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ASYMPTOTIC SOLUTION FOR A SYSTEM OF SINGULARLY

PERTURBED DELAY DIFFERENTIAL EQUATIONS∗

Tao Feng1,† and Mingkang Ni2

Abstract This paper is mainly aimed to investigate the asymptotic solution for a system of
singularly perturbed delay differential equations. In order to establish the step–like asymp-
totic solution, the basic framework of contrast structure theory is employed. Some sufficient
criteria for the existence of asymptotic solution will be proposed. After that, by means of the
boundary layer functions method and sewing method, the expansion for the asymptotic solu-
tion will be constructed and the existence of a uniformly valid continuous solution is proved.
Finally, the effectiveness of the established results is validated via a concrete example.
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1. Introduction

Singularly perturbed differential equations (SPDEs) have gradually come into the view of many
scholars since Prandtl [31] studied the viscous incompressible flow in the beginning of the 20th
century, and arise in many fields of science and technology, such as, life sciences [18], dissipative
systems [2, 3], reaction–convection–diffusion problems [1, 25], optimal control problems [10, 40],
etc. In the past few years, a large number of special purpose methods have been established to
deal with SPDEs, for details, one may refer to the method of matched asymptotic expansion
[4,27], geometric singular perturbation theory [38,39], averaging method [17,42], multiple–scale
analysis [20], renormalization group approach [32,41], boundary layer functions method [36,37],
and so on. Additionally, in mathematics, delay differential equations (DDEs) are differential
equations in which the derivative of the unknown function not only evaluated at present time but
also evaluated in terms of the values of the function at previous times, the interest for DDEs keeps
on growing in almost all scientific areas, and especially see, e.g. population dynamics [12, 19],
epidemiology [16], human pupil–light reflex models [22,23], bistable devices [34], etc.

With the rapid development of singular perturbation theory and delay differential equation
theory, there has been a growing great interest in solving singularly perturbed delay differential
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equations (SPDDEs), in which the highest order derivative is multiplied by sufficiently small
positive parameter ϵ, and contains at least one delay term. Such type of differential equation
plays an important role in mathematical modeling of various practical phenomena, for example,
H∞ control system [11], first–exit time problem [21], evolutionary biology [26]. It is common
knowledge that there exist boundary layer(s) and internal layer(s) for the solution of the SPDEs
with or without delay terms. Owing to the exact results can not be obtained while the parameter
ϵ small enough. In order to overcome this problem, ϵ–uniform numerical method, in which the
error bound is independent of the small parameter ϵ, has been applied by many scholars to
study this kinds of equations. In the existing literature, quite a good number of articles have
been reported for handling SPDDEs by means of numerical method [6–8, 13–15, 24, 33], and a
novel method has been applied in [5] for SPDDEs of reaction–diffusion type. With the exception
of numerical method, the boundary layer functions method [36, 37] has been widely applied to
construct uniformly valid asymptotic solution of SPDE(s), see, e.g. [9,28–30,35]. Among them,
Ni et al. [29] considered the existence of spatial contrast structure for a class of semi–linear
SPDDE, Feng and Ni [9] discussed the step–like type spatial contrast structure solution with
internal layers for a kind of quasi–linear SPDDE, and Ni [28] is attracted by the asymptotic
solution to a second–order fast–slow SPDDEs.

Back to the end of the last century, Vasil’eva [35] considered a system of first–order SPDEs
with Neumann condition {

ϵu′ = F (u, v, x), ϵv′ = G(u, v, x),

u′(a, µ) = 0, u′(b, µ) = 0,

using the boundary layer functions method, under some certain conditions, the existence of
step–like solution is proved. Based on Vasil’eva’s work, a system of first–order SPDEs with
discontinuous functions in the right–hand side has been investigated by Pang et al. in [30].

Motivated by the above work, in this paper, a system of SPDDEs will be investigated, under
some sufficient assumptions, the existence of step–like type spatial contrast structures are proved
and the uniformly valid asymptotic solution is constructed.

The remainder of this paper is organized as follows. In Section 2, the studied problem will
be stated firstly, and then a necessary definition as well as some sufficient assumptions for the
existence of step–like type spatial contrast structures will be presented. Under these assump-
tions, the formal asymptotic solution will be constructed in Section 3 as ϵ → 0, among which,
Subsection 3.1 is aimed to construct the regular parts of asymptotic solutions, the transition
and boundary layer parts will be constructed in Subsection 3.2, and the asymptotic solutions
will be sewn continuously at point t = σ in Subsection 3.3. The main result for the existence
of solution and estimation of remainder are presented in Section 4. Whereafter in Section 5, a
concrete example and numerical simulations for fixed small parameter ϵ will be carried out to
demonstrate the effectiveness of the obtained algorithm.

2. System descriptions and conditions

Consider a system of SPDDEs as follows
ϵy′ = F (y(t), z(t), y(t− σ), z(t− σ), t) ,

ϵz′ = G (y(t), z(t), y(t− σ), z(t− σ), t) ,
0 ≤ t ≤ T,

y(t) = φ(t), z(t) = ψ(t), −σ ≤ t ≤ 0,

y(T ) = yT , z(T ) = zT ,

(2.1)
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in which, parameter 0 < ϵ≪ 1 is sufficiently small, σ > 0 is a constant delay, the initial functions
φ(t) and ψ(t) are sufficiently smooth defined in the interval [−σ, 0], T is a given positive constant.
For simplicity, assume that T ∈ (σ, 2σ) and denote [u(t)] = u(t− σ).

The following definition of solution is natural for problem (2.1).

Definition 2.1. A solution to the system of equations (2.1) is defined as a vector function
x(t) = (y(t), z(t))⊤ with the following properties,

(a) x(t) ∈ C[−σ, T ] ∩
(
C1(0, σ) ∪ C1(σ, T )

)
,

(b) x(t) = (φ(t), ψ(t))⊤, −σ ≤ t ≤ 0, and x(T ) =
(
yT , zT

)⊤
,

(c) x(t) satisfying the first two equations of (2.1) in the interval (0, σ) and (σ, T ).

Let ϵ = 0, the so–called degenerate system for system (2.1) can be written as
F (y(t), z(t), [y(t)], [z(t)], t) = 0,

G (y(t), z(t), [y(t)], [z(t)], t) = 0,
0 ≤ t ≤ T,

y(t) = φ(t), z(t) = ψ(t), −σ ≤ t ≤ 0.

(2.2)

For ϵ sufficiently small, some sufficient criteria are established, under which problem (2.1) has a
step–like spatial contrast structure, namely, a solution that tends in the interval (0, σ)∪(σ, T ) to
the solution of degenerate system (2.2) as ϵ→ 0. In addition, the asymptotic expansion of this
solution with respect to ϵ will be constructed in the entire interval [0, T ], including boundary
layers at endpoint. These assumptions are listed as (H1), (H2), · · · .

Generally speaking, the required order of smoothness for functions F and G are depended
on the order of the asymptotic expansion to be constructed. For the sake of convenience, set

D = {(y1, z1, y2, z2, t) : |xi| ≤ l, 0 ≤ t ≤ T, i = 1, 2} ,

where l is a positive constant. Since the order of the constructed asymptotic expansion is up to
arbitrary order, thus, the functions F and G are assumed to be infinitely differentiable on the
given region D. As is known to all, the method of Step–by–step is an effective method in solving
DDEs. To this end, the given region D should be divided into two different regions D(−) and
D(+) by the separatrix t = σ, and denote

D(−) = {(y1, z1, y2, z2, t) : |xi| ≤ l, 0 ≤ t ≤ σ, i = 1, 2} ,
D(+) = {(y1, z1, y2, z2, t) : |xi| ≤ l, σ ≤ t ≤ T, i = 1, 2} .

For system (2.2), it can be gained the so–called left degenerate equations on D(−) asF
(
y(−)(t), z(−)(t), [φ], [ψ], t

)
= 0,

G
(
y(−)(t), z(−)(t), [φ], [ψ], t

)
= 0,

(2.3)

and the right degenerate equations on D(+) asF
(
y(+)(t), z(+)(t), [y(−)], [z(−)], t

)
= 0,

G
(
y(+)(t), z(+)(t), [y(−)], [z(−)], t

)
= 0.

(2.4)

The following assumption is given for equations (2.3) and (2.4).
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(H1) Assume that there exists a solution
(
y(−)(t), z(−)(t)

)⊤
=

(
α(−)(t), β(−)(t)

)⊤
for equations

(2.3) on D(−), and there exists a solution
(
y(+)(t), z(+)(t)

)⊤
=

(
α(+)(t), β(+)(t)

)⊤
for

equations (2.4) on D(+), where α(∓)(t), β(∓)(t) are sufficiently smooth.

To be definite, we further assume that φ(0) > α(−)(0), α(−)(σ) > α(+)(σ) and α(+)(T ) < yT .
Denote the notation “(·)” as the derivative of the corresponding function with respect to the

first variable or the second variable, for instance, F(·)(t) denotes Fy(t) or Fz(t), and introduce
the following two Jacobian matrices

J(∓)(y, z, t) =

F (∓)
y (t) F

(∓)
z (t)

G
(∓)
y (t)G

(∓)
z (t)

 ,

where abbreviations F
(−)
(·) (t), G

(−)
(·) (t) denote the functions F(·), G(·) take values at point (y, z, [φ],

[ψ], t), and abbreviations F
(+)
(·) (t), G

(+)
(·) (t) represent the functions F(·), G(·) take values at point

(y, z, [α(−)], [β(−)], t).
Throughout this paper, the operator “det” is applied to express the determinant of corre-

sponding matrix. For the Jacobian matrix J(∓), the following assumption is given.

(H2) Assume that the inequalities detJ(∓)
(
α(∓)(t), β(∓)(t), t

)
< 0 are fulfilled.

Consider the so–called associated systems (see, e.g. [36, pp.30]). In a small neighborhood of
the left endpoint t = 0, it can be obtained

dỹ

dζ
= F

(
ỹ, z̃, φ(−σ), ψ(−σ), 0

)
,

dz̃

dζ
= G

(
ỹ, z̃, φ(−σ), ψ(−σ), 0

)
,

ζ > 0,

ỹ(0) = φ(0), ỹ(+∞) = α(−)(0),

z̃(0) = ψ(0), z̃(+∞) = β(−)(0).

(2.5)

In the transition layer region to the left of the point t = σ, it can be obtained

dỹ(−)

dξ
= F

(
ỹ(−), z̃(−), φ(0), ψ(0), σ

)
,

dz̃(−)

dξ
= G

(
ỹ(−), z̃(−), φ(0), ψ(0), σ

)
,

ξ < 0,

ỹ(−)(0) = p, ỹ(−)(−∞) = α(−)(σ),

(2.6)

where α(+)(σ) < p < α(−)(σ).
The following assumption is given.

(H3) Assume that there exist first integrals for the associated systems (2.5), (2.6) as follows,
respectively,

Φ(ỹ, z̃) = C, Φ(−)
(
ỹ(−), z̃(−)

)
= C,

herein C is a constant.
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According to assumption (H3), it is shown that on (ỹ, z̃)–plane as well as
(
ỹ(−), z̃(−)

)
–plane,

there exist separatrices with the following expressions

Ωl : z̃ = Φl(ỹ), (2.7)

Ω(−) : z̃(−) = Φ(−)
(
ỹ(−)

)
. (2.8)

Some other conditions will be imposed during the construction of the asymptotic solution.

3. Algorithm of constructing the asymptotic expansions

Asymptotic expansion of the solution to system (2.1) will be constructed separately on the
regions D(−) and D(+) and then sewn its left and right parts at the separatrix t = σ. To this
end, consider the following two problems, the left problem on D(−)

ϵy′(−) = F
(
y(−)(t), z(−)(t), [φ], [ψ], t

)
,

ϵz′(−) = G
(
y(−)(t), z(−)(t), [φ], [ψ], t

)
,

y(−)(t) = φ(t), z(−)(t) = ψ(t), y(−)(σ, ϵ) = p(ϵ),

(3.1)

and the right problem on D(+)
ϵy′(+) = F

(
y(+)(t), z(+)(t), [y(−)], [z(−)], t

)
,

ϵz′(+) = G
(
y(+)(t), z(+)(t), [y(−)], [z(−)], t

)
,

y(+)(σ, ϵ) = p(ϵ), y(+)(T ) = yT , z(+)(T ) = zT ,

(3.2)

in which α(+)(σ) < p(ϵ) < α(−)(σ) in systems (3.1), (3.2) is unknown.
Denote x(t) = (y(t, z(t))⊤. By means of the standard Vasil’eva boundary layer functions

method [37, pp.15-29], the asymptotic solution to systems (3.1), (3.2) can be sought in the form
of the sum of a regular part and boundary layer parts, in which the boundary layer parts describe
the dynamical behavior of solution in a neighborhood of the boundary points, that is to say, the
asymptotic expansion of the solution has the following form

x(−)(t, ϵ) = x̄(−)(t, ϵ) + Lx(τ0, ϵ) +Q(−)x(τ, ϵ),

x(+)(t, ϵ) = x̄(+)(t, ϵ) +Q(+)x(τ, ϵ) +Rx(τ1, ϵ),
(3.3)

where x(∓)(t, ϵ) stand for the regular part; Lx(τ0, ϵ) denotes the left boundary layer function
which is defined in a neighborhood of the left endpoint t = 0, and depended on the stretched
variable τ0 = t/ϵ; Q(∓)x(τ, ϵ) represent the transition layer functions which are defined in the left
(right) neighborhood of the separate point t = σ, and depended on the stretched variable τ =
(t−σ)/ϵ; Rx(τ1, ϵ) denotes the right boundary layer function which is defined in a neighborhood
of the point t = T and depended on the stretched variable τ1 = (t− T )/ϵ.

Each of the functions in expression (3.3) can be sought in the form of an expansion in powers
of the small parameter

x̄(∓)(t, ϵ) = x̄
(∓)
0 (t) + ϵx̄

(∓)
1 (t) + · · ·+ ϵkx̄

(∓)
k (t) + · · · , (3.4)
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Lx(τ0, ϵ) = L0x(τ0) + ϵL1x(τ0) + · · ·+ ϵkLkx(τ0) + · · · , (3.5)

Q(∓)x(τ, ϵ) = Q
(∓)
0 x(τ) + ϵQ

(∓)
1 x(τ) + · · ·+ ϵkQ

(∓)
k x(τ) + · · · , (3.6)

Rx(τ1, ϵ) = R0x(τ1) + ϵR1x(τ1) + · · ·+ ϵkRkx(τ1) + · · · . (3.7)

And the unknown quantity p(ϵ) can also be written as a series expansion in powers of ϵ as

p(ϵ) = p0 + ϵp1 + · · ·+ ϵkpk + · · · . (3.8)

The unknown coefficients pi, i = 0, 1, 2, · · · in relation (3.8) will be determined from the sewing
condition of asymptotic expansions x(−)(t, ϵ) and x(+)(t, ϵ).

By virtue of the boundary functions Lkx(τ0), Q
(∓)
k x(τ) and Rkx(τ1) should approach zero

as τ0 → +∞, τ → ∓∞ and τ1 → −∞ respectively. Therefore, we introduce the conditions

Lkx(+∞) = 0, Q
(∓)
k x(∓∞) = 0, Rkx(−∞) = 0, k = 0, 1, · · · .

3.1.Regular part

For the functions x̄(∓)(t, ϵ), substituting the series (3.4) into the first two equations of systems
(3.1), (3.2), and representing the right–hand sides of these equations as Taylor series with respect
to small parameter ϵ, and then the equations for the functions in (3.4) can be obtained by
equating the coefficients of like powers of ϵ in these relations.

For the leading term x̄
(∓)
0 (t) of the regular part of the asymptotics, it can be obtained

0 = F
(
ȳ
(−)
0 , z̄

(−)
0 , [φ], [ψ], t

)
, 0 = G

(
ȳ
(−)
0 , z̄

(−)
0 , [φ], [ψ], t

)
,

0 = F
(
ȳ
(+)
0 , z̄

(+)
0 , [ȳ

(−)
0 ], [z̄

(−)
0 ], t

)
, 0 = G

(
ȳ
(+)
0 , z̄

(+)
0 , [ȳ

(−)
0 ], [z̄

(−)
0 ], t

)
,

which readily coincide with the degenerate equations (2.3) and (2.4), in view of assumption
(H1), it can be achieved

ȳ
(∓)
0 (t) = α(∓)(t), z̄

(∓)
0 (t) = β(∓)(t).

For the higher order terms x̄
(∓)
k (t), k ≥ 1 of the regular part of the asymptotics, it can be

obtained by the following systems of linear algebraic equations{
F̄ (∓)
y (t)ȳ

(∓)
k (t) + F̄ (∓)

z (t)z̄
(∓)
k (t) = F

(∓)
k (t),

Ḡ(∓)
y (t)ȳ

(∓)
k (t) + Ḡ(∓)

z (t)z̄
(∓)
k (t) = G

(∓)
k (t),

(3.9)

here, F̄
(−)
(·) (t), Ḡ

(−)
(·) (t) and F̄

(+)
(·) (t), Ḡ

(+)
(·) (t) stand for the functions F(·), G(·) take values at point(

α(−)(t), β(−)(t), [φ], [ψ], t
)

and
(
α(+)(t), β(+)(t), [α(−)], [β(−)], t

)
, respectively. And F

(∓)
k (t),

G
(∓)
k (t) are known functions which can be expressed recursively by ȳ

(∓)
j (t), z̄

(∓)
j (t) with j < k.

From assumption (H2), the coefficient determinant detJ(∓) of equations (3.9) are nonzero, so,
the problems (3.9) are solvable and its solutions can be expressed as

ȳ
(∓)
k (t) =

Ḡ
(∓)
z (t)F

(∓)
k (t)− F̄

(∓)
z (t)G

(∓)
k (t)

detJ(∓)
,

z̄
(∓)
k (t) =

F̄
(∓)
y (t)G

(∓)
k (t)− Ḡ

(∓)
y (t)F

(∓)
k (t)

detJ(∓)
.

As so far, the regular partial series of asymptotic solution has been constructed completely.
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3.2. Transition and boundary layer parts

The problem for the transition and boundary layer functions can also be obtained by the standard
Vasil’eva’s method [37, pp.15–29].

For the functions Lx(τ0) in a neighborhood of the endpoint t = 0, it can be obtained

dLy

dτ0
=F

(
ȳ(−)(τ0ϵ, ϵ) + Ly, z̄(−)(τ0ϵ, ϵ) + Lz, φ(τ0ϵ− σ), ψ(τ0ϵ− σ), τ0ϵ

)
− F

(
ȳ(−)(τ0ϵ, ϵ), z̄

(−)(τ0ϵ, ϵ), φ(τ0ϵ− σ), ψ(τ0ϵ− σ), τ0ϵ
)
,

dLz

dτ0
=G

(
ȳ(−)(τ0ϵ, ϵ) + Ly, z̄(−)(τ0ϵ, ϵ) + Lz, φ(τ0ϵ− σ), ψ(τ0ϵ− σ), τ0ϵ

)
−G

(
ȳ(−)(τ0ϵ, ϵ), z̄

(−)(τ0ϵ, ϵ), φ(τ0ϵ− σ), ψ(τ0ϵ− σ), τ0ϵ
)
,

Lx(0, ϵ) = φ(0)− x̄(−)(0, ϵ), Lx(+∞, ϵ) = 0.

(3.10)

For brevity, denote ϖ = τϵ+σ. The problems for Q(∓)x(τ) can be obtained by the following
system of equations

dQ(−)y

dτ
=F

(
ȳ(−)(ϖ, ϵ) +Q(−)y, z̄(−)(ϖ, ϵ) +Q(−)z, φ(τϵ), ψ(τϵ), ϖ

)
− F

(
ȳ(−)(ϖ, ϵ), z̄(−)(ϖ, ϵ), φ(τϵ), ψ(τϵ), ϖ

)
,

dQ(−)z

dτ
=G

(
ȳ(−)(ϖ, ϵ) +Q(−)y, z̄(−)(ϖ, ϵ) +Q(−)z, φ(τϵ), ψ(τϵ), ϖ

)
−G

(
ȳ(−)(ϖ, ϵ), z̄(−)(ϖ, ϵ), φ(τϵ), ψ(τϵ), ϖ

)
,

Q(−)(0, ϵ) = p(ϵ)− ȳ(−)(σ, ϵ), Q(−)(−∞) = 0,

(3.11)

and

dQ(+)y

dτ
= F

(
ȳ(+)(ϖ, ϵ) +Q(+)y, z̄(+)(ϖ, ϵ) +Q(+)z, ȳ(−)(τϵ) + Ly(τ),

z̄(−)(τϵ) + Lz(τ), ϖ
)
− F

(
ȳ(+)(ϖ, ϵ), z̄(+)(ϖ, ϵ), ȳ(−)(τϵ), z̄(−)(τϵ), ϖ

)
,

dQ(+)z

dτ
= G

(
ȳ(+)(ϖ, ϵ) +Q(+)y, z̄(+)(ϖ, ϵ) +Q(+)z, ȳ(−)(τϵ) + Ly(τ),

z̄(−)(τϵ) + Lz(τ), ϖ
)
− F

(
ȳ(+)(ϖ, ϵ), z̄(+)(ϖ, ϵ), ȳ(−)(τϵ), z̄(−)(τϵ), ϖ

)
,

Q(+)x(0, ϵ) = p(ϵ)− ȳ(+)(σ, ϵ), Q(+)x(+∞) = 0.

(3.12)

Similarly, denote ρ = τ1ϵ+ T . For Rx(τ1), it can be obtained the problem

dRy

dτ1
=F

(
ȳ(+)(ρ, ϵ) +Ry, z̄(+)(ρ, ϵ) +Rz, ȳ(−)(ρ− σ), z̄(−)(ρ− σ), ρ

)
− F

(
ȳ(+)(ρ, ϵ), z̄(+)(ρ, ϵ), ȳ(−)(ρ− σ), z̄(−)(ρ− σ), ρ

)
,

dRz

dτ1
=G

(
ȳ(+)(ρ, ϵ) +Ry, z̄(+)(ρ, ϵ) +Rz, ȳ(−)(ρ− σ), z̄(−)(ρ− σ), ρ

)
− F

(
ȳ(+)(ρ, ϵ), z̄(+)(ρ, ϵ), ȳ(−)(ρ− σ), z̄(−)(ρ− σ), ρ

)
,

Rx(0, ϵ) = xT − x̄(+)(T, ϵ), Rx(−∞) = 0.

(3.13)
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Substituting (3.4)–(3.8) into (3.10)–(3.13) respectively, and expanding the right–hand sides of
these equations as Taylor series with respect to small parameter ϵ, and then the equations can
be obtained by equating the coefficients like powers of small parameter.

3.2.1. Leading terms

For L0x(τ0), it can be obtained by equating the like powers of ϵ0 in both sides of (3.10),

dL0y

dτ0
= F

(
α(−)(0) + L0y, β

(−)(0) + L0z, φ(−σ), ψ(−σ), 0
)
,

dL0z

dτ0
= G

(
α(−)(0) + L0y, β

(−)(0) + L0z, φ(−σ), ψ(−σ), 0
)
,

L0y(0) = φ(0)− α(−)(0), L0y(+∞) = 0,

L0z(0) = ψ(0)− β(−)(0), L0z(+∞) = 0.

(3.14)

Taking variable changes

ỹ(τ0) = α(−)(0) + L0y(τ0), z̃(τ0) = β(−)(0) + L0z(τ0), (3.15)

applying this notations, (3.14) can be written in the form (2.5), in which the variable ζ is
replaced by τ0, as follows 

dỹ

dτ0
= F (ỹ, z̃, φ(−σ), ψ(−σ), 0) ,

dz̃

dτ0
= G (ỹ, z̃, φ(−σ), ψ(−σ), 0) ,

ỹ(0) = φ(0), ỹ(+∞) = α(−)(0),

z̃(0) = ψ(0), z̃(+∞) = β(−)(0),

(3.16)

by virtue of assumptions (H1)–(H3), equations (3.16) is solvable, and then there exists a
L0x(τ0). By [36, pp.101–105], there hold the following inequalities

|ỹ − α(−)(0)| ≤ c exp(−κ|τ0|), |z̃ − β(−)(0)| ≤ c exp(−κ|τ0|), c, κ > 0.

From variable changes (3.15), it can be achieved that the leading term L0x(τ0) satisfy an expo-
nential estimate as follows

|L0x(τ0)| ≤ c exp(−κτ0), c, κ > 0, τ0 ≥ 0.

By equating the coefficients of ϵ0 in equations (3.11), it can be obtained the following system

of equations for the functions Q
(−)
0 x(τ)

dQ
(−)
0 y

dτ
= F

(
α(−)(σ) +Q

(−)
0 y, β(−)(σ) +Q

(−)
0 z, φ(0), ψ(0), σ

)
,

dQ
(−)
0 z

dτ
= G

(
α(−)(σ) +Q

(−)
0 y, β(−)(σ) +Q

(−)
0 z, φ(0), ψ(0), σ

)
,

Q
(−)
0 y(0) = p0 − α(−)(σ), Q

(−)
0 y(−∞) = 0.

(3.17)

By taking the following variable changes

ỹ(−)(τ) = α(−)(σ) +Q
(−)
0 y(τ), z̃(−)(τ) = β(−)(σ) +Q

(−)
0 z(τ), (3.18)
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and then it can be obtained

dỹ(−)

dτ
= F

(
ỹ(−), z̃(−), φ(0), ψ(0), σ

)
,

dz̃(−)

dτ
= G

(
ỹ(−), z̃(−), φ(0), ψ(0), σ

)
,

ỹ(−)(0) = p0, ỹ(−)(−∞) = α(−)(σ).

(3.19)

Similar to (3.16), the functions Q
(−)
0 x(τ) will be determined exclusively, and Q

(−)
0 x(τ) satisfy

an exponential estimate as follows

|Q(−)
0 x(τ)| ≤ c exp(κτ), c, κ > 0, τ ≤ 0.

By equating the coefficients of ϵ0 in equations (3.12), it can be obtained the system of

equations for functions Q
(+)
0 x(τ) as follows

dQ
(+)
0 y

dτ
= F

(
α(+)(σ) +Q

(+)
0 y, β(+)(σ) +Q

(+)
0 z, α(−)(0) + L0y, β

(−)(0) + L0z, σ
)
,

dQ
(+)
0 z

dτ
= G

(
α(+)(σ) +Q

(+)
0 y, β(+)(σ) +Q

(+)
0 z, α(−)(0) + L0y, β

(−)(0) + L0z, σ
)
,

Q
(+)
0 y(0) = p0 − α(+)(σ), Q

(+)
0 y(+∞) = 0.

(3.20)

By introducing variable changes

ỹ(+)(τ) = α(+)(σ) +Q
(+)
0 y(τ), z̃(+)(τ) = β(+)(σ) +Q

(+)
0 z(τ), (3.21)

and then, from equations (3.15) and (3.21), equations (3.20) can be rewritten as
dỹ(+)

dτ
= F

(
ỹ(+), z̃(+), ỹ, z̃, σ

)
,

dz̃(+)

dτ
= G

(
ỹ(+), z̃(+), ỹ, z̃, σ

)
,

ỹ(+)(0) = p0, ỹ(+)(+∞) = α(+)(σ),

(3.22)

in which (ỹ(ζ), z̃(ζ))⊤ is a solution to equations (2.5), and it should be replaced ζ by τ in
equations (3.22). It can be readily seen that equations (3.22) is a non-autonomous system, and
hence, the existence of solutions to such system could not be discussed in the same way as for
(3.14), (3.17). However, it can be considered together with equations (3.14). To this end, it can
be obtained 

dỹ(+)

dτ
= F

(
ỹ(+), z̃(+), ỹ, z̃, σ

)
,

dz̃(+)

dτ
= G

(
ỹ(+), z̃(+), ỹ, z̃, σ

)
,

dỹ

dτ
= F

(
ỹ, z̃, φ(−σ), ψ(−σ), 0

)
,

dz̃

dτ
= G

(
ỹ, z̃, φ(−σ), ψ(−σ), 0

)
,

ỹ(+)(0) = p, ỹ(+)(+∞) = α(+)(σ),

ỹ(0) = φ(0), ỹ(+∞) = α(−)(0).

(3.23)
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Here, the phase space Σ4 :
(
y(+), z(+), ỹ, z̃

)
is the direct product of the spaces Σ

(+)
2 :

(
y(+), z(+)

)
and Σ̃2 : (ỹ, z̃), that is to say, Σ4 = Σ

(+)
2 ⊕ Σ̃2. It can be easily found that the point

M
(
α(+)(σ), 0, α(−)(0), 0

)
is an equilibrium point to system (3.23). Introduce two matrices

A =

Fỹ(+) Fz̃(+)

Gỹ(+) Gz̃(+)

 , B =

Fỹ Fz̃

Gỹ Gz̃

 .

Denote ∇M as the corresponding matrix take values at the equilibrium point M , here, ∇ stand
for the matrix A or B. Then, at the equilibrium point M , the characteristic equation to system
(3.23) can be expressed as[

λ2 − tr(AM )λ+ detAM

] [
λ2 − tr(BM )λ+ detBM

]
= 0, (3.24)

in which the operator “ tr ” represents the trace to the corresponding matrix.

(H4) Assume that there holds the inequalities ∆ ≡ [tr(∇M )]2 − 4 det∇M > 0.

It is found that the characteristic equation (3.24) has real roots with opposite signs by virtue of
assumption (H4), and

λ1,2,3,4 =
tr(∇M )±

√
∆

2
.

Therefore, the equilibrium point M of system (3.23) is a hyperbolic saddle, furthermore, there
exists a stable 2–dimensional submanifold W s(M) and an unstable 2–dimensional submanifold
W u(M) passing through the equilibrium point M

(
α(+)(σ), 0, α(−)(0), 0

)
.

Denote the unstable 2–dimensional submanifold as

W s(M) : z⃗ = Ψ(y⃗),

where z⃗ =
(
z̃(+), z̃

)⊤
, y⃗ =

(
ỹ(+), ỹ

)⊤
, Ψ = (Ψ1,Ψ2)

⊤ and 0 = Ψi

(
α(+)(σ), α(−)(0)

)
, (i = 1, 2).

Clearly, it can be seen that the projections of W s(M) onto Σ̃2 is Ωl, that is, (W s(M))⊥
Σ̃2

= Ωl.

Denote (W s(M))⊥
Σ

(+)
2

= Ω(+), and the following assumption is proposed.

(H5) Assume that there has
{
ỹ(+) = p0

}
∩ Ω(+) ̸= ∅ on the phase plane Σ̃2.

Therefore, the existence of solution to system (3.23) can be guaranteed, and there exists a
solution to system (3.22). Furthermore, the separatrix orbit can be written as

Ω(+) : z̃(+) = Φ(+)
(
ỹ(+)

)
. (3.25)

Therefore, the function Q
(+)
0 x(τ) can be uniquely determined, and Q

(+)
0 x(τ) satisfy the decays

exponentially as τ → +∞

|Q(+)
0 x(τ)| ≤ c exp(−κτ), c, κ > 0, τ ≥ 0.

For the leading term R0x(τ1), by (3.13), one is led to
dR0y

dτ1
= F

(
α(+)(T ) +R0y, β

(+)(T ) +R0z, α
(−)(T − σ), β(−)(T − σ), T

)
,

dR0z

dτ1
= G

(
α(+)(T ) +R0y, β

(+)(T ) +R0z, α
(−)(T − σ), β(−)(T − σ), T

)
.

Similar to (3.14), according to assumptions (H1)–(H3), there exist R0x(τ1) which satisfy the
following exponential estimate

|R0x(τ1)| ≤ c exp(κτ1), c, κ > 0, τ1 ≤ 0.
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3.2.2. Higher order terms

By equating the coefficients of ϵk in equations (3.10), it can be obtained the system of equations
for functions Lkx(τ), k ≥ 1 as follows

dLky

dτ0
= F̃y(τ0)Lky + F̃z(τ0)Lkz + f̃

(−)
k (τ0),

dLkz

dτ0
= G̃y(τ0)Lky + G̃z(τ0)Lkz + g̃

(−)
k (τ0),

Lky(0) = −ȳ(−)
k (0), Lky(+∞) = 0,

(3.26)

in which f̃
(−)
k (τ0) and g̃

(−)
k (τ0) are known functions which can be expressed recursively through

Ljx(τ0) (j < k), and F̃(·), G̃(·) represent the functions F(·), G(·) take values at the point
(ỹ0, z̃0, φ(−σ), ψ(−σ), 0). It is clear that the system of equations (3.26) is solvable. Indeed,
by virtue of [36, pp.100–109], consider the variational equations

dLky

dτ0
= F̃y(τ0)Lky + F̃z(τ0)Lkz + f̃

(−)
k (τ0),

dLkz

dτ0
= G̃y(τ0)Lky + G̃z(τ0)Lkz + g̃

(−)
k (τ0),

Lky(0) = 0, Lky(+∞) = 0,

and 

dLky

dτ0
= F̃y(τ0)Lky + F̃z(τ0)Lkz,

dLkz

dτ0
= G̃y(τ0)Lky + G̃z(τ0)Lkz,

Lky(0) = −ȳ(−)
k (0), Lky(+∞) = 0.

(3.27)

In order to obtain a solution of the system of equations (3.27), taking

Lky = δ1, Lkz = h(τ0)δ1 + δ2. (3.28)

Substituting (3.28) into (3.27), it can be obtained

dδ1
dτ0

= F1δ1 + F̃zδ2 + f̃
(−)
k ,

dδ2
dτ0

= F2δ2 + g̃
(−)
k − h(τ0)f̃

(−)
k ,

with

F1 = F̃y(τ0) + F̃z(τ0)h, F2 = G̃z − hF̃z(τ0), h(τ0) =
dΦl

dτ0
,

in which Φl has been provided in (2.7). Furthermore, it can be found that

δ2(τ0) =

∫ τ0

−∞
exp

(∫ τ0

η
F2(s)ds

)(
g̃
(−)
k (τ0)− h(η)f̃

(−)
k (τ0)

)
dη,

δ1(τ0) =

∫ τ0

0
exp

(∫ τ0

η
F1(s)ds

)(
F̃z(η)δ2(η) + f̃

(−)
k (η)

)
dη.
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For the homogeneous system of equations (3.27), one has already obtained that Lkz(τ0) =
h(τ0)Lky(τ0), hence, the solution to system of equations (3.27) can be obtained easily. According
to the principle of superposition, the solution to equations (3.26) can be obtained

Lky(τ0) = −ȳ(−)
k (0) exp

(∫ τ0

0
F1(s)ds

)
+ δ1(τ0),

Lkz(τ0) = −ȳ(−)
k (0)h(τ0) exp

(∫ τ0

0
F1(s)ds

)
+ h(τ0)δ1(τ0) + δ2(τ0).

The higher order boundary layer functions Lkx(τ0), k ≥ 1 satisfy the exponential estimate

|Lkx(τ0)| ≤ c exp(−κτ0), c, κ > 0, k ≥ 1, τ0 ≥ 0.

As so far, the left boundary layer function (3.5) has been constructed completely.
Comparing the like powers of ϵk on both sides of the system of equations (3.11), (3.12), and

then the system of equation for the functions Q
(∓)
k x(τ), k ≥ 1 can be obtained as follows

dQ
(−)
k y

dτ
= F̃ (−)

y (τ)Q
(−)
k y + F̃ (−)

z (τ)Q
(−)
k z + F̃

(−)
k (τ),

dQ
(−)
k z

dτ
= G̃(−)

y (τ)Q
(−)
k y + G̃(−)

z (τ)Q
(−)
k z + G̃

(−)
k (τ),

Q
(−)
k y(0) = pk − ȳ

(−)
k (σ), Q

(−)
k y(−∞) = 0,

(3.29)

and 

dQ
(+)
k y

dτ
= F̃ (+)

y (τ)Q
(+)
k y + F̃ (+)

z (τ)Q
(+)
k z

+ F̃
(+)
[y] (τ)Lky(τ) + F̃

(+)
[z] (τ)Lkz(τ) + H̃

(+)
k (τ),

dQ
(+)
k z

dτ
= G̃(+)

y (τ)Q
(+)
k y + G̃(+)

z (τ)Q
(+)
k z

+ G̃
(+)
[y] (τ)Lky(τ) + G̃

(+)
[z] (τ)Lkz(τ) + W̃

(+)
k (τ),

Q
(+)
k y(0) = pk − ȳ

(+)
k (σ), Q

(+)
k y(+∞) = 0,

(3.30)

here, F[·], G[·] denote the derivative of the function F , G with respect to the third variable or the

fourth variable, and F̃
(−)
k (τ), G̃

(−)
k (τ) are known functions which can be expressed recursively

through Q
(−)
j x(τ) (j < k), H̃

(+)
k (τ), W̃

(+)
k (τ) are known functions which can be expressed

recursively through Q
(+)
j x(τ) (j < k), and F̃

(−)
(·) (τ) as well as G̃

(−)
(·) (τ) can be represented asF̃

(−)
(·) (τ) = F(·)

(
ỹ
(−)
0 , z̃

(−)
0 , φ(0), ψ(0), σ

)
,

G̃
(−)
(·) (τ) = G(·)

(
ỹ
(−)
0 , z̃

(−)
0 , φ(0), ψ(0), σ

)
,

by using (3.15), one found that F̃
(+)
(·) (τ) and G̃

(+)
(·) (τ) can be expressed asF̃

(+)
(·) (τ) = F(·)

(
ỹ
(+)
0 , z̃

(+)
0 , ỹ0(τ), z̃0(τ), σ

)
,

G̃
(+)
(·) (τ) = G(·)

(
ỹ
(+)
0 , z̃

(+)
0 , ỹ0(τ), z̃0(τ), σ

)
.
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It is worth noting that the functions Lky and Lkz appeared in (3.30) are taking values at τ
rather than τ0.

Introduce new notations as follows

F̃
(+)
k (τ) ≡ F̃

(+)
[y] (τ)Lky(τ) + F̃

(+)
[z] (τ)Lkz(τ) + H̃

(+)
k (τ),

G̃
(+)
k (τ) ≡ G̃

(+)
[y] (τ)Lky(τ) + G̃

(+)
[z] (τ)Lkz(τ) + W̃

(+)
k (τ),

it is easy to show that the functions F̃
(+)
k (τ) and G̃

(+)
k (τ) are known functions with respect to

variable τ . Furthermore, (3.30) can be readily rewritten as

dQ
(+)
k y

dτ
= F̃ (+)

y (τ)Q
(+)
k y + F̃ (+)

z (τ)Q
(+)
k z + F̃

(+)
k (τ),

dQ
(+)
k z

dτ
= G̃(+)

y (τ)Q
(+)
k y + G̃(+)

z (τ)Q
(+)
k z + G̃

(+)
k (τ),

Q
(+)
k y(0) = pk − ȳ

(+)
k (σ), Q

(+)
k y(+∞) = 0.

(3.31)

Consider the homogeneous system of equations (3.29)
dQ

(−)
k y

dτ
=F̃ (−)

y (τ)Q
(−)
k y + F̃ (−)

z (τ)Q
(−)
k z,

dQ
(−)
k z

dτ
=G̃(−)

y (τ)Q
(−)
k y + G̃(−)

z (τ)Q
(−)
k z.

(3.32)

It can be readily obtained that the pair of functions
(
F (ỹ

(−)
0 , z̃

(−)
0 , φ(0), ψ(0), σ), G(ỹ

(−)
0 , z̃

(−)
0 ,

φ(0), ψ(0), σ)
)
plays as a solution to equations (3.32), which can be easily verified by employ-

ing the variable changes (3.18), it is omitted here for brevity. It can be seen from observa-
tion that the equations (3.31) and (3.29) have the similar forms, hence, the pair of functions(
F (ỹ

(+)
0 , z̃

(+)
0 , ỹ0(τ), z̃0(τ), σ), G(ỹ

(+)
0 , z̃

(+)
0 , ỹ0(τ), z̃0(τ), σ)

)
is a solution to the homogeneous sys-

tem of equations that is corresponded to equations (3.31).

For the sake of simplicity, (3.29) and (3.31) can be unified to rewrite as

dQ
(∓)
k y

dτ
= F̃ (∓)

y (τ)Q
(∓)
k y + F̃ (∓)

z (τ)Q
(∓)
k z + F̃

(∓)
k (τ),

dQ
(∓)
k z

dτ
= G̃(∓)

y (τ)Q
(∓)
k y + G̃(∓)

z (τ)Q
(∓)
k z + G̃

(∓)
k (τ),

Q
(∓)
k y(0) = pk − ȳ

(∓)
k (σ), Q

(∓)
k y(∓∞) = 0.

(3.33)

Consider the following two systems

dQ
(∓)
k y

dτ
= F̃ (∓)

y (τ)Q
(∓)
k y + F̃ (∓)

z (τ)Q
(∓)
k z + F̃

(∓)
k (τ),

dQ
(∓)
k z

dτ
= G̃(∓)

y (τ)Q
(∓)
k y + G̃(∓)

z (τ)Q
(∓)
k z + G̃

(∓)
k (τ),

Q
(∓)
k y(0) = 0, Q

(∓)
k y(∓∞) = 0,

(3.34)
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and 

dQ
(∓)
k y

dτ
= F̃ (∓)

y (τ)Q
(∓)
k y + F̃ (∓)

z (τ)Q
(∓)
k z,

dQ
(∓)
k z

dτ
= G̃(∓)

y (τ)Q
(∓)
k y + G̃(∓)

z (τ)Q
(∓)
k z,

Q
(∓)
k y(0) = pk − ȳ

(∓)
k (σ), Q

(∓)
k y(∓∞) = 0.

(3.35)

According to [36, pp.100–109], let

Q
(∓)
k y(τ) = δ

(∓)
1 , Q

(∓)
k z(τ) = h(∓)(τ)δ

(∓)
1 + δ

(∓)
2 , (3.36)

with h(∓)(τ) = dΦ(∓)

dτ , herein Φ(∓) have been exhibited in (2.8) and (3.25) respectively.
Substituting (3.36) into (3.34), it is obtained that

dδ
(∓)
1

dτ
=

[
F̃ (∓)
y + F̃ (∓)

z h(∓)
]
δ
(∓)
1 + F̃ (∓)

z δ
(∓)
2 + F̃

(∓)
k (τ),

dδ
(∓)
2

dτ
=

[
G̃(∓)

z − F̃ (∓)
z h(∓)

]
δ
(∓)
2 − h(∓)F̃

(∓)
k (τ) + G̃

(∓)
k (τ).

Therefore, it can be solved as

δ
(∓)
2 =

∫ τ

∓∞
exp

[∫ τ

s

(
G̃(∓)

z (η)− F̃ (∓)
z (η)h(∓)(η)

)
dη

]
×
(
G̃

(∓)
k (s)− h(∓)(s)F̃

(∓)
k (s)

)
ds,

δ
(∓)
1 =

∫ τ

0
exp

[∫ τ

s

(
F̃ (∓)
y (η) + F̃ (∓)

z (η)h(∓)(η)
)
dη

]
×
(
F̃ (∓)
z (s)δ

(∓)
2 (s) + F̃

(∓)
k (s)

)
ds.

The homogeneous equations (3.35) can be readily solved since Q
(∓)
k z(τ) = h(∓)(τ) · Q(∓)

k y(τ).
According to the principle of superposition, solution to system (3.33) can be expressed as

Q
(∓)
k y(τ) =

[
pk − ȳ

(∓)
k (σ)

]
exp

[∫ τ

0

(
F̃ (∓)
y (s) + F̃ (∓)

z (s)h(∓)(s)
)
ds

]
+ δ

(∓)
1 (τ), (3.37)

Q
(∓)
k z(τ) =

[
pk − ȳ

(∓)
k (σ)

]
h(∓)(τ) exp

[∫ τ

0

(
F̃ (∓)
y (s) + F̃ (∓)

z (s)h(∓)(s)
)
ds

]
+ h(∓)(τ)δ

(∓)
1 (τ) + δ

(∓)
2 (τ). (3.38)

And the functions Qkx
(∓)(τ), k ≥ 1 satisfy the following exponential estimate∣∣Qkx

(∓)(τ)
∣∣ ≤ c exp(−κ|τ |), c, κ > 0, k ≥ 1.

This means that the transition layer functions have been constructed completely, however, the
values pi, i = 1, 2, · · · , k, · · · appeared in transition layer functions are still unknown.

System of equations for determining the higher order terms of the right boundary layer
functions Rkx(τ1), k ≥ 1 are similar to (3.26), and satisfy the exponential estimate∣∣Rkx(τ1)

∣∣ ≤ c exp(κτ1), c, κ > 0, k ≥ 1, τ1 ≤ 0.
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3.3. Sewing of asymptotic expansions

From the boundary conditions for t = σ in system of equations (3.19), (3.22) and (3.33), it can
be readily seen that the y–components of the constructed asymptotics on the left and on the
right of point t = σ are matched continuously. The sewing condition for z–components of the
asymptotics can be written as z(−)(t, ϵ) = z(+)(t, ϵ), which yields

z
(−)
0 (σ) +Q

(−)
0 z(0) + ϵ

(
z
(−)
1 (σ) +Q

(−)
1 z(0)

)
+ · · ·

=z
(+)
0 (σ) +Q

(+)
0 z(0) + ϵ

(
z
(+)
1 (σ) +Q

(+)
1 z(0)

)
+ · · · .

(3.39)

In the zeroth order, it can be obtained from (3.39) that

z
(−)
0 (σ) +Q

(−)
0 z(0) = z

(+)
0 (σ) +Q

(+)
0 z(0). (3.40)

Let

H(p) = β(−)(σ) + Φ(−)
(
p− α(−)(σ)

)
− β(+)(σ)− Φ(+)

(
p− α(+)(σ)

)
.

(H6) Assume that H(p) = 0 has a solution p = p0, p0 ∈
(
α(+)(σ), α(−)(σ)

)
, and dH(p0)

dp ̸= 0.

It can be found that (3.40) is equivalent to H(p) = 0, from assumption (H6), (3.40) has a
solution p = p0.

In the following, we are led to seek the unknown values pk, k ≥ 1 appeared in transition

layer functions Q
(∓)
k x(τ). As a matter of fact, from the sewing condition (3.39) in the orders

k ≥ 1, it can be achieved

z
(−)
k (σ) +Q

(−)
k z(0) = z

(+)
k (σ) +Q

(+)
k z(0). (3.41)

Combining (3.41) with (3.38), one is led to

Q
(∓)
k z(0) =

(
pk − ȳ(∓)(σ)

)
h(∓)(0) + δ

(∓)
2 (0).

Substituting it into (3.41), the following equations for the coefficients pk, i = 1, 2, · · · , can be
obtained

z
(−)
k (σ) +

(
pk − ȳ(−)(σ)

)
h(−)(0) + δ

(−)
2 (0)

=z
(+)
k (σ) +

(
pk − ȳ(+)(σ)

)
h(+)(0) + δ

(+)
2 (0),

therefore,

pk =
z
(−)
k (σ) + δ

(−)
2 (0)− ȳ(−)(σ)h(−)(0)− z

(+)
k (σ)− δ

(+)
2 (0) + ȳ(+)(σ)h(+)(0)

Θ(p0)
,

with Θ(p0) = h(+)(0)− h(−)(0). According to (3.36) and assumption (H6), it can be obtained

Θ(p0) =
dH(p0)

dp
̸= 0.

Hence, the coefficient functions Q
(∓)
k x(τ) and pk have already determined for any number k.
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4. Main result

Theorem 4.1. Suppose that the assumptions (H1)–(H6) hold, for 0 < ϵ ≪ 1, there exists a
continuous solution x(t, ϵ) = (y(t, ϵ), z(t, ϵ))⊤ to the equations (2.1) in the interval [0, T ], for
which the following asymptotic expansion holds

x(t, ϵ) =



n∑
k=0

ϵk
[
x̄
(−)
k (t) + Lkx(τ0) +Q

(−)
k x(τ)

]
+O(ϵn+1), 0 ≤ t ≤ σ,

n∑
k=0

ϵk
[
x̄
(+)
k (t) +Q

(+)
k x(τ) +Rkx(τ1)

]
+O(ϵn+1), σ ≤ t ≤ T,

with τ0 = t/ϵ, τ = (t− σ)/ϵ, τ1 = (t− T )/ϵ, are stretched variables.

Proof. From Definition 2.1, consider the following two systems
ϵy′(−) = F

(
y(−)(t), z(−)(t), [φ], [ψ], t

)
,

ϵz′(−) = G
(
y(−)(t), z(−)(t), [φ], [ψ], t

)
,

y(−)(t) = φ(t), z(−)(t) = ψ(t), y(−)(σ, ϵ) = p̄(ϵ),

and 
ϵy′(+) = F

(
y(+)(t), z(+)(t), [y(−)], [z(−)], t

)
,

ϵz′(+) = G
(
y(+)(t), z(+)(t), [y(−)], [z(−)], t

)
,

y(+)(σ, ϵ) = p̄(ϵ), y(+)(T ) = yT , z(+)(T ) = zT .

Expanding p̄(ϵ) into the series in powers of small parameter ϵ as follows

p̄(ϵ) = p0 + ϵp1 + · · ·+ ϵn+1(pn+1 + θ), (4.1)

with θ denoting a parameter.
By Section 3, solutions to the above two systems can be expressed as

x(−)(t, ϵ) =

n∑
k=0

ϵk
[
x̄
(−)
k (t) + Lkx(τ0) +Q

(−)
k x(τ)

]
+O(ϵn+1),

x(+)(t, ϵ) =

n∑
k=0

ϵk
[
x̄
(+)
k (t) +Q

(+)
k x(τ) +Rkx(τ1)

]
+O(ϵn+1),

with τ0 = t/ϵ, τ = (t− σ)/ϵ, τ1 = (t− T )/ϵ are stretched variables.
It can be found that the function y(t, ϵ) is continuously connected at the point t = σ by the

boundary value conditions in equations (3.1) and (3.2). To finish the proof of Theorem 4.1, one
need to choose θ in such a way that

z(−)(σ, ϵ) = z(+)(σ, ϵ). (4.2)

Let I(θ, ϵ) = z(−)(σ, ϵ)− z(+)(σ, ϵ). By virtue of the algorithm for constructing the asymptotics
and sewing conditions, one is led to

I(θ, ϵ) = ϵn
[
z
(−)
k (σ) +Q

(−)
k z(0)− z

(+)
k (σ)−Q

(+)
k z(0)

]
+O(ϵn+1)
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= ϵnΘ(p0)θ +O(ϵn+1)

= ϵn [Θ(p0)θ +O(ϵ)] . (4.3)

Together with assumption (H6), it can be obtained that (4.3) shows there exists a parameter θ∗

satisfies I(θ∗, ϵ) = 0 for ϵ sufficiently small. Consequently, by taking θ = θ∗ in (4.1), the relation
(4.2) can be guaranteed and the function z(t, ϵ) is continuous. As a result, a continuous solution
is obtained to the problem (2.1) and the proof is completed.

5. Application

Example 5.1. Consider a system of SPDDEs as follows

ϵy′ = −y + 2z − 4y(t− 1),

ϵz′ = 2y − z + 2z(t− 1),
0 < t < 2,

y(t) = 1, z(t) = 1, −1 ≤ t ≤ 0,

y(2) = −1, z(2) =
1

3
.

(5.1)

It can be easily found that the functions in the right–hand sides are continuous in the interval
(0,2). The solutions to the system of degenerate equations for SPDDEs (5.1) can be obtained

α(−)(t) = 0, β(−)(t) = 2, α(+)(t) = −8

3
, β(+)(t) = −4

3
,

obviously, there have φ(0) > α(−)(0), α(−)(1) > α(+)(1), α(+)(2) < y(2). With a simple compu-
tation, it is obtained that detJ(∓) = −3 < 0, hence assumptions (H1), (H2) are satisfied.

-1 -0.5 0 0.5 1 1.5 2

t

-3

-2

-1

0

1
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2

Figure 1. Graph of the degenerate solutions ȳ0(t), z̄0(t) to SPDDEs (5.1) with respect to t.

In the zeroth order, the left boundary layer functions can be obtained by the following system
of equations

dL0y

dτ0
= −L0y + 2L0z,

dL0z

dτ0
= 2L0y − L0z,

L0y(0) = 1, L0y(+∞) = 0, L0z(0) = −1, L0z(+∞) = 0,

which is led to

L0y(τ0) = exp(−3τ0), L0z(τ0) = − exp(−3τ0).
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For transition layer functions, it can be reached

dQ
(−)
0 y

dτ
= −Q(−)

0 y + 2Q
(−)
0 z,

dQ
(−)
0 z

dτ
= 2Q

(−)
0 y −Q

(−)
0 z,

Q
(−)
0 y(0) = p0, Q

(−)
0 y(−∞) = 0,

and

dQ
(+)
0 y

dτ
= −Q(+)

0 y + 2Q
(+)
0 z − 4 exp(−3τ),

dQ
(+)
0 z

dτ
= 2Q

(+)
0 y −Q

(+)
0 z − 2 exp(−3τ),

Q
(+)
0 y(0) = p0 + 8/3, Q

(+)
0 y(+∞) = 0,

hence, it can be obtained

Q
(−)
0 y(τ) = p0 exp(τ), Q

(−)
0 z(τ) = p0 exp(τ),

and

Q
(+)
0 y(τ) =

3p0 − 3τ + 8

3 exp(3τ)
, Q

(+)
0 z(τ) =

−6p0 + 6τ − 7

6 exp(3τ)
.

This means that the assumptions (H3)–(H5) are fulfilled well.
By (3.40), the equation for determining p0 can be obtained by

H(p) = 2p+
9

2
,

obviously, the equation H(p) = 0 has a solution p0 = −9

4
∈

(
−8

3
, 0

)
and

dH(p0)

dp
= 2 ̸= 0,

which implies that the assumption (H6) is satisfied. As a result,

Q
(−)
0 y(τ) = −9

4
exp(τ), Q

(−)
0 z(τ) = −9

4
exp(τ),

Q
(+)
0 y(τ) =

5− 12τ

12 exp(3τ)
, Q

(+)
0 z(τ) =

13 + 12τ

12 exp(3τ)
.

For the leading term of Rx(τ1), it is achieved that

dR0y

dτ1
= −R0y + 2R0z,

dR0z

dτ1
= 2R0y −R0z,

R0y(0) =
5

3
, R0y(−∞) = 0, R0z(0) =

5

3
, R0z(−∞) = 0,

and then

R0y(τ1) =
5

3
exp(τ1), R0z(τ1) =

5

3
exp(τ1).

Hence, the form asymptotic solution to SPDDEs (5.1) can be expressed as

y(t, ϵ) =


exp(−3τ0)−

9

4
exp(τ) +O(ϵ), 0 ≤ t ≤ 1,

−8

3
+

5− 12τ

12 exp(3τ)
+

5

3
exp(τ1) +O(ϵ), 1 < t ≤ 2,
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z(t, ϵ) =


2− exp(−3τ0)−

9

4
exp(τ) +O(ϵ), 0 ≤ t ≤ 1,

−4

3
+

13 + 12τ

12 exp(3τ)
+

5

3
exp(τ1) +O(ϵ), 1 < t ≤ 2,

in which τ0 =
t
ϵ , τ = t−1

ϵ , τ1 =
t−2
ϵ .
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Figure 2. Graph of the first–order continuous asymptotic solution (y0(t, ϵ), z0(t, ϵ))
⊤ for some given ϵ.

By means of numerical simulation, from Figures 1–2, it can be found that the constructed
continuous asymptotic solution is a well depiction to the considered problem (5.1).
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