (0.2987,0.2159,0.2570, 0.2569) is locally asymptotically
stable, and using PINNs, we find E*P/VY = (.2997,0.2153, 0.2559, 0.2559). So the PINNs offers
a significantly clearer and more detailed solution than RK4.

08+ —— RK4 5(t)
\ PINN S(t)
074 \ —— RK4 E(t)
\ PINN E(t)
\ —— RK4 I(t)

PINN I(t)

— RK4 R(t)

PINN R(t)

2
wn
L

Population
=]
=

e
w
L

tl) 2‘[) 4‘0 6‘0 BID 160
Time(Days)

Figure 4. Results by using RK4 and PINNs.

Remark 5.2. Figure 4 demonstrates the local stability of the endemic equilibrium points £y,
and Fpyy when the basic reproduction number is Ry = 4.3048. Biologically, this high value
of Ry indicates that each infected individual, on average, transmits the disease to more than
four others, leading to sustained transmission. The figure shows that after approximately 20
days, the number of infected individuals stabilizes, suggesting that the disease becomes endemic
within the population rather than dying out. This reflects a persistent burden of infection,
which could imply ongoing public health challenges. While both RK4 and PINNs capture this
behavior, the PINNs approach provides a smoother and more accurate representation of the
epidemic dynamics, which can be particularly useful for biological interpretation and prediction.

5.2. Global stability of two equilibrium points

In this section, we broaden the scope of the research presented in [24-26] by eliminating any
limitations regarding the population size. We will now investigate the global stability of the two
equilibrium points of the system described by (2.1) using the generalized Lyapunov’s theorem
introduced by [7], without imposing any restrictions on population size. We will show that if
Ry < 1, then the equilibrium point Ej is globally asymptotically stable; and if Ry > 1, the
equilibrium point E* is globally asymptotically stable.
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5.2.1. Global stability of disease-free equilibrium FEj

Theorem 5.1. The disease-free equilibrium point Eq is globally asymptotically stable if Ry < 1
[35].

5.2.2. Global stability of the endemic equilibrium

The endemic equilibrium E* is shown to be globally asymptotically stable in this paragraph by
building a suitable Lyapunov function, provided that Ry > 1.

Theorem 5.2. According to [35], the equilibrium point E* is globally asymptotically stable if
Ry > 1.

5.2.3. Experimental results for global stability

To show that the equilibrium points are globally stable, we will modify the initial conditions
of the system defined by (2.1). This section will demonstrate the evolution of the system’s
solutions across four distinct initial conditions, beginning with the disease-free equilibrium. In
this case, by selecting A = 0.05 and § = 0.09, we find that Ry = 0.2392. According to
Theorem 5.1, the disease-free equilibrium Ef%* = (0.7142, 0,0, 0.0001) is globally asymptotically
stable. In Figure 5, using the Physics-Informed Neural Networks (PINNs), we find EéD INN —
(0.7143,0,0,0). After 60 days, it is shown that the system stabilizes and moves closer to the
disease-free equilibrium, suggesting that this equilibrium is asymptotically stable globally. In
this scenario, the disease has effectively disappeared from the host population.

Next, if we choose A = 0.05 and 8 = 0.9, we have Ry = 2.3916. Therefore, according to
Theorem 5.2, the endemic equilibrium points E*54 and E*PINN are globally asymptotically
stable, as evidenced by the results derived from the RK4 and PINNs (refer to Figure 6). In
scenarios where the disease remains prevalent in the population, it is essential to develop a
control law tailored for high-risk areas with a greater density of exposed individuals. The main
objective of this tailored strategy is to efficiently mitigate the spread of the disease in areas where
the risk is highest. This could involve the implementation of measures such as targeted testing,
isolation, quarantine, and potentially an augmentation of health care resources. It is essential
to underscore that the development of this control law must be carried out thoughtfully, with
the option of incorporating backstepping methods, while maintaining a particular focus on the
compartment associated with exposed individuals.

Remark 5.3. Figure 5 illustrates the global asymptotic stability of the disease-free equilibrium
points E};”K‘L and Eép INN"obtained via the RK4 method and PINNs, respectively, for a basic
reproduction number Ry = 0.2392. Biologically, since Ry < 1, the disease cannot sustain itself
within the population and eventually dies out. This is reflected in the trajectories converging to
the disease-free equilibrium, indicating successful eradication of the infection over time.

In contrast, Figure 6 examines the global asymptotic stability of the endemic equilibrium
for Ry = 2.3916, where both methods predict disease persistence. The RK4 method yields the
equilibrium state Efy, = (0.2988,0.0909,0.1082,0.1082), while the PINNs approach estimates
Ef iy = (0.3018,0.0895,0.1066, 0.1071. These results indicate that a significant portion of the
population remains infected or exposed in the long term, consistent with the behavior of an
endemic disease when Rg > 1. Notably, the PINNs solution is smoother and more detailed,
highlighting its advantage in capturing subtle dynamics that traditional numerical solvers like
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Figure 5. Comparison of results obtained using RK4 and PINNs.

RK4 might overlook. This underscores the effectiveness of our PINNs-based method in providing
biologically meaningful and computationally accurate insights into epidemic behavior.

5.3. Control of the SEIR model

The backstepping control method, introduced in the 1990s by Petar Kokotovic, is a nonlin-
ear control technique designed to solve the control problem in dynamic systems [22,27]. This
approach offers an alternative to linearisation, which is commonly used in nonlinear control.
Backstepping’s core concept involves a recursive synthesis of the control law, breaking the sys-
tem down into components, with some treated as ‘virtual controls’. Intermediate control laws
are then developed for these virtual controls, making the system more manageable. Unlike
input-output or state-space linearisation, which can lead to the loss of vital information about
system nonlinearities, backstepping preserves these nonlinear characteristics. It’s particularly
well-suited for triangular nonlinear systems, often referred to as ‘strict feedback systems [47,48].
This method is less restrictive and doesn’t impose linearity on the system, making it a valuable
tool in the field of nonlinear control [23]. Furthermore, the backstepping control method is known
for its robustness in handling systems with unknown or uncertain parameters. It demonstrates
the ability to adapt to parameter variations, ensure system stability, reject disturbances, and
withstand robust stability analysis. These attributes make it a valuable approach for effectively
controlling complex systems in real-world applications.

In the SEIR model, the measurability of each compartment’s state varies based on data
availability and the specific characteristics of the disease being studied. While ‘Infectious’ indi-
viduals are often measurable through confirmed cases and related data, ‘Susceptible’ individuals



440 S. Ahmed, G. Kumar & M. De la Sen

RK4 Comparison PINN RK4 Comparison PINN

08— — RK4 A — RK4
PINN 025 I PINN
— Rk I — Rk
07 i PINN P PINN
A — RK4 i — Rk
PINN 0.20 PINN
—) — R4
PINN PINN

= i =
= | o 015
0.44—i
I\
1\ 0.10
034t} ~
!‘._“
\
02
0.05
0 20 40 60 80 100 0 20 40 60 80 100
Time(Days) Time(Days)
(2) (b)
RK4 Comparison PINN RK4 Comparison PINN
0404 — RK4 0.200
| PINN
\ — RK4 0175
0354 PINN
Rka 0150
PINN
0304 — RK4
il 0125
= 025 + 0100 /
= x /
0.075 1
0.20 4
h N 0.050 /,7
015 VA NS
/ NSO \ 0.025 |
0104+ e 0000{
0 20 40 60 80 100 0 20 40 60 80 100
Time(Days) Time(Days)
(c) (d)

Figure 6. Comparison of results obtained using RK4 and PINNs.

are generally not directly measurable but can be estimated using population data and reported
cases. Measuring ‘Exposed’ individuals is challenging due to their lack of symptoms and the
need for robust contact tracing. ‘Removed’ individuals, including those who have recovered
or died, are generally measurable. Data quality, such as underreporting and testing variations,
poses a significant challenge. Consequently, we can use statistical estimation techniques to derive
estimates for each compartment, ensuring a better understanding of disease transmission and
aiding public health decisions. Furthermore, when dealing with partially unknown states in the
SEIR model or any similar epidemiological modelling, the use of observers or state estimators
becomes crucial. These techniques play a vital role in estimating unobservable states, such as the
number of exposed individuals, given the inherent challenges in direct measurement. Observers
leverage available data and model dynamics to provide informed estimates, which are invaluable
for monitoring disease spread, guiding control measures, and informing public health strategies.
In scenarios where precise data are lacking, these tools bridge the gap, enabling more accurate
modelling and decision-making. Additionally, determining exposed individuals in reality involves
the use of various methods and data sources tailored to the specific disease. Common approaches
include contact tracing to identify exposed individuals, analysing epidemiological data to esti-
mate exposed cases, using mathematical models to refine these estimates, employing laboratory
tests to detect past exposures, conducting cohort studies to assess the risk of infection, collecting
information on recent travel and exposures, and conducting field epidemiological investigations
to trace the sources of infection. The accuracy of determining exposed individuals depends on
data availability and the nature of the disease, and a combination of these methods is often
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required for more precise estimations. Swift identification of exposed individuals is crucial for
effective epidemic control and controlling high-risk areas, where potentially exposed individuals
are concentrated, is indeed crucial in epidemic management. These areas can serve as hotspots
for infection, and swift monitoring, identification, and isolation of exposed individuals are vital
to prevent further disease transmission. By directing resources toward high-risk areas using
control measures such as testing, quarantine, and targeted treatment campaigns, we can more
effectively mitigate the spread of the disease and enhance public health protection.

In this section, we develop a controller that uses the backstepping technique to track and
stabilize the SEIR model. The backstepping method is introduced as a technique for controlling
the SEIR model where Ry > 1, the fundamental reproduction number. In this regard, the
method is a helpful tool for creating a control law that maintains the system at the point
of disease-free equilibrium, facilitating the removal of the disease from the population. The
backstepping technique permits the control of the chaotic dynamics of the SEIR model, guiding it
towards any predetermined trajectory. A notable benefit of this approach is its flexibility, which
allows for the design of a control law that fulfills both stabilization and tracking objectives while
reducing the amount of control effort required. This section’s first half is devoted to stabilization,
while the second part employs the backstepping method to identify the control rule that allows
our SEIR model to follow any given trajectory.

5.3.1. Backstepping control

By introducing a control input us to the second equation of the system specified by (2.1), we
stabilize the SEIR model at the disease-free equilibrium Ey = (ﬁ, 0,0, 0) in order to successfully
eliminate the disease from the population. Then the controlled SEIR model becomes as follows:

5 _ A —pS(t) — BS)I(t),

dt
9B _ 8S(O)I(t) — (o + WE(E) + o,

di (5.1)

% = oE(t) - (m + (1),
Cfi—f =I(t) = uR(1).

The stability of the disease-free equilibrium point indicates that the disease has been totally
eliminated from the population, whereas the stability of the endemic equilibrium point indicates
that the disease is still present and persistent in the population. Finding a control law that
guides the system toward stability at the point of disease-free equilibrium makes sense as a
result. Our goal is to find a control law ps that provides asymptotic stability to the system
represented by (5.1) at the disease-free equilibrium point Fy. To do this, we will start by using
the backstepping method to create the control input uo.

Step 1. Let S = Z; and I be the virtual control of Z;-subsystem and I = a;(Z1). So, we have
S == Zl == A—,uZl —ﬁZloq.

To achieve asymptotic stabilization of the Z; — subsystem, we need to determine «; by consid-
ering the following Lyapunov function

A A Z
Vlzzl——ln(“l).
poop A
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On the trajectory, the derivative of V; is then provided by

= (A—,LLZl — BZ1Q1)<1 - /JAAZl)a

where o is the input control

A—uZ
= —(A—pZ, — BZ1ay) (HZlil)
(A—pz1)*  BaaZ
=— + A—uZ
A A ( nz)
1

Y sz B
= uZ1(A 1Zy) +M(A pZi)o.

By selecting oy = 0, we observe that V <O0. By demonstrating that the state Z; approaches
the equilibrium point % as t — oo tends to infinity, this validates the asymptotic stability of the
Z1 — subsystem.

Next, let Z5 be the error between I and «;. Then Zo = I —a; = I and we have the following
(Z1, Z) — subsystem

Zy=A—puzy — BZ1 2,

i (5.2)
Zoy =0cF — (,ul —|—’y)ZQ

Step 2. Let E = «ag(Z1,Z2) be the virtual control of the (Z;,Z3) — subsystem. In this step,

we seek to find a virtual control law ag, which stabilises the (Z1, Z2) — subsystem towards the
equilibrium point (%, 0). In order to accomplish this, The Lyapunov function V5 can be chosen
in the manner described below:

1
V2 - Vl + 5222
Accordingly, the time derivative of V5 along the (71, Z) —subsystem’s trajectory is derived from
Vo =WVi+ 2225
1

L Az - D+ 2 (m n 5<A—uzl>).
[ %

If we choose ay = U%(le — A), then we have Vo < 0. This suggests that the (Z;, Zo) —
subsystem’s equilibrium point (%, 0) is asymptotically stable.

Next, let Z3 be the error between E and as. Then, Z3 = E — a9, and we have the following:
(Z1, Za, Z3) — subsystem.

Zy = A—pZy — BZ1 2,

ZQ =03+ BZI — iA — (,ul + ’y)ZQ, (53)
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Zs = —BZ1 — (04 u)Zs + BZ1 Zs (1 + f) + iA + 2.
Step 3. In this step, we must seek a control law uy which stabilies the (Z1, Zs, Z3) — subsystem
to the equilibrium point (%, 0,0). First of all, we consider the following Lyapunov function

1

Next, the time derivative of V3 along the (Z1, Za, Z3) — subsystem’s trajectory is provided by

Vs = Vo + Z3Z3
=Vi+ ZoZy + Z373
1 7 A
=—— (A—uZ)? + b2 2(A = pZy) + 02375+ B2y Zy — 7522
YAl Z m
— (m1 +7)7Z5 + Z3 [ —BZy — (v + W) Zs + BZ1Zs (1 + f) - ﬁA +u2}
1
=——(A—pZ1)? — (w1 +)7Z5 — (0 + n)Z3
wZi
+ Z3 [ —BZ1+ 02y + BZ1 7, <1 + 5) + iA + ug] : (5.4)

If we choose uo = 21 — 025 — gA — BZ1Z5(1 4+ g), then we get V3 < 0. For the (Z1, Za, Z3) —
subsystem, consequently, the equilibrium point (%, 0,0) is globally asymptotically stable. Since
Z1=8,7Zy=1and Z3 = FE — o%(,uZl — A), then this implies that S, I and E converge
asymptotically to %, 0 and 0, respectively. Moreover, from the last equation of system (5.1) and
since I converges to zero, then we can deduce that the state R converges asymptotically to zero.

Consequently, we have developed a control mechanism po, that eliminates sickness by success-
fully stabilizing the system toward the disease-free equilibrium point. This protocol is designed
based on the proportions of susceptible, exposed, and infectious individuals within the popula-
tion. It precisely dictates the required percentage of individuals to be removed from the group
of exposed individuals, through quarantine, isolation, treatment or other medical intervention.
In addition, the adaptability of this protocol to high-risk areas, where a significant proportion of
exposed people often reside, improves its effectiveness and makes it able to completely eradicate
the illness from the populace by targeting high-risk areas and vulnerable regions.

5.3.2. Experimental results for backstepping

Here, we demonstrate the effectiveness of the backstepping technique in stabilizing our SEIR
model in scenarios. If there is instability in the disease-free equilibrium, or when Ry > 1. The
system is stabilized and brought closer to the disease-free equilibrium by using the previously
mentioned control law po. In actuality, though, this is crucial because we have discovered a
control law that enables us to completely wipe the illness from the host population.

For experiments, we will employ the identical parameter settings as those presented in Table
1. Additionally, to ensure the positivity of our system, we impose a constraint on the number
of exposed individuals F, requiring it to remain positive and greater than a minimum value
FEmin = 0. Our control law is applied only under these conditions. If its implementation leads



444 S. Ahmed, G. Kumar & M. De la Sen

to a negative count of exposed individuals, we reset E to zero. This approach mirrors real-world
scenarios where control measures are implemented based on the presence of exposed individuals,
ensuring both practicality and realism. Subsequently, if we choose A = 0.09, 5 = 0.9 and
w = 0.1, then we get Ry = 2.4107. Consequently, according to Theorem 5.2, the disease is
expected to establish itself in the population. Consequently, after 30 days, if we apply our
previously determined control law pg, we observe that the system tends to converge toward
the disease-free equilibrium. Consequently, our community will be free of the sickness (see
Figure 7).

Furthermore, to evaluate the effectiveness of our control law, we implement it between day
30 and day 60, and then discontinue its application after 60 days. We observe that without this
intervention, the disease undergoes a resurgence and becomes established in the population, as
illustrated in Figure 8.

Moreover, to evaluate the robustness of our control law 7, we introduced a disturbance with
a value of 6 = 0.2 in system (5.1). In this scenario, we applied a modified law p} = 1 + 9,
then compared the results obtained with the solutions of the system (5.1), with and without
control. This approach allows us to test the control law’s effectiveness in maintaining satisfactory
performance even when faced with disturbances. Figure 9 demonstrates that the results obtained
with a control law disturbance of value § = 0.2 remain sufficiently close to the solutions with
exact control and significantly out perform solutions without control.
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Figure 7. Comparison of results obtained using RK4 and PINNs.
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Figure 8. Comparison of results obtained using RK4 and PINNs.

Remark 5.4. Figure 7 illustrates how the SEIR model dynamics stabilize around the 30-day
mark when the control law us is applied. Under the RK4 method, the solution converges to
the disease-free equilibrium point E§K4 = (0.9,0,0,0), while the PINNs approach estimates a
slightly perturbed but biologically similar equilibrium EF™N = (0.9009, 0.0008, 0.0009, 0.0001).
Despite the basic reproduction number being Ry = 2.4107 > 1, which would typically
indicate disease persistence, the application of the control law uo is evidently effective in
driving the infection toward eradication. Biologically, this suggests that strong or timely inter-
ventions can overcome high transmission potential and steer the population toward a disease-free
state.

Examining Figure 8, we observe the effect of continuing the control law po from day 30 to
day 60. The system stabilizes toward an endemic equilibrium, denoted by Efy, and Epy
for the RK4 and PINNs methods, respectively. This indicates that while the control reduces
the infection burden, it may not be sufficient to completely eliminate the disease under these
conditions. Notably, the PINNs solution provides a more refined and detailed representation of
the epidemic trajectory compared to RK4, capturing subtle transitions in the model dynamics.
These results demonstrate the enhanced capability of PINNs in offering biologically meaningful
and computationally accurate solutions, reinforcing their effectiveness over traditional numerical
methods.

Remark 5.5. Examining Figure 9, it becomes evident that when a disturbance level of § = 0.2 is
introduced, the solutions of system (5.1) exhibit a more favorable disease progression compared
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Figure 9. Comparison of results obtained using RK4 and PINNs.

to the scenario without any control. Biologically, this suggests that even in the presence of
disturbances such as variability in population behavior or external factors. The applied control
mechanisms can still effectively mitigate the spread of the disease. The infection levels remain
lower and converge more rapidly under control, indicating improved disease management.

Moreover, the PINNs approach yields a significantly clearer and more detailed solution com-
pared to the RK4 method, capturing fine-grained variations in the dynamics that may be critical
for understanding transmission trends. This highlights the robustness and accuracy of the PINNs
framework in modeling real-world epidemic behavior, especially under non-ideal conditions. The
results support the use of PINNs as a powerful tool for simulating disease control strategies in
the presence of uncertainty.

5.4. Tracking of SEIR model

The backstepping technique is used in this section to generate a control rule to synchronize two
identical SEIR models. First, we rewrite the SIR model (2.1) in the appropriate form to apply
the backstepping method. Thus, we put 1 = R, xo = I, x3 = F, and x4 = S5, then we obtain
the following system

T1 = Yr2 — pr1,

&y = o3 — (1 + 7)o,
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&3 = frazs — (0 + p)xs,
T4 = A — pxy — BryTs. (5.5)
Next, we consider system (5.5) as the drive system, which serves as the reference trajectory

to investigate the synchronization behavior within the SEIR model. Then, the response system
is

Y1 = VY2 — Hy1,

Y2 = oy3 — (p1 +7)ye,

Y3 = Byayz2 — (0 + p)ys + p2,
Ya = A — pys — Byaye,

(5.6)

where the input for control is us.

Our next objective is to determine the control input po that enables synchronization of the
response system (5.6) with the drive system (5.5). For the states that exist between the variables
of the driving and response systems, we make the following assumptions:

€1 =Y — T1,
€2 = Y2 — T2,
€3 = Y3 — I3, (5.7)

€4 = Y4 — T4.
After all calculation done we will end up with the following system:
€1 = ez — e,
o = ge3 — (11 +7)ez,
é3 = —(0 + p)es + Braes + Byses + o,

€4 = peq — Pyses — Braey.

(5.8)

Our goal is to develop a control law uo that ensures the convergence of the vector e = [eg, e,
e3,eq]’ to zero as t — oo. This convergence indicates that the trajectories of the response
system (5.6) asymptotically align with those of the drive system (5.5). We will now proceed to
design the control input po using the backstepping method.

Step 1. Assume z; = ej. Its derivative is then provided by:
Z1 = €1 = yeg — jz,

where the virtual control input is ea = aq(z1).
To construct a; that guarantees the z; — subsystem’s asymptotic stability, we take into
account the Lyapunov function, which is provided by:

1
V1 = 52«'%

As a result, the V; time derivative along the z; — subsystem trajectory is

Vi = z121,

= —uz% + yop21.
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If we choose oy = 0, then V; = — pz3. This leads to the asymptotic stability of the z; —subsystem.
The error between es and aj is thus denoted by z3. Consequently, we may derive the
subsequent (z1, z2) — subsystem

Z1 = —pz1 + Y22,

. (5.9)
Zo = oe3 — (u1 +y)22.

Step 2. Here we take e3 = ay(21, 22) as virtual control of (z1, z2) — subsystem. We then take

into account the following Lyapunov function
1 2
Vo =V; + 5%

The outcome of computing the time derivative of V2 along the trajectory of the (z1,z2) —
subsystem is

Vo = Vi + 209
= —pz} + za(00r — (11 +7)2) + 7212
= —pz? — (u +7)25 + canze + Y21 2. (5.10)

If we choose ao = _7721, then this ensures the asymptotic stability of the (21, z2)-subsystem.
Afterwards, let z3 be the error dynamic between es and ao. So, we have z3 = e — as. Thus,
we get the following (21, 22, 23) — susbsystem

Z1 = —pz1 + 22,

732 - _(Ml + ’)’)ZQ + YZ1, (5 11)
5 .

. v
23 =—(0+ p)zs + (ﬁm + 0)22 + vz1 + Byz2eq + po.

Step 3. At this point, we are looking for a control law ps that guarantees the asymptotic

stability of the (z1, 22, 23) — susbsystem. The following Lyapunov function can be taken into
consideration first in order to achieve this.

52
Vs=Va+ 2k
2
The (21, 22, 23) — susbsystem’s trajectories are used to calculate the time derivative of V3, which
is provided by
Vs = Vo + 2223

An explicit calculation of V3 yields

2
Vi = —puz? — (u1 +7)2z5 — (0 + p)z3 + 23 ['Yzl + (5964 + ’L) 29 + Py2e4 + /1«2:| -

If we choose po = —yz1 — <ﬁx4 + f)@ — Byseyq, then this implies that V3 < 0. From all the

above, the states (21, 22,23) = (e1,e2,e3 + 22z1) of the subsystem (5.11) converge to (0,0,0).
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Moreover, from the fourth equation of the system (5.8) and since ey converges to zero, then we
deduce that the state e4 converges asymptotically to zero.

Stated otherwise, the trajectories of the drive system represented by (5.5) and the controlled
response system defined by (5.6) will asymptotically coincide with each other when the control
input po is implemented. This result has a major impact in practice because our control law
allows us to follow the behaviour of a SEIR model where the situation with the disease is not good
to the behaviour of a SEIR model where the situation with the disease is good and controlled.

5.4.1. Experimental results for tracking

We consider the SEIR model with the following nomial parameters o = 0.07, 8 = 0.7, pu =
0.05, v = 0.07, 0 = 0.02 and A = 0.08. The initial conditions for the drive system (5.5)
are z1(0) = 0.07, z2(0) = 0.1, z3(0) = 0.03, z4(0) = 0.9 and the response system (5.6) are
y1(0) = 0.1, y2(0) = 0.4, y3(0) = 0.4, y4(0) = 0.2. Moreover, we have introduced the control
input ps to the response system at ¢t = 15.
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Figure 10. Comparison of results obtained using RK4 and PINNs.

Remark 5.6. Figure 10 illustrates the synchronization of the state variables x1, z2, 3, x4
of the drive system with the corresponding response system states y1, y2, ¥y3, y4, as defined
in equations (5.5) and (5.6). Biologically, synchronization implies that the dynamics of two
interconnected or interacting systems such as different regions, populations, or control strate-
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gies are aligned over time. This reflects coordinated epidemic behavior, which can be crucial
when modeling the spread of disease across connected populations or implementing synchronized
intervention strategies.

It is observed that the PINNs approach provides a significantly clearer and more detailed so-
lution than the RK4 method, offering smoother trajectories and more precise convergence. This
enhanced resolution allows for better analysis of the synchronization process and its biological
implications. The results underscore the effectiveness of the PINNs framework in capturing
complex dynamical interactions and producing more reliable solutions compared to traditional
numerical methods.

6. Parameter identification using PINNs

In this section, we focus on parameter identification using our PINNs model. Let p = (p¢, py)
denote the set of parameters, where p; € R¥ are the trainable parameters and pr € R*s are
fixed, such that k£ = k; + k;. Additionally, let ufjata represent the observed data at time points
t1,. .. tNy,,.- Our goal is to solve the corresponding inverse problem

arg min Lqata(6). (6.1)
Pt

Now, in order to approximate the inverse problem (6.1), we release the parameters p; in the
minimization problem (4.8) and obtain

arg %1]1)? (Ldata () + Lr(6)). (6.2)
Therefore, we approximate the solution of the discrete inverse problem. Minimizing with
respect to the trainable parameters p; implies that, during the training phase of the PINN
i.e., while optimizing the neural network, the parameters p; are treated as variables. In this
sense, p; effectively becomes an additional trainable parameters of the network, similar to 6.
This approach is justified, as the residual loss Lz(f) inherently depends on p;. To enhance
the optimization of (6.2), a weighting factor w can be introduced to balance the different loss
components, resulting in

arg min (Ldata(0) +wLr(0)). (6.3)

6.1. Application to SEIR models

In this section, we employ PINNs to approximate the inverse problem (6.1) for the SEIR model,
utilizing temporal epidemiological data for the susceptible, exposed, infected, and recovered
populations. The SEIR model is treated as a system of ODEs, which we reduce to the four
main compartments: S, F, I, and R, as outlined in Section 2. Specifically, we focus on the
formulation given in (2.1) for the SEIR dynamics. The corresponding PINN is constructed by
training a neural network (4.5) on the available data using the composite loss function defined
in (4.6).

Extending this framework to the SEIR model is straightforward. In particular, we consider
the neural network

ug(t;) :R — R,
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& £
t— =

Ty z

Ry R

for approximating (S(t), E(t), I(t), R(t))" (see also (4.5) and Section 2). Then, we choose p; = 3
and py = (A, u,0,a,v) and again minimize the loss function

arg %1}811 (Lqata(0) +wLr(9)),

)

where the residual is given by

%(t) — A+ pS(t) + BS(H)I(t)
du d?u gf(t) — BSH)I(t) + (o + p)E(t)
}-(t,u,a,@, ..... ) = 57

. (8) = o E(t) + (o + p+7)I(t)

ot
oR
ot

(t) = 7I(t) + pR(t)

We remark that solving the inverse problem (4.8) is referred to as the data-driven discovery
of differential equations in [14]. In this work, our goal is to utilize such data-driven discovery,
i.e., parameter identification, along with PINNs to estimate the contact rate 8 of an SEIR
model. Specifically, using PINNs for data-driven discovery and parameter estimation of ordinary
differential equations means employing PINNs to solve an inverse problem. Unlike the more
conventional approach of solving forward problems, where there is a distinct offline training
phase followed by an online testing phase, we do not follow this typical structure. Instead,
in the inverse problem context, we employ separate neural networks for each segment of the
parameter 3, each trained explicitly on the corresponding training data for the compartments
S, E, I, and R.

It is important to note that, in contrast to [14], we propose a method that allows for the
estimation of a time-dependent parameter 5 in (2.1). This represents a significant novelty
compared to [14], where the data-driven discovery of partial differential equations is applied to
estimate a model parameter that remains constant over time. Our approach involves partitioning
the entire interval [tg,T] for parameter identification into smaller time intervals. Within each
of these intervals, we assume that § is constant and compute an estimate using the machine
learning approach described in this section. Notably, this method can easily be executed in
parallel for all time intervals, allowing for quick updates whenever new data becomes available.
Finally, we combine the individual estimates of j.

Remark 6.1. Let us briefly discuss the biological implications of selecting a specific value for the
contact rate 8. As observed, increasing the number of training epochs leads to a more pronounced
smoothing effect on short-term fluctuations in 8. This behavior arises from the assumption
that S remains constant within each local time frame, allowing the model to better capture
long-term trends while filtering out noise or minor irregularities. Biologically, 5 represents the
rate at which susceptible individuals come into contact with infectious individuals and become



452 S. Ahmed, G. Kumar & M. De la Sen

=== Fixed f=0.09
0.6 - —— Learned
—— Learned B
—— Learned B8
—— Learned B

0.4

B value

0.2 1

0.0

T T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs

Figure 11. Estimates for 8 for an SEIR model for a contact rate with a sharp jump. We show comparative
results for different initial conditions.

exposed. Therefore, accurately modeling its temporal behavior is essential for understanding the
spread and control of an infectious disease. An underestimated or overestimated 8 could lead
to incorrect predictions about the speed and extent of disease transmission. Figure 11 clearly
demonstrates how the choice of § influences the model output, highlighting the importance of
selecting an appropriate value that reflects realistic contact dynamics within the population. It
is also observed that the optimal estimated value of S is typically obtained within 5000 to 7000
epochs.

7. Discussion and conclusion

This study successfully demonstrates the implementation of Physics-Informed Neural Networks
(PINNS) to simulate the dynamics of disease spread within the Susceptible-Exposed-Infectious-
Recovered (SEIR) model. By leveraging a fully connected neural network in PyTorch and
utilizing automatic differentiation, we effectively enforced initial conditions and solved the sys-
tem of ordinary differential equations (ODEs) governing the model. The custom loss function,
which integrates boundary conditions with physics-informed terms, allowed for accurate model-
ing of the temporal progression of each compartment within the SEIR framework. Our findings
underscore the historical significance of mathematical models in epidemiology, particularly the
SEIR model’s capacity to capture the complexities of disease transmission dynamics. By ap-
plying the PINNs approach, we explored the local and global stability of the SEIR model at
both disease-free and endemic equilibrium points, while also assessing conditions for solution
positivity and boundedness.

Notably, our research extends previous work by confirming the global stability of the com-
plete SEIR system, numerically, without relying on the assumption of a constant population
size, employing a generalized Lyapunov theorem for our analysis. The incorporation of physical
constraints into the learning process not only contributes to the control and stabilization of the
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SEIR model but also offers a pathway for developing effective control laws to eliminate infection
persistence. Beyond forward simulation, this work addresses the inverse problem of parameter
estimation specifically, identifying the time-dependent contact rate using temporal epidemiolog-
ical data. By training the network on observed data for the susceptible, exposed, infectious, and
recovered populations, the model approximates the solution vector and simultaneously minimizes
a loss that combines data fidelity with the residual of the SEIR system.

The significance of this work extends to medical and public health applications, particularly
in improving real-time epidemic forecasting and informing intervention strategies. By integrating
data-driven methods with epidemiological models, PINNs provide a framework for more accurate
and computationally efficient disease spread predictions, enabling healthcare professionals and
policymakers to make informed decisions regarding containment measures, vaccination strate-
gies, and resource allocation.

For future work, we aim to enhance the application of PINNs by integrating real-world epi-
demiological data to refine predictions and improve model generalization. We will explore the
extension of PINNs to more complex epidemic models incorporating spatial dynamics, stochas-
tic effects, and intervention measures such as vaccination and quarantine. Additionally, further
validation will be conducted using graphical and statistical analyses to compare PINN-based so-
lutions with traditional numerical methods, assessing error metrics and computational efficiency.
These advancements will contribute to developing robust machine-learning-driven models for
disease dynamics, ultimately benefiting medical research and public health planning.

The proposed PINN framework is effective for SEIR modeling and parameter estimation,
but its accuracy depends on data quality and availability. It may require adaptation for more
complex or different epidemic models. Additionally, training can be computationally inten-
sive. Despite these limitations, the approach remains a flexible and powerful tool for real-time
epidemiological analysis.
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