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STUDY OF SCHRÖDINGER-CHOQUARD PROBLEM WITH

P (·)-LAPLACIAN OPERATOR
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Abstract In this paper, our focus is on a specific class of non-linear ψ-Hilfer fractional gen-
eralized Schrödinger-Choquard differential equations involving the p(·)-Laplacian operator
with Dirichlet boundary conditions. By employing the mountain pass theorem without the
Palais–Smale condition, along with the Hardy-Littlewood-Sobolev inequality with variable
exponents, we establish the existence of a weak solution to our problem. Our main results
are novel and contribute to the literature on problems involving ψ-Hilfer derivatives with
the p(·)-Laplacian operator. This investigation enhances the scope of understanding in this
specific class of problems.

Keywords Generalized ψ-Hilfer derivative, Schrödinger-Choquard differential equations,
Hardy-Littlewood-Sobolev inequality, mountain pass theorem.

MSC(2010) 35J60, 32C05, 35J50, 35J67, 46E35.

1. Introduction

The equation known as the Choquard equation, given by

−∆u+ u =

(∫
R3

u2(y)

|x− y|
dy

)
u, u ∈ H1(R3), (1.1)

was initially introduced by Choquard in 1976 and has since captured considerable attention in
the realms of physics and Mathematical Analysis [27]. This equation serves as an approxima-
tion to the Hartree–Fock theory of a one-component plasma, providing insights into intricate
interactions between particles. Lions in [28] studied the normalized solutions of the following
problem

−∆u+ λu =

(∫
R3

u2(y)V (|x− y|)dy

)
u(x), in R3, (1.2)

where V is some given positive function. In the special case where V = 1/|x|, equation (1.2)
return to equation (1.1). Furthermore, Penrose proposed it as a model for elucidating the
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self-gravitational collapse of a quantum mechanical wave function, underscoring its significance
in comprehending essential quantum phenomena [31]. Recently Moroz and Van Schaftingen
considered the special model

−∆u+ µu = (Iα ∗ |u|p)|u|p−2u in RN ,

where Iα is the Riesz-potential. They proved in [29] that the equation above has solutions if
and only if

N + α

N
< p <

N + α

N − 2
.

In the context of Choquard equations driven by a p-Laplacian operator, Le in [26], established
the existence of weak solutions to the following semilinear Choquard equation, which appears
as a model in quantum mechanics,

−∆pu =

(
1

|x|N−α ∗ |u|q
)
|u|q−2u, u ∈ RN , (1.3)

where 2 ≤ p < q ≤ N and max{0, N − 2p} < α < N . In [3], the authors studied the existence
of semiclassical ground state solutions to the following generalized Choquard equation

−∆pu+ |u|p−2 =

(∫
R3

F (u(y))

|x− y|
dy

)
f(u(x)) in RN . (1.4)

In the context of fractional derivatives, Additionally, the authors in [24] have precisely solved
the following fractional diffusion equation using Riemann-Liouville fractional derivatives,

Dα
0+f(r, t) = Cα∆f(r, t), (1.5)

where f(r, t) denotes the unknown field and Cα denotes the fractional diffusion constant with
dimensions [cm/sα] and Dα

0+ is the Riemann-Liouville derivative of order α.

Numerous researchers have proposed the utilization of fractional time derivatives to address
issues related to linear or non-linear differential equations. A pivotal question arises regarding
the connection between fractional derivatives and gradient terms. This question finds an answer
in [41], where the authors extend gradient elasticity models to characterize materials exhibiting
fractional non-locality and fractality. On a different note, pertaining to the Choquard problem,
the associated Schrödinger-type evolution equation is expressed as follows:

i∂tφ = ∆φ+ (W ∗ |φ|2)φ. (1.6)

This model represents a sizable system of non-relativistic bosonic atoms and molecules featuring
an attractive interaction characterized by a weaker and longer-range nature compared to the
nonlinear Schrödinger equation. In (1.6), the interaction potential W is formally expressed
as Dirac’s delta at the origin [21]. In the work presented in [32], the authors concentrate on
the following Cauchy problem involving a Schrödinger-Choquard equation with a pure power
non-linearity: {

iu̇+∆u+ (Iα ∗ |u|p)|u|p−2 = 0,

u(0, ·) = u0,
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in three space dimensions, the previous problem has several physical origins such as quantum
mechanics. For a class of Kirchhoff problem involving Choquard nonlinearity with real parameter
we refer to [25].

In the context of fractional boundary value problems, the authors of [15] established the exis-
tence of a weak solution for a non-linear ψ-Hilfer fractional generalized double phase-Choquard
differential equation by employing the mountain pass theorem. In 2023, Sousa et al. [38], dis-
cussed the existence and regularity of weak solutions for the ψ-Hilfer fractional boundary value
problem by using an extension of the Lax-Milgram theorem to the following nonlinear boundary
value problem

HDα,β;ψ
T

(
|HDα,β;ψ

0+
ξ(t)|p−2 HDα,β;ψ

0+
ξ(t)

)
+ ξ(t) = λΦ(t, ξ(t)), t ∈ (0, T ),

I
β(β−1);ψ
0+

ξ(0) = I
β(β−1);ψ
T ξ(T ) = 0,

where λ is a parameter and Φ : [0, T ] × R −→ R is a continuous function. For more existence
results by using differents operator we refer to [1, 4–9,11,13–15,22,23,33–37,39,42].

Inspired by these findings, we shift our focus to investigating the existence of a solution in
an appropriate fractional ψ-Hilfer derivative space for the Schrödinger-Choquard problem with
a p(·)-Laplacian operator below

HDγ,β;ψ
T

(∣∣∣HDγ,β;ψ
0+

u
∣∣∣p(x)−2

HDγ,β;ψ
0+

u

)
+G(x)|u|p(x)−2 =

(∫
Ω

F (x, u)

|x− y|λ(x,y)
dx

)
f(y, v) in Ω,

u = 0 on ∂Ω,

(1.7)

where HDγ,β;ψ
T and HDγ,β;ψ

0+
are ψ-Hilfer fractional derivatives of order 1

p(x) < γ < 1 and type
0 ≤ β ≤ 1, G : Ω −→ R and f : Ω× R −→ R is a continuous function satisfying:
(f1) The growth condition i.e.,

|f(x, u)| ≤ c1

(
|u|r1(x)−1 + |u|r2(x)−1

)
, for all (x, u) ∈ Ω× R, and c1 > 0,

where

p(x) ≪ ri(x)q
− ≤ ri(x)q

+ ≪ p⋆(x) :=
Np(x)

N − γp(x)
, and r−i >

p+

2
with i = 1, 2 (1.8)

and λ : Ω× Ω −→ R be a function satisfying

1

q(x)
+
λ(x, y)

N
+

1

q(y)
= 2, for all x, y ∈ Ω. (1.9)

(f2) The Ambrosetti-Rabinowitz type condition:

0 < αF (x, u) ≤ 2f(x, u)u, where F (x, u) :=

∫ u

0
f(x, v)dv,

where α > 0 is a fixed number with α > p+.
(G) G ∈ Lα(x)(Ω) is a continuous non-negative weighted functions where α ∈ C(Ω̄) satisfies one
of the following assumptions:

(i) q ∈ C(Ω̄), p(x) < α(x)
α(x)−1q(x), 1 < q(x) < α(x)−1

α(x) p∗α(x), for all x ∈ Ω̄,
or
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(ii) q ∈ C(Ω̄), and
Np(x)

Np(x)− q(x)(N − p(x))
< α(x) <

p(x)

p(x)− q(x)
.

In what follows we present the result obtained in this manuscript:

Theorem 1.1. The problem (1.7) has a nontrivial solution under the conditions (f1)-(f2) and
(G).

The above result represent the first contribution available in the literature for the ψ-Hilfer
fractional generalized Schrödinger-Choquard differential equations involving the p(·)-Laplacian
operator with Dirichlet boundary conditions within the framework of ψ-fractional derivative
space Hγ,β,ψ

p(x) (Ω). Our approach to establishing existence results for problem (1.7) hinge on

utilizing the mountain pass theorem without the Palais–Smale condition [10]. One of the key
challenges in this approach lies in utilizing the Hardy-Littlewood-Sobolev inequality for nonlin-
earities involving ψ-Hilfer fractional derivative.

This work is organized as follows. In Section 2, we provide a brief overview of the key features
of variable exponent (weighted) Lebesgue spaces and ψ-fractional derivative spaces. Moving on
to Section 3, we present the existing solutions to problems (1.7), along with their corresponding
proofs.

2. Preliminary

In this section we collect preliminary concepts of the theory of variable exponent Lebesgue space,
classical and fractional ψ-Hilfer derivative space (see [12,16–18,30]).

2.1. Variable exponent (weighted) Lebesgue space

In the following, we define

C+(Ω̄) =
{
g ∈ C(Ω) : 1 < g− ≤ g+ < +∞

}
,

where

g− := inf
x∈Ω̄

g(x) and g+ := sup
x∈Ω̄

g(x).

Denote by U(Ω) the set of all measurable real-valued functions defined in Ω. For any p ∈ C+(Ω),
we denote the variable exponent Lebesgue space by

Lp(x)(Ω) =

{
u ∈ U(Ω) :

∫
Ω
|u(x)|p(x)dx <∞

}
,

equipped with the Luxemburg norm

∥u∥p(x) = inf

{
λ > 0 :

∫
Ω

∣∣∣u(x)
λ

∣∣∣p(x)dx ≤ 1

}
,

then, the variable exponent Lebesgue space
(
Lp(x)(Ω), ∥ · ∥p(x)

)
becomes a Banach space.
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Let A(x) be a measurable real valued function and A(x) > 0 for x ∈ Ω. Then the weight

variable exponent Lebesgue space L
p(x)
A(x)(Ω) is defined by

L
p(x)
A(x)(Ω) =

{
u ∈ U(Ω) :

∫
Ω
A(x)|u(x)|p(x)dx <∞

}
,

which is equipped with the norm

∥u∥p(x),A(x) = inf

{
λ > 0 :

∫
Ω
A(x)

∣∣∣u(x)
λ

∣∣∣p(x)dx ≤ 1

}
.

We have the following generalized Hölder inequality∣∣∣∣ ∫
Ω
u(x)v(x)dx

∣∣∣∣ ≤ 2∥u∥p(x)∥v∥q(x), (2.1)

for u ∈ Lp(x)(Ω), v ∈ Lq(x)(Ω) such that 1
p(x) +

1
q(x) = 1. At this point, let define the following

map σp(x) : Lp(x)(Ω) −→ R by

σp(x)(u) =

∫
Ω
|u(x)|p(x)dx.

Then, we can see the important relationship between the norm ∥ · ∥p(x) and the corresponding

modular function σp(x)(·) given in the next proposition.

Proposition 2.1. [20] If u and (un) ∈ Lp(x)(Ω), we have

(i) ∥u∥p(x) < 1 (= 1, > 1) ⇐⇒ σp(x)(u) < 1 (= 1, > 1),

(ii) ∥u∥p(x) > 1 =⇒ ∥u∥p
−

p(x) ≤ σp(x)(u) ≤ ∥u∥p
+

p(x),

(iii) ∥u∥p(x) < 1 =⇒ ∥u∥p
+

p(x) ≤ σp(x)(u) ≤ ∥u∥p
−

p(x),

(iv) lim
n−→∞

∥un − u∥p(x) = 0 ⇐⇒ lim
n−→∞

σp(x)(un − u) = 0.

Proposition 2.2. [20] Let p : Ω −→ R be a Lipschitz continuous function with 1 < p− ≤ p+ <
N and r ∈ C+(Ω), then
(i) If p(x) ≤ r(x) ≤ p⋆(x), then there is a continuous embedding W 1,p(x)(Ω) ↪→ Lr(x)(Ω).

(ii) If p(x) ≤ r(x) ≪ p⋆(x), then there is a continuous embedding W 1,p(x)(Ω) ↪→ L
r(x)
loc (Ω).

Proposition 2.3. [20] Assume that the boundary of Ω possesses the cone property and p ∈
C(Ω̄). If (G) is holds, then the embedding from W 1,p(x)(Ω) to L

q(x)
a(x)(Ω) is compact.

Proposition 2.4 (Hardy–Littlewood–Sobolev inequality). [2] Let p, q ∈ C+(Ω), f ∈ Lp
+
(Ω)∩

Lp
−
(Ω), g ∈ Lq

+
(Ω) ∩ Lq

−
(Ω) and λ : Ω × Ω −→ R be a continuous function such that 0 <

λ− ≤ λ+ < N and 1/p(x) + λ(x, y)/N + 1/q(x) = 2. Then there exists a sharp constant C > 0,
independent of f, and g, such that∣∣∣∣∣

∫
Ω×Ω

f(u)g(y)

|x− y|λ(x,y)
dxdy

∣∣∣∣∣ ≤ C
(
∥f∥p+∥g∥q+ + ∥f∥p−∥g∥q−

)
. (2.2)

As a consequence of Proposition 2.4, we have the following results:
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Corollary 2.1. [2] Let q and λ be two function are given in (f1). If u ∈W 1,p(x)(Ω) and r ∈ M
(the set of all continuous functions which satisfied (1.8)). Then

|u(x)|r(x) ∈ Lq
+
(Ω) ∩ Lq−(Ω)

and ∣∣∣∣∣
∫
Ω×Ω

|u(x)|r(x)|u(x)|r(y)

|x− y|λ(x,y)
dxdy

∣∣∣∣∣ ≤ C
(
∥|u(x)|r(x)∥2q+∥|u(y)|

r(y)∥2q−
)
.

2.2. ψ-Hilfer fractional derivative space

Let A := [c, d] (−∞ ≤ c < d ≤ ∞), N − 1 < γ < N , N ∈ N, f , ψ ∈ CN (A,R) such that ψ is
increasing and ψ′(x) ̸= 0, for all x ∈ A.
• The left-sided fractional ψ-Hilfer integrals of a function f is given by

Iγ;ψ
c+

f(x) =
1

Γ(γ)

∫ x

0
ψ′(y)(ψ(x)− ψ(y))γ−1f(y)dy. (2.3)

• The right-sided fractional ψ-Hilfer integrals of a function f is given by

Iγ;ψ
d− f(x) =

1

Γ(γ)

∫ x

0
ψ′(y)(ψ(y)− ψ(x))γ−1f(y)dy. (2.4)

• The left-sided ψ-Hilfer fractional derivatives for a function f of order γ and type 0 ≤ β ≤ 1 is
defined by

HDγ,β;ψ
c+

f(x) = I
β(N−γ);ψ
c+

( 1

ψ′(x)

d

dx

)N
I
(1−β)(N−γ);ψ
c+

f(x).

• The right-sided ψ-Hilfer fractional derivatives for a function f of order γ and type 0 ≤ β ≤ 1
is defined by

HDγ,β;ψ
c+

f(x) = I
β(N−γ);ψ
d−

(
− 1

ψ′(x)

d

dx

)N
I
(1−β)(N−γ);ψ
d− f(x).

Choosing β −→ 1, we obtain ψ-Caputo fractional derivatives left-sided and right-sided, given by

Dγ;ψ
c+

f(x) = I
(N−γ);ψ
c+

( 1

ψ′(x)

d

dx

)N
f(x), (2.5)

Dγ;ψ
d− f(x) = I

(N−γ);ψ
d−

(
− 1

ψ′(x)

d

dx

)N
f(x). (2.6)

Remark 2.1. The ψ-Hilfer fractional derivatives defined as above can be written in the following
form

HDγ,β;ψ
c+

f(x) = Iµ−γ;ψ
c+

Dγ;ψ
c+

f(x),

and
HDγ,β;ψ

d− f(x) = Iµ−γ;ψ
d− Dγ;ψ

d− f(x),

with µ = γ + β(N − γ) and Iµ−γ;ψ
c+

, Iµ−γ;ψ
d− , Dγ;ψ

c+
and Dγ;ψ

d− as defined in (2.3), (2.4), (2.5) and
(2.6).
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In this paper we take Ω = A1×· · ·×AN = [c1, d1]×· ·×[cN , dN ] where −∞ < ci < di < +∞
for all i ∈ N, 0 < γ1 < ... < γN < 1. Consider also ψ(·) be an increasing and positive monotone
function on (c1, d1), ..., (cN , dN ), having a continuous derivative ψ′(·) on (c1, d1], ..., (cN , dN ].
• The ψ-Riemann-Liouville fractional partial integral of order γ of N-variables f = (f1, ..., fN ) is
defined by

Iγ;ψc,x f(x) =
1

Γ(γ)

∫
A1

∫
A2

· · ·
∫
AN

ψ′(y)(ψ(x)− ψ(y))γ−1f(y)dy,

with ψ′(y)(ψ(x) − ψ(y))γ−1 = ψ′(y1)(ψ(x1) − ψ(y1))
γ1−1 · · · ψ′(yN )(ψ(xN ) − ψ(yN ))

γN−1 and
Γ(γ) = Γ(γ1)Γ(γ2) · · · Γ(γN ), x = x1x2 · · · xN and dy = dy1dy2 · · · dyN .
• The ψ-Hilfer fractional partial derivative of N-variables of order γ and type β (0 ≤ β ≤ 1) is
defined by

HDγ,β;ψ
c,x f(x) = Iβ(N−γ);ψ

c,x

( 1

ψ′(x)

∂N

∂x

)
I(1−β)(N−γ);ψ
c,x f(x),

with ∂x = ∂x1, ∂x2, ..., ∂xN and ψ′(x) = ψ′(x1)ψ
′(x2) · · · ψ′(xN ). Analogously, it is defined

HDγ,β;ψ
d,x (·).

• The left-sided ψ-Hilfer fractional derivative space is defined by

Hγ,β,ψ
p(x) (Ω) = H :=

{
u ∈ Lp(x)(Ω) :

∣∣∣HDγ,β;ψ
0+

u
∣∣∣ ∈ Lp(x)(Ω)

}
,

enduid with the norm

∥u∥Hγ,β,ψ
p(x)

= ∥u∥p(x),G +
∥∥∥HDγ,β,ψ

0+
u
∥∥∥
p(x)

,

where

∥u∥p(x),G = inf

{
l > 0 :

∫
Ω
G(x)

∣∣∣∣∣u(x)l
∣∣∣∣∣
p(x)

≤ 1

}
.

Note that H is the closure of C∞
0 (Ω). Also, H is a separable and refexive Banach spaces.

Moreover, due to Propositions 2.2 and (2.3), we deduce the following embedding:

H
cpt
↪→ Lτ(x)(Ω) for all τ ∈ C+

(
RN
)
and p≪ τ ≪ p⋆ in RN .

Using (1.8), we infer that

H
cpt
↪→ Lri(x)q(x)(Ω).

In particular,

H
cpt
↪→ Lri(x)q

±
(Ω). (2.7)

3. Main results

In the proof of Theorem 1.1 we will use variational methods. The relevant energy functional of
our problem (1.7) is defined by

E(u) =

∫
Ω

∣∣ HDγ,β,ψ
0+

u(x)
∣∣p(x)

p(x)
dx+

∫
Ω
G(x)

|u(x)|p(x)

p(x)
dx− 1

2

∫
RN

∫
RN

F (x, u)F (y, u)

|x− y|λ(x,y)
dxdy.
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Corollary 3.1. The function E belongs to C1(H,R), and we can express it as follows:

E′(u)v =

∫
Ω

∣∣∣ HDγ,β,ψ
0+

u(x)
∣∣∣p(x)−2

HDγ,β,ψ
0+

u(x) HDγ,β,ψ
0+

v(x)dx

+

∫
RN

G(x)|u(x)|p(x)−2u(x)v(x)dx−
∫
RN

∫
RN

F (x, u)f(y, u)v(y)

|x− y|λ(x,y)
dxdy, (3.1)

for all u, v ∈ H.

Proof. We can prove this corollary by using similar analysis presented in [3] Lemma 3.2.

At this point, we are ready to prove our main results given in Theorem 1.1, the proof of
which is divided into several steps.

Step 1: Mountain pass geometry

In this step we show that the energy functional E associate to the problem (1.7) satisfies the
mountain pass geometry, i.e. satisfies the following Lemma.

Lemma 3.1. The functional E exhibits the following characteristics:
(i) For sufficiently small ρ > 0, E(u) ≥ η holds for u ∈ H with ∥u∥H = ρ, where η > 0.
(ii) There exists an element a ∈ H such that ∥a∥H > ρ and E(a) < 0.

To commence, it is necessary to establish the following useful property:

Proposition 3.1. For each v ∈ H, we have the following property: F and fv are belong on
Lq

±
(Ω).

Proof. Due to (f1), if u ∈ R and u(x) ̸= 0, then

|f(x, v)| ≤ c1

(
|v(x)|r1(x)−1 + |v(x)|r2(x)−1

)
. (3.2)

Also, from the last inequality, we deduce

|F (x, u)| =

∣∣∣∣∣
∫ u

0
f(x, v)dv

∣∣∣∣∣
≤ c1

∫ u

0

(
|v(x)|r1(x)−1 + |v(x)|r2(x)−1

)
dx

≤ c′1

(
|u(x)|r1(x) + |u(x)|r2(x)

)
.

Therefore,

|F (x, v)|q+ ≤ c2

(
|v(x)|q+r1(x) + |v(x)|q+r2(x)

)
, (3.3)

|F (x, v)|q− ≤ c2

(
|v(x)|q−r1(x) + |v(x)|q−r2(x)

)
, (3.4)

where c2 = c
′q+

1 , c
′q−

1 . Now, utilizing (2.7), we deduce that F ∈ Lq(x)(Ω), in particular, F ∈
Lq

+
(Ω) and F ∈ Lq

−
(Ω). By a similar argument as above, which applies to f(u)v, we deduce

that fv ∈ Lq
±
(Ω).
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Lemma 3.2. For each u ∈ H. We have the following properties:
(i) ∫

Ω×Ω

|F (x, u)f(y, u)v(y)|
|x− y|λ(x,y)

dxdy <∞.

(ii) ∫
Ω×Ω

|F (x, u)f(y, u)v(y)|
|x− y|λ(x,y)

dxdy ≤ c3

(
∥F∥q+∥fv∥q+ + ∥F∥q−∥fv∥q−

)
.

Proof. Recall that, for every a, b ≥ 0

(a+ b)p ≤ 2p−1(ap + bp). (3.5)

This with Proposition 3.1, equations (2.7), (3.2), and the fact that, 1 ≤ p < ∞, as well as
Proposition 2.4, we arrive at the proof of Lemma 3.2.

Corollary 3.2. For each v ∈ H such that ∥v∥H ≤ 1, then the sequence
{
∥f(uk)v∥q±

}
k∈N

is

bounded.

Proof. Due to (f1) and (1.8), we obtain∫
Ω
|f(y, uk)v(y)|q

+
dy

≤ c2

∫
Ω

(
|uk|q

+(r1(x)−1) + |uk|q
+(r2(x)−1)

)
|v(y)|q+dy

≤ c2

[(∫
Ω
|uk|q

+r1(x)dy

) r1(x)−1
r1(x)

(∫
Ω
|v|q+r1(x)dy

) 1
r1(x)

+

(∫
Ω
|uk|q

+r2(x)dy

) r2(x)−1
r2(x)

×
(∫

Ω
|v|q+r2(x)dy

) 1
r2(x)

]

= c2

(
∥uk∥

q+(r1(x)−1)
q+r1(x)

∥v∥q
+

q+r1(x)
+ ∥uk∥

q+(r2(x)−1)
q+r2(x)

∥v∥q
+

q+r2(x)

)
≤ c2

(
∥uk∥

q+(r1(x)−1)
q+r1(x)

+ ∥uk∥
q+(r2(x)−1)
q+r2(x)

)
<∞. (3.6)

Similarly, we can show that
{
∥f(y, uk)v∥q−

}
k∈N

is bounded.

Now, we are ready to prove the Lemma 3.1. Regarding part (i), note that from Proposition
3.1, Lemma 3.2 and Proposition 2.4, we have∣∣∣∣∣

∫
Ω×Ω

F (x, u)F (y, u)

|x− y|(λ(x,y))
dx dy

∣∣∣∣∣ ≤ c3

(
∥F∥2q+ + ∥F∥2q−

)
, for all u ∈ H.

Due to (3.2), (3.3), (3.4) and (2.7), we have

∥F∥q+(Ω) ≤ c4

(
∥u∥r1(x)

q+r1(x)
+ ∥u∥r2(x)

q+r2(x)

)
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≤ c5

(
max

(
∥u∥r

+
1
H , ∥u∥r

−
1
H

)
+max

(
∥u∥r

+
2
H , ∥u∥r

−
2
H

))
(3.7)

and

∥F∥q−(Ω) ≤ c6

(
max

(
∥u∥r

+
1
H , ∥u∥r

−
1
H

)
+max

(
∥u∥r

+
2
H , ∥u∥r

−
2
H

))
, (3.8)

where c4, c5 and c6 are constants that does not depend on u ∈ H.
Furthermore, due to (3.5), (3.7), (3.8), together with ∥u∥H < 1, we infer that

E(u) ≥
∫
Ω

1

p+

∣∣∣ HDγ,β,ψ
0+

u(x)
∣∣∣p(x) dx+

∫
Ω

1

p+
G(x)|u(x)|p(x)dx

− c6

(
max

(
∥u∥2r

+
1

H , ∥u∥2r
−
1

H

)
+max

(
∥u∥2r

+
2

H , ∥u∥2r
−
2

H

))
≥ c7

(∥∥∥HDγ,β;ψ
0+ u

∥∥∥p+
p(x)

+ ∥u∥p
+

p(x),G

)
− c6

(
∥u∥2r

+
1

H + ∥u∥2r
−
1

H + ∥u∥2r
+
2

H + ∥u∥2r
−
2

H

)
≥ c8∥u∥p

+

H − 2c6

(
∥u∥2r

−
1

H + ∥u∥2r
−
2

H

)
,

where c7 and c8 are positive constants that do not depend on u. The fact that r−1 , r
−
2 > p+/2,

then the result follows by fixing ∥u∥H = ρ with ρ > 0 small enough. For (ii), the assumption
(f2) owing to

F (x, u) ≥ Ku
α
2 , for all (x, u) ∈ Ω× R,

where K depends only on α. Now, considering a nonnegative function φ ∈ C∞
c (Ω)\{0}, the last

inequality allows us to deduce that

E(tφ) ≤ tp
+

p−

(∥∥∥HDγ,β,ψ
0+

u
∥∥∥p+
p(x)

+ ∥u(x)∥p
+

p(x),G

)
− Ktα

2

∫
Ω×Ω

(φ(x)φ(y))α/2

|x− y|λ(x,y)
dxdy

≤ tp
+

p−
∥u∥p

+

H − Ktα

2

∫
Ω×Ω

(φ(x)φ(y))α/2

|x− y|λ(x,y)
dxdy.

Since, α > p+, then E(tφ) < −∞ for t large enough. This finishes the proof of Lemma 3.1.

Step 2: Boundedness of {uk}k∈N in H

Recalling that the mountain pass theorem without the Palais-Smale condition (refer to [10],
Theorem 5.4.1) states the existence of a sequence {uk}k∈N ⊂ H such that:

E(uk) −→ θ (3.9)

and
E′(uk) −→ 0, (3.10)

where θ > 0 is the mountain pass level defined by

θ := inf
γ∈Γ

sup
t∈[0,1]

E(γ(t)),

with
Γ :=

{
γ ∈ C

(
[0, 1],H

)
; γ(0) = 0, γ(1) = e

}
.
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Note that

E(uk)−
E′(uk)uk

α
≤ θ + 1 + ∥uk∥H, (3.11)

for k large enough. Moreover, from (f2) we have for ∥uk∥H ≥ 1 that

E(uk)−
E′(uk)uk

α
=

∫
Ω

(
1

p(x)
− 1

α

)(∣∣∣HDγ,β;ψ
0+ uk

∣∣∣p(x) +G(x)|uk(x)|p(x)
)
dx

+

∫
Ω

∫
Ω

F (u, uk)

|x− y|λ(x,y)

(
f(y, uk)uk(v)

α
− F (y, uk)

2

)
︸ ︷︷ ︸

≥0

dxdy

≥c10
∫
Ω

(∣∣∣ HDγ,β;ψ
0+ uk

∣∣∣p(x) +G(x)|uk(x)|p(x)
)
dx. (3.12)

Hence, (3.11) and (3.12) owing to the boundedness of {uk}k∈N in H.

Remark 3.1. From the fact that {un}n∈N is bounded in H, {un}n∈N is also bounded in
W 1,p(x) (Ω). Then, Proposition 2.1 implies that there exists u ∈ H and a subsequence, still
denoted by {un}n∈N, such that

un(x) −→ u(x) a.e in Lp(x)(Ω), (3.13)

un(x) −→ u(x) a.e in Ω, (3.14)

HDγ,β,ψ
0+

un ⇀
HDγ,β,ψ

0+
un in

(
Lr(x) (Ω)

)N
. (3.15)

Step 3: Existence of solution

Now, we show the existence of a critical point of E, which is a weak solution of the problem
(1.7). First of all, we show the following property.

Lemma 3.3. The following limits hold for a subsequence:
(i) ∫

Ω×Ω

F (x, uk)f(y, u)v(y)

|x− y|λ(x,y)
dxdy −→

∫
Ω×Ω

f(x, u)f(y, u)v(y)

|x− y|λ(x,y)
dxdy,

for all v ∈ C∞
c (Ω),

(ii) ∫
Ω

∫
Ω

f(x, uk)
(
f(y, uk)v(y)− f(y, u)v(y)

)
|x− y|λ(x,y)

dxdy −→ 0,

for all v ∈ C∞
c (Ω),

(iii) ∫
Ω

∫
Ω

F (x, uk)f(y, uk)v(y)

|x− y|λ(x,y)
dxdy −→

∫
Ω

∫
Ω

F (x, u)f(y, u)v(y)

|x− y|λ(x,y)
dxdy,

for all v ∈ C∞
c (Ω).

Proof. (i) From Step 2 and (2.7) we conclude that F (·, vn) is bounded in Lq
±
(Ω). In addition,

due to (3.14) and the continuity of F imply that F (x, vn) −→ F (x, v) pointwise a.e. in Ω we
deduce that F (uk)⇀ F (u) in Lq

±
(Ω). By virtue of Proposition 2.4, it follows that the function

H(u) :=

∫
Ω

∫
Ω

h(x)f(u(y))v(y)

|x− y|λ
, h ∈ Lq

+
(Ω) ∩ Lq−(Ω),
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defines a continuous linear functional. Since F (uk)⇀ F (u) in Lq
±
(Ω), it follows that∫

R2N

F (uk(x))f(uk(y))v(y)

|x− y|λ
dx dy −→

∫
R2N

F (u(x))f(u(y))v(y)

|x− y|λ
dx dy, for all v ∈ C∞

c (Ω).

For (ii). First, let define the convolution operator K : Lq
±
(Ω) −→ L

2N
λ (Ω) by

K(w)(x) :=
1

|x|λ
∗ w(x).

Due to Proposition 2.4, we obtain that K is a linear and bounded operator. Hence, up to a

subsequence, {K (F (·, vn))}n∈N is uniformly bounded in L
2N
λ (Ω), by Hölder’s inequality, it is

enough to show that

∥(f (·, vn)− f(·, v))ϕ∥q± −→ 0. (3.16)

Due to (3.6), Lebesgue’s dominated convergence theorem, we obtain the required assertion in
(3.16) and so (ii). (iii) is a direct consequence of (i) and (ii).

Proposition 3.2. Assume that (f1), (f2) and (G) are hold. For a subsequence of {uk}k∈N, we
have

HDγ,β,ψ
0+

uk(x) −→ HDγ,β,ψ
0+

u(x), pointwise a.e. in Ω.

Consequently, it holds∣∣∣HDγ,β,ψ
0+

uk

∣∣∣p(x)−2
HDγ,β,ψ

0+
uk ⇀

∣∣HDγ,β,ψ
0+

u
∣∣p(x)−2 HDγ,β,ψ

0+
u, in

[
L

p(x)
p(x)−1 (Ω)

]N
. (3.17)

Proof. We refer to the proof of Lemma 13 in [40].

Lemma 3.4. The function u is a critical point of E.

Proof. First, we assert that

E′(uk)u −→ E′(u)v, for all v ∈ C∞
c (Ω).

To determine this limit, observe that

E′(u)v =

∫
Ω

∣∣∣ HDγ,β,ψ
0+

u(x)
∣∣∣p(x)−2

HDγ,β,ψ
0+

u(x) HDγ,β,ψ
0+

v(x)dx

+

∫
RN

G(x)|u(x)|p(x)−2u(x)v(x)dx−
∫
RN

∫
RN

F (x, u)f(y, u)v(y)

|x− y|λ(x,y)
dxdy.

Lemma 3.3 and Proposition 3.2 owing to∫
RN

∫
RN

F (x, uk)f(y, uk)v(y)

|x− y|λ(x,y)
dxdy −→

∫
RN

∫
RN

F (x, u)f(y, u)v(y)

|x− y|λ(x,y)
dxdy (3.18)

and ∫
Ω

∣∣ HDγ,β,ψ
0+

uk(x)
∣∣p(x)−2 HDγ,β,ψ

0+
uk(x)

HDγ,β,ψ
0+

v(x)dx

−→
∫
Ω

∣∣ HDγ,β,ψ
0+

u(x)
∣∣p(x)−2 HDγ,β,ψ

0+
u(x) HDγ,β,ψ

0+
v(x)dx. (3.19)
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Furthermore, applying Lebesgue’s Dominated Convergence Theorem, we also obtain∫
RN

G(x)|uk(x)|p(x)−2uk(x)v(x)dx −→
∫
RN

G(x)|u(x)|p(x)−2u(x)v(x)dx.

From (3.18) and (3.19), the claim follows. As E′(uk)v −→ 0, this claim implies that E′(u)v = 0
for all v ∈ C∞

c (RN ). With the knowledge that C∞
c (RN ) is dense in H, the lemma follows.

Proof of Theorem 1.1

If u ̸= 0, then u serves as a nontrivial solution, concluding the theorem. However, if u = 0, the
task is to locate another solution v ∈ H\{0} for equation (1.7). In pursuit of this objective, the
assertion presented below plays a pivotal role in our reasoning.

Claim. There exist s > 0, ϑ > 0 and a sequence {yn}n∈N ⊂ Ω such that

lim inf
n−→+∞

∫
Bs(yn)

|uk(x)|q(x)dx ≥ ϑ > 0. (3.20)

Proof. In fact, if the above claim does not hold. by Lions’s lemma [19], one has

uk −→ 0, in Lq
±
(Ω). (3.21)

Moreover, Proposition 2.4 owing to,∣∣∣∣∣
∫
Ω×Ω

F (x, uk)(f(y, uk)uk(y)

|x− y|λ(x,y)
dxdy

∣∣∣∣∣ ≤ c11
∥∥F∥∥

q+

∥∥fuk∥∥q+ + c13
∥∥F∥∥

q−

∥∥fuk∥∥q− .
By (3.7), (3.8), 3.21 and Corollary 3.2, we obtain that∫

Ω

∣∣F (x, uk)∣∣q+ dx −→ 0 and

∫
Ω
|F (x, uk)|q

−
dx −→ 0,∫

Ω

∣∣f(y, uk)uk(y)∣∣q+ dy −→ 0 and

∫
Ω

∣∣f(y, uk)uk(y)∣∣q− dy −→ 0.

Therefore, ∫
Ω

F (x, uk)f(y, uk)uk(y)

|x− y|λ(x,y)
dx dy −→ 0. (3.22)

Using (3.10) together with (3.22) give∫
Ω

∣∣∣ HDγ,β,ψ
0+

uk(x)
∣∣∣p(x) dx+

∫
RN

G(x)|uk(x)|p(x)dx −→ 0.

This limit leads to E(uk) −→ 0, which contradicts with (3.9).
Due to the next Lemma, we finish the prove of Theorem 1.1.

Lemma 3.5. Let {uk}k∈N ⊂ H be such that E −→ θ. Then there exists {ỹk}k∈N ⊂ Ω such that
the translated sequence

ṽ := uk(x+ ỹk)

has a subsequence which converges in H.
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Proof. By utilizing the fact that E′(uk)uk −→ 0 and E(uk) −→ θ, we can employ the same
reasoning as in the proof of Lemma 3 to demonstrate that the sequence {uk}k∈N is bounded
in H. Then, considering ũk(u) = uk(x + ỹk) as a subsequence, we can find ũ ∈ H such that
ũk ⇀ ũ in H and ũ ̸= 0 according to (3.20). Furthermore, for (tk)k∈N > 0, we can construct
ṽk = tkũk ∈ H. Then

E(ṽk) ≤ max
t≥0

E(tuk) = E(uk),

and so

E(ṽk) −→ θ. (3.23)

Since (3.23) holds, we have that {ṽk}k∈N is bounded in H, which implies that we can assume
ṽk ⇀ ṽ in H. Moreover, {tk}k∈N is bounded and converges to t0 > 0. Suppose for contradiction
that t0 = 0. Then, by the boundedness of {ũk}k∈N, we have ∥ṽk∥0,H = tk∥ũk∥H −→ 0, which
contradicts E(ṽk) −→ θ > 0. Hence, t0 > 0. Since the weak limit is unique, we have ṽ = t0ũ
and ũ ̸= 0. Thus, ṽk −→ ṽ in H, and consequently ũk −→ ũ in H.
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[12] D. Edmunds and J. Rákosńık. Sobolev embeddings with variable exponent, Studia Math.,
2000, 3(143), 267–293.

[13] A. Elhoussain and E. H. Hamza, Study of double phase-Choquard problem in generalized
ψ-Hilfer fractional derivative spaces with p-Laplacian operator, Kragujevac J. Math., 2026,
50(7), 1087–1103.

[14] A. Elhoussain and E. H. Hamza, Fractional Sobolev space with variable exponents: Study
of Kirchhoff problem by berkovits degree theory, Nonlinear Stud., 2024, 31(4), 1135–1147.

[15] A. Elhoussain, E. H. Hamza and J. V. da C. Sousa, On a class of capillarity phenomenon
with logarithmic nonlinearity involving θ(·)-Laplacian operator, Comput. Appl. Math., 2024,
43(6), 344.

[16] X. Fan and X. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations in
RN , Nonlinear Anal., 2000, 59(1–2), 173–188.

[17] X. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(u)-Laplacian dirichlet problem, J. Math.
Anal. Appl., 2005, 302(2), 306–317.

[18] X. Fan and D. Zhao, On the spaces Lp(u)(Ω) and Wm,p(u)(Ω), J. Math. Anal. Appl., 2001,
263(2), 424–446.

[19] X. Fan, Y. Zhao and D. Zhao, Compact embedding theorems with symmetry of straussLions
type for the space W 1,p(x)(RN ), J. Math. Anal. Appl., 2001, 255, 333–348.

[20] X. Fan, Y. Zhao and D. Zhao, Sobolev embedding theorems for spaces W k,p(x)(Ω), J. Math.
Anal. Appl., 2001, 262(2), 749–760.
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