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Abstract Throughout the current work, we implement a novel method to provide exact and
approximate solutions, called the fractional J−transform Adomian decomposition method
(FJADM). The suggested technique is used to explore solutions to the nonlinear time-
fractional diffusion, Harry-Dym, and Fisher equations, including their theoretical analysis.
We present detailed proofs of the existence and uniqueness theorems applied to nonlinear
fractional ODEs using the FJADM. We combined in this work both the J -transform
method (J T M) and the Adomian decomposition method (ADM). Clearly, from the results
obtained, the new scheme proposed in this work is highly accurate and efficient. The results
have shown how powerful and effective this method is and how straightforward it is for
solving many types of fractional differential equations. The numerical calculations in the
current work were carried out using Mathematica 13.

Keywords Caputo fractional derivative, Adomian decomposition method, J-transform method,
Harry-Dym equation, Banach fixed point theorem.

MSC(2010) 26A33, 34A08, 34C60, 35R11, 26A33, 92D30.

1. Introduction

Due to the fact that fractional differential equations have so many great applications in a wide
range of scientific fields, interest in them has recently increased [8, 15, 22, 30]. Fractional differ-
ential equations provide a clear description of a number of significant phenomena in the fields
of electromagnetics, signal processing, biological population models, electrochemistry, and fluid
mechanics. They are also used in the social sciences, which include economics, finance, climatol-
ogy, and food supplements. To do that, we need a trustworthy and efficient method to determine
the analytical solutions to differential equations of fractional order; see [6, 27].

In applied mathematics, finding exact, numerical solutions for these equations is crucial. Due
to all this, it is still a major issue in applied mathematics and physics to find accurate solutions
for nonlinear differential equations of fractional order. Several effective and potent techniques
have been put forth to find approximate the analytical solutions of fractional differential equa-
tions, including the Elzaki transform method [11], the fractional complex transform [2, 14], the
first integral method [10], the fractional Adomian decomposition method [5, 18], fractional ma-
trix method [29], the fractional homotopy perturbation method [13, 24], the fractional Laplace
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decomposition method [12], and the fractional Sumudu transform method [1], and fractional
natural transform method [3, 20,21,25,26].

We explore the FJADM method as a new approach in order to derive approximations of
solutions to nonlinear fractional PDEs. The present work studies the FJADM, a new integral
transform for differential equations of fractional order. The suggested mechanism is used to
explore various aspects of fractional Caputo and Riemann-Liouville derivatives, including their
properties, uses, and some basic theorems. Numerical examples are provided for a variety of
fractional differential equations to demonstrate their validity, and the FJADMmethod is based
on fractional J -transform theorems and provides solutions in infinite series form. A series that,
if an exact solution exists, may converge to a closed solution.

Numerous practical applications employ the Harry Dym equation [4], which is attributed to
an unpublished article written by Harry Dym between 1973 and 1974. The Korteweg–de Vries
equation and the Sturm–Liouville operator are connected to the Harry Dym equation. The
Harry Dym equation illustrates a situation where nonlinearity and dispersion are intertwined.
Harry Dym is a nonlinear evolution equation that is fully integrable. It is significant since it
lacks the Painleve property and complies with an endless number of conservation necessities. In
1937, Fisher put forth the Fisher equation as a model for the temporal and spatial spread of
a virulent gene in an infinite media. Chemical kinetics, autocatalytic chemical reactions, flame
propagation, nuclear reactor theory, neurophysiology, and branching Brownian motion processes
are among its areas of conflict. The Fisher equation solves problems like the nonlinear evolution
of a population in a one-dimensional habitat by combining diffusion and logistic nonlinearity.
Population growth and dispersion are modeled using the Fisher equation. Both the transmission
of nerve impulses and power law delays between movements are modeled by the fractional
derivative term. Fractional Harry-Dym and Fisher equations solutions were found through the
application of the Mohand homotopy perturbation transform scheme (MHPT ) [19].

Moreover, the concept of J -transform method was presented by Shehu Maitama and Wei
dong Zhao [17]. In addition, Obeidat et al. presented proofs to some properties of the J -
transform in [23]. We presented proofs to the existence and uniqueness theorems along with
error estimate using the new approach. In addition, we present exact and approximate solutions
to harry-Dym and Fisher’s equations.

The outline of this work is as follows. In Section 2, the basic definitions and some properties
of the J -transform and Adomian methods are discussed. Section 3 presents the background
of fractional calculus and some theorems related to the fractional J -transform, ending with a
formula to calculate the Adomian polynomial. In Section 4, we present detailed proofs of the
FJADM for some classes of nonlinear fractional partial differential equations. In Section 5, we
present applications of the FJADM of some fractional nonlinear partial differential equations.
Lastly, in Section 6, we provide our conclusion from this research work.

The original contribution of this work consists mainly of proving theorems and applications
in sections four and five. Mathematica program was used to compute the Adomian polynomial
terms.

2. Resources for fractional calculus background

In this section, we review some of the key terminologies pertaining to fractional calculus, see
[15,22,30].

Definition 2.1. [22] A function ϕ(τ) ∈ R, τ > 0 is said to be in the space Cα, where α ∈ R,
if ∃q ∈ R with q > α, such that: ϕ(τ) = τ qg(τ), where g(τ) ∈ C[0,∞) and is said to be in the

space Cι
α if ϕ(ι)(τ) ∈ Cα, and ι ∈ N.

Definition 2.2. [15] The Riemann-Liouville operator of f(s) ∈ Cα with order µ > 0 is given



78 N. A. Obeidat, M. E. Alkhamaiseh & M. S. Rawashdeh

as follows:

Iµs [f(s)] =
1

Γ(µ)

∫ s

0

f(τ)

(s− τ)1−µ
dτ.

Definition 2.3. [15] The Caputo fractional derivative of f(s) ∈ Cι(0, b), µ ∈ (ι − 1, ι), where
ι ∈ N, and µ > 0 is given by:

cDµ
s [f(s)] =

1

Γ(ι− µ)

(∫ s

0

f (ι)(τ)

(s− τ)µ−ι+1
dτ

)
.

Definition 2.4. [16] The Mittag-Leffler function with two parameters is given by:

Eα,γ(τ) =
∞∑
κ=0

τκ

Γ(ακ+ γ)
, α > 0, γ > 0, τ ∈ C,

where the Gamma function Γ for ι ≥ 0 is given by [28]:

Γ(ι) =

∫ ∞

0
e−τ τ ι−1dτ.

3. Adomian polynomials and J -transform: An overview

In this section, we provide important properties and definitions related to the (Adomian and
J -transform history) in general, which will be used frequently throughout this research work.

Definition 3.1. [23] Assume that M, c > 0 and Φ(τ) is a piece-wise continuous function over
R. Suppose that B =

{
Φ(τ) : |Φ(τ)| <Mec τX(0,∞)(τ)

}
, where X(0,∞)(τ) is the characteristic

map. So, |Φ(τ)| ≤ Mec τ for τ −→ ∞ i.e. given any Φ(τ) ∈ B, where s, u > 0, we’ve got:∣∣∣∣∫ ∞

0
e−s τΦ(τu)dt

∣∣∣∣ ≤ M
∫ ∞

0
e−s τec|τ u|dτ

= M
∫ ∞

0
e(cu−s)τdτ.

If c u− s < 0, the above is convergent. Therefore, Φ(τ) is of exponentially order.
The J -transform is then provided as follows:

J (Φ(τ)) = H(s, u) = u

∫ ∞

0
e

−s τ
u Φ(τ)dτ, s, u > 0, (3.1)

where J stands for the J−transformation of Φ(τ) and u, s are the variables of J−transfor-
mation.

So, Eq. (3.1), can be expressed as,

J (Φ(τ)) = H(s, u) = u2
∫ ∞

0
e−s τ Φ(uτ) dτ, s, u ∈ (0,∞). (3.2)

Definition 3.2. Assume that H(s, u) be the (J T ) of the function Φ(τ), then J −1 is called the
(IJ T ) of H(s, u), that is

J −1[H(s, u)] = Φ(τ), for τ ≥ 0.
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Some of the J -Transform’s Properties

We first start by introducing few properties of the J -transform (J T ) and inverse J -transform
(IJ T ), which we will use throughout this work [17].

1. Suppose that e(τρ) Φ(τ) ∈ B, where ρ is constant. Then

J [eρτΦ(τ)] =
s− ρu

s
H
(
s,

su

s− ρu

)
.

2. Suppose H(s, u) be the (J T ) of Φ(τ), and ρ > 0. Then,

J [Φ(ρτ)] =
1

ρ
H
(
s

ρ
, u

)
.

3. Let H(s, u) =
un+2

sn+1
, u, s > 0, n=0,1,2,3,..., then (IJ T ) is given by:

J −1

[
un+2

sn+1

]
=
τn

n!
=

τn

Γ(n+ 1)
, n = 0, 1, 2, 3, ....

4. Consider ι−1 ≤ α < ι, where ι ∈ Z+ and H(s, u) is the (J T ) of Φ(τ), then (J T ) of fractional
Caputo derivative is given by:

J [cDα
τ ν(τ)] =

[ s
u

]α
H(s, u)−

ι−1∑
κ=0

u
[ s
u

]α−κ−1
(DκΦ(τ))τ=0 .

Computational Adomian polynomials. The Adomian polynomials are an invaluable tool
for effectively decomposing a complex nonlinear component into smaller, easier-to-manage com-
ponents that can be integrable as a Taylor series. Following [7, 9], the representation of the
unknown function Θ can be expressed as follows:

Θ =

∞∑
m=0

Θm. (3.3)

In order to find Θm , m ≥ 0, a recursive relation must be established. When handling nonlinear
components, G(Θ) shall be defined as an infinite series, or Adomian polynomials Bm, using the
formula below:

G(Θ) =
∞∑

m=0

Bm(Θ0, Θ1, ....,Θm). (3.4)

Additionally, the nonlinear term Bm of G(Θ) can be obtained using the formula in [9]:

Bm =
1

m!

dm

dλm

[
G

(
m∑
i=0

λiΘi

)]
λ=0

, m = 0, 1, 2, · · · . (3.5)

The following is an expression for the general formula for Eq. (3.5): Let G(Θ) be the nonlinear
function, for instance. The following outcomes can be achieved by applying Eq. (3.4) and the
definition of an Adomian polynomial:

B0 = G(Θ0),

B1 = Θ1G
′(Θ0),

B2 = Θ2G
′(Θ0) +

1

2!
Θ2

1G
′′(Θ0).

(3.6)
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Finally, the other terms can be constructed using a similar procedure. The polynomials pre-
viously presented in Eq. (3.6) provide two significant observations. While B2 depends solely
on Θ0, Θ1, and Θ2, etc., B0 and Θ0 are the only variables on which B1, B0, and Θ1 rely.
Substituting Eq. (3.6) into Eq. (3.4), one can observe:

G(Θ) =B0 +B1 +B2 + ...

=G(Θ0) + (Θ1 +Θ2 +Θ3 + ...)G′(Θ0)

+
1

2!
(Θ2

1 + 2Θ1Θ2 + 2Θ1Θ3 +Θ2
2 + ...)G′′(Θ0)

+
1

3!
(Θ3

1 + 3Θ2
1Θ2 + 3Θ2

1Θ3 + 6Θ1Θ2Θ3 + ...)G′′′(Θ0) + ...

=G(Θ0) + (Θ−Θ0)G
′(Θ0) +

1

2!
(Θ−Θ0)

2G′′(Θ0) + ....

4. Convergence analysis using FJADM
We shall demonstrate the proofs of the convergence and uniqueness theorems and then provide
an estimate error using the FJADM. Consider the nonlinear fractional order of the ODEs:

cDσ
ηφ(η) +N (φ(η)) + L(φ(η)) = ψ(η), 0 < σ ≤ 1. (4.1)

Accompanied by its I.C.:
φ(0) = φ0. (4.2)

Note that the non-linear part is N (φ(η)), the linear term is L(φ(η)), and ψ(η) is the source
term. Apply the J -transformation and property 4 on Eq. (4.1):

φ (r, u) =
φ0u

2

r
−
(u
r

)σ
J [L (φ(η)) +N(φ(η))− ψ(η)] . (4.3)

Apply the inverse J -transform on Eq. (4.3) to obtain:

φ(η) = Ψ (η) + J −1
[(u
r

)σ
J [L(φ(η)) +N(φ(η))]

]
. (4.4)

Ψ (η) represents the nonhomogeneous part as well as the I.C. Assume we have an infinite series
solution to the function, φ(η), as follows:

φ(η) =
∞∑
k=0

φk(η). (4.5)

The nonlinear term N(φ(η)) =
∑∞

j=0Aj represents the Adomian polynomials Aj . Substitute

Eq. (4.5) into Eq. (4.4) to obtain:

∞∑
j=0

φj(η) = Ψ (η) + J −1

(u
r

)σ
J

 ∞∑
j=0

Aj +

∞∑
j=0

φj

 . (4.6)

Comparing both sides of Eq. (4.6) to obtain the following general relation:

φj+1(η) = J −1
[(u
r

)σ
J [Aj + φj ]

]
, j ≥ 0. (4.7)

Finally, the exact solution is given by:

φ(η) =
∞∑
j=0

φj(η). (4.8)
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Theorem 4.1. (Uniqueness Theorem). If 0 < λ < 1, then there exists a unique solution to

Eq. (4.1), with λ = (C1+C2)ηξ

Γ(ξ+1) , ∀ξ ∈ [0, β].

Proof. Considering the Banach space of every continuous function on ∆ = [0, β] is K =
(C[∆], ∥.∥) and consider the norm ∥.∥, then we define ζ : K → K by

φk+1(η) = Ψ (η) + J −1

[(u
r

)ξ
J [N (φk (η)) + L (φk (η))]

]
.

Suppose that L [φ(η)] = φ(η) andN [φ(η)] = N (φ (η)). Further, let |N(φ)−N(φ̃)| < C1 |φ− φ̃|
and |L(φ)− L(φ̃)| < C2 |φ− φ̃|, where C1, C2 are the Lipschitz constants with 0 ≤ C1, C2 < 1
and φ, φ̃ are distinct solutions of Eq. (4.1). Then,

∥ζ(φ)− ζ(φ̃)∥=max
η∈∆

∣∣∣∣J −1

[(u
r

)ξ
J [L(φ) +N(φ)]

]
− J −1

[(u
r

)ξ
J [L(φ̃) +N(φ̃)]

]∣∣∣∣
=max

η∈∆

∣∣∣∣J −1

[(u
r

)ξ
J [L(φ)− L(φ̃)]

]
+ J −1

[(u
r

)ξ
J [N(φ)−N(φ̃)]

]∣∣∣∣
≤max

η∈∆

[
C1J −1

[(u
r

)ξ
J [|φ− φ̃|]

]
+ C2J −1

[(u
r

)ξ
J [|φ− φ̃|]

]]
≤max

η∈∆
(C1 + C2)

[
J −1

[(u
r

)ξ
J [|φ− φ̃|]

]]
≤ (C1 + C2)

[
J −1

[(u
r

)ξ
J [∥φ(η)− φ̃(η)∥]

]]
= ∥φ− φ̃∥ (C1 + C2)

Γ (ξ + 1)
ηξ.

Consequently, since 0 < λ < 1, ∃! solution for Eq. (4.1). By the Banach fixed-point theo-
rem for contraction we conclude that ζ is a contraction mapping. This leads to the proof of The-
orem 4.1.

Theorem 4.2. (Convergence Theorem). Equation (4.8) of Equation (4.1) has a convergent
series solution for every |φ1| <∞ and 0 < λ < 1.

Proof. Given ωi =
∑i

k=0 φk(η). We shall show that {ωi} is a Cauchy sequence in the Banach
space B. Consider the Adomian polynomial in its most recent version (see [10]). Let N (ωi) =

Ãi +
∑n−1

k=0 Ãk, i ≥ n and choose two partial sums ωn and ωi. Then,

∥ωi − ωn∥=max
η∈∆

|ωi − ωn|

=max
η∈∆

∣∣∣∣∣
i∑

k=n+1

φ̃k(η)

∣∣∣∣∣ , i = 1, 2, ...

≤max
η∈∆

∣∣∣∣∣J −1

[(u
r

)ξ
J

[
C

(
i∑

k=n+1

φk−1(η)

)]]
+ J −1

[(u
r

)ξ
J

[
i∑

k=n+1

Ai−1(η)

]]∣∣∣∣∣
=max

η∈∆

∣∣∣∣∣J −1

[(u
r

)ξ
J

[
C

(
i−1∑
k=n

φk(η)

)]]
+ J −1

[(u
r

)ξ
J

[
i−1∑
k=n

Ai(η)

]]∣∣∣∣∣
≤max

η∈∆

∣∣∣∣J −1

[(u
r

)ξ
J [C(ωi−1)− C(ωn−1)]

]
+ J −1

[(u
r

)ξ
J [N(ωi−1)−N(ωn−1)]

]∣∣∣∣



82 N. A. Obeidat, M. E. Alkhamaiseh & M. S. Rawashdeh

≤ C1max
η∈∆

J −1

[(u
r

)ξ
J [|ωi−1 − ωn−1|]

]
+ C2max

η∈∆
J −1

[(u
r

)ξ
J [|ωi−1 − ωn−1|]

]
=

(C1 + C2) η
ξ

Γ (ξ + 1)
∥ωi−1 − ωn−1∥ .

Now, ∥ωi − ωn∥ ≤ λ ∥ωi−1 − ωn−1∥. Choose i = n+ 1, then

∥ωn+1 − ωn∥ ≤ λ ∥ωn − ωn−1∥ ≤ λ2 ∥ωn−1 − ωn−2∥ ≤ ... ≤ λn ∥ω1 − ω0∥ .

Additionally, using the triangle inequality one can obtain:

∥ωi − ωn∥ ≤ ∥ωn+1 − ωn∥+ ∥ωn+2 − ωn+1∥+ ...+ ∥ωi − ωi−1∥
≤
[
λn + λn+1 + ...+ λi−1

]
∥ω1 − ω0∥

≤ λn
[
1− λi−n

1− λ

]
∥φ1∥ .

But, 0 < λ < 1, then 1− λi−n < 1. So,

∥ωi − ωn∥ ≤ λn

1− λ
max
η∈∆

|φ1| . (4.9)

since φ(η) is bounded, then |φ1| < ∞. Thus, ∥ωi − ωn∥ → 0 as n → ∞. Consequently,
the sequence {ωi} is a Cauchy sequence in K. Hence, φ(η) =

∑∞
k=0 φk(η) converges. We’ve

established Theorem 4.2.

Theorem 4.3. (Error Estimate). The series solution in Eq. (4.8) of Eq. (4.1) has a
maximum absolute error:

max
η∈∆

∣∣∣∣∣φ(η)−
n∑

i=0

φi(η)

∣∣∣∣∣ ≤ λn

1− λ
max
η∈∆

|φ1| .

Proof. Using Eq. (5.9) above, we can arrive at:

∥ωi − ωn∥ ≤ λn

1−λmax
η∈∆

|φ1|. So as i→ ∞, we have ωi → φ(η).

So,

∥φ(η)− ωn∥ ≤ λn

1− λ
max
η∈∆

|φ1(η)| .

Therefore, the maximum absolute truncation error for ∆ is:

max
η∈∆

∣∣∣∣∣φ(η)−
n∑

i=0

φi(η)

∣∣∣∣∣ ≤ max
η∈∆

λn

1− λ
|φ1(η)| =

λn

1− λ
∥φ1(η)∥ .

We’ve established Theorem 4.3.

5. Application of FJADM method for NLPDEs

In this section, we present the methodology of the (FJADM) for nonlinear fractional PDEs
and then apply it to some applications of fractional differential equations.
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Methodology for NLFPDEs. Consider the nonlinear fractional partial differential equa-
tion of the form:

cDα
τ ν(ρ, τ) +K ν(ρ, τ) +N ν(ρ, τ) = w(ρ, τ), 0 ≤ α ≤ 1. (5.1)

Along with I.C.:
ν(ρ, 0) = h(ρ), (5.2)

where cDα
τ ν(ρ, τ) represents the Caputo fractional derivative of the function ν(ρ, τ) and K, N

represent the linear and nonlinear differential operators, respectively, and w(ρ, τ) is the source
term.
Applying the transform-ג and property 4 to Eq. (5.1), one concludes:

ג [Dα
τ ν(ρ, τ)] + ג [Kν(ρ, τ)] + ג [Nν(ρ, τ)] = ג [w(ρ, τ)] ,

sα

uα
ג [ν(ρ, τ)]− u

ι−1∑
k=0

( s
u

)α−k−1 [
D(k)ν(ρ, τ)

]
τ=0

= ג [w(ρ, τ)]− ג [Kν(ρ, τ) +Nν(ρ, τ)] ,

ג [ν(ρ, τ)] =
uα+1

sα

ι−1∑
k=0

( s
u

)α−k−1 [
D(k)ν(ρ, 0)

]
+
uα

sα
ג [w(ρ, τ)]− uα

sα
ג [Kν(ρ, τ) +Nν(ρ, τ)] .

(5.3)

Substitute Eq. (5.2) into Eq. (5.3), to obtain:

ג [ν(ρ, τ)] =
u2

s
h(ρ) +

uα

sα
ג [w(ρ, τ)]− uα

sα
ג [Kν(ρ, τ) +Nν(ρ, τ)] . (5.4)

Applying the 1−ג to Eq. (5.4), one concludes:

ν(ρ, τ) = 1−ג

[
u2

s
h(ρ)

]
+ 1−ג

[
uα

sα
ג [w(ρ, τ)]

]
+ 1−ג

[
uα

sα
ג [Kν(ρ, τ)]

]
= G(ρ, τ)− 1−ג

[
uα

sα
ג [Kν(ρ, τ) +Nν(ρ, τ)]

]
.

(5.5)

Note that the non-homogeneous term and the given initial condition represented by G(ρ, τ).
Assume that we have a solution ν(ρ, τ) as follows:

ν(ρ, τ) =

∞∑
ι=0

νι(ρ, τ). (5.6)

Also, the nonlinear term can be represented by:

N ν(ρ, τ) =
∞∑
ι=0

Aι, (5.7)

where Aι are the Adomian polynomials of ν0, ν1, ..., νι, that can be computed by the following
formula:

Aι =
1

ι !

dι

dλι

[
F

(
ι∑

i=0

λiνi

)]
λ=0

. (5.8)
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From Eq. (5.8), one can conclude:

A0 = F (ν0),

A1 = ν1 F
′(ν0),

A2 = ν2 F
′(ν0) +

1

2!
ν21 F

′′(ν0),

A3 = ν3 F
′(ν0) + ν1 ν2 F

′′
1 (ν0) +

1

3!
ν31 F

′′′(ν0).

(5.9)

We continue in this manner to get the other polynomials and compute all nonlinear terms in
the same way.

Using Eq. (5.6), along with Eq. (5.5), one can arrive at:

∞∑
ι=0

νι(ρ, τ) =G(ρ, τ)− 1−ג

[
uα

sα
ג

[
K

∞∑
ι=0

νι(ρ, τ)

]]

− 1−ג

[
uα

sα
ג

[ ∞∑
ι=0

Aι

]]
. (5.10)

Comparing the two sides of Eq. (5.7), one can conclude that:

ν0(ρ, τ) = G(ρ, τ),

ν1(ρ, τ) = 1−ג−

[
uα

sα
ג [K ν0(ρ, τ)]

]
− 1−ג

[
uα

sα
ג [A0]

]
,

ν2(ρ, τ) = 1−ג−

[
uα

sα
ג [K ν1(ρ, τ)]

]
− 1−ג

[
uα

sα
ג [A1]

]
,

ν3(ρ, τ) = 1−ג−

[
uα

sα
ג [K ν2(ρ, τ)]

]
− 1−ג

[
uα

sα
ג [A2]

]
.

The general formula is given as follows:

νι+1(ρ, τ) = 1−ג−

[
uα

sα
ג [K νι(ρ, τ)]

]
− 1−ג

[
uα

sα
ג [Aι]

]
, ι ≥ 0. (5.11)

Hence, the exact solution is given by:

ν(ρ, τ) =

∞∑
ι=0

νι(ρ, τ). (5.12)

Example 5.1. Consider the nonlinear time-fractional diffusion equation:

cDα
τ (ν(ρ, τ)) + νρ(ρ, τ) ν(ρ, τ)− ν(ρ, τ)(1− ν(ρ, τ)) = 0. (5.13)

Accompanied by its I.C.:
ν(ρ, 0) = e−ρ. (5.14)

Solution. Applying the transform-ג to Eq. (5.13), we conclude:

ג [Dα
τ ν(ρ, τ)] = ג

[
ν(ρ, τ)− ν2(ρ, τ)− ν(ρ, τ)νρ(ρ, τ)

]
. (5.15)
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Using property 4, and Eq. (5.14), we get:

sα

uα
ג [ν(ρ, τ)]−

ι−1∑
k=0

(u)
( s
u

)α−k−1 [
Dk

τ (ν(ρ, τ))
]
τ=0

= ג
[
ν(ρ, τ)− ν2(ρ, τ)− ν(ρ, τ)νρ(ρ, τ)

]
,

ג [ν(ρ, τ)] =
uα

sα

(
(u)
( s
u

)α−1
[ν(ρ, 0)]

)
+
uα

sα
ג
[
ν(ρ, τ)− ν2(ρ, τ)− ν(ρ, τ) νρ(ρ, τ)

]
,

ג [ν(ρ, τ)] =
u2

s
e−ρ +

uα

sα
ג
[
ν(ρ, τ)− ν2(ρ, τ)− ν(ρ, τ) νρ(ρ, τ)

]
.

(5.16)

Applying the 1−ג to Eq. (5.16), to obtain:

ν(ρ, τ) = e−ρ + 1−ג

[
uα

sα
ג
[
ν(ρ, τ)− ν2(ρ, τ)− ν(ρ, τ) νρ(ρ, τ)

]]
. (5.17)

Assume that the solution ν(ρ, τ) has the form:

ν(ρ, τ) =

∞∑
ι=0

νι(ρ, τ). (5.18)

Substitute Eq. (5.18) into Eq. (5.17) to arrive at:

∞∑
ι=0

νι(ρ, τ) = e−ρ

[
uα

sα
ג
[
ν(ρ, τ)− ν2(ρ, τ)− ν(ρ, τ) νρ(ρ, τ)

]]
. (5.19)

Given that

ν(ρ, τ) =

∞∑
ι=0

νι(ρ, τ), ν2(ρ, τ) =

∞∑
ι=0

Aι, ν(ρ, τ)νρ(ρ, τ) =

∞∑
ι=0

Bι, (5.20)

where:

A0 = (ν0)
2, B0 = ν0 (ν0)ρ,

A1 = 2ν0 ν1, B1 = ν0 (ν1)ρ + ν1(ν0)ρ,

A2 = 2ν0 ν2 + (ν1)
2, B2 = ν0 (ν2)ρ + (ν1)ρ ν1 + ν2(ν0)ρ.

Comparing both sides of Eq. (5.19):

ν0(ρ, τ) = e−ρ,

ν1(ρ, τ) = 1−ג

[
uα

sα
ג [ν0(ρ, τ)−A0 −B0]

]
,

ν2(ρ, τ) = 1−ג

[
uα

sα
ג [ν1(ρ, τ)−A1 −B1]

]
,

ν3(ρ, τ) = 1−ג

[
uα

sα
ג [ν2(ρ, τ)−A2 −B2]

]
.
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Continue in the same manner to arrive at

νι+1(ρ, τ) = 1−ג

[
uα

sα
ג [νι(ρ, τ)−Aι −Bι]

]
, ι ≥ 0. (5.21)

Calculating the remaining terms using Eq. (5.21), one can conclude:

ν1(ρ, τ) = 1−ג

[
uα

sα
ג [ν0(ρ, τ)−A0 −B0]

]
= 1−ג

[
uα

sα
ג
[
e−ρ − e−2ρ − e−ρ(−e−ρ)

]]
= 1−ג

[
(e−ρ)uα+2

sα+1

]
= e−ρ τα

Γ(α+ 1)
.

And,

ν2(ρ, τ) = 1−ג

[
uα

sα
ג [ν1(ρ, τ)−A1 −B1]

]
= 1−ג

[
uα

sα
ג [ν1 − 2ν0ν1 − (ν0 (ν1)ρ + (ν0)ρ ν1)]

]
= 1−ג

[
uα

sα
ג
[
e−ρ τα

Γ(α+ 1)

]]
= e−ρ τ2α

Γ(2α+ 1)
.

Also,

ν3(ρ, τ) = 1−ג

[
uα

sα
ג [ν2(ρ, τ)−A2 −B2]

]
= 1−ג

[
uα

sα
ג
[
ν2 −

(
ν0ν2 + (ν1)

2
)
− (ν0(ν2)ρ + ν1(ν1)ρ + ν2(ν0)ρ)

]]
= 1−ג

[
uα

sα
ג
[
e−ρ τ2α

Γ(2α+ 1)

]]
= 1−ג

[
uα

sα

[
e−ρu

2α+2

s2α+1

]]
= e−ρ τ3α

Γ(3α+ 1)
,

ν4(ρ, τ) = 1−ג

[
uα

sα
ג [ν3(ρ, τ)−A3 −B3]

]
= e−ρ τ4α

Γ(4α+ 1)
.

Hence, the exact solution is given by:

ν(ρ, τ) =

∞∑
ι=0

νι(ρ, τ)
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= ν0(ρ, τ) + ν1(ρ, τ) + ν2(ρ, τ) + ν3(ρ, τ) + ν4(ρ, τ) + . . .

= e−ρ + e−ρ τα

Γ(α+ 1)
+ e−ρ τ2α

Γ(2α+ 1)
+ e−ρ τ3α

Γ(3α+ 1)
+ · · ·

= e−ρEα(τ
α). (5.22)

Substituting α = 1 in Eq. (5.22), results in the exact solution:

ν(ρ, τ) = eτ−ρ. (5.23)

Remark 5.1. Figures 1, 2 and 3 demonstrate the numerical results for various values of α.
It is evident that the curves are affected differently by the values of α, and all of these curves
have no cusps. Thus, this illustrates that as α increases, the approximate solutions are indeed
converging to the exact solution, which indicates the effectiveness of the FJADM. Table 1
presents numerical values, to Example 5.1 for different values of α, τ , and ρ.

Figure 1. Plot of the exact solution for α = 0.25, α = 0.50, respectively.

Figure 2. Plot of the exact solution for α = 0.75, α = 1, respectively.
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Figure 3. Plot for Example 5.1 for multiple values of α at τ = 0.25 and τ = 0.6.

Table 1. The results obtained for Example 5.1, for multiple values of α.

ρ τ α = 0.10 α = 0.50 α = 0.80 α = 1

0.2 0.02 2.66921 0.96767 0.85829 0.83527

0.05 3.33895 1.07431 0.90370 0.86070

0.08 3.85391 1.16261 0.94601 0.88692

0.4 0.02 2.18539 0.79226 0.70271 0.68386

0.05 2.73377 0.87957 0.73981 0.70468

0.08 3.15532 0.95186 0.77453 0.72614

0.8 0.02 1.46491 0.53107 0.47104 0.45840

0.05 1.83246 0.58959 0.49596 0.47236

0.08 2.11507 0.63805 0.51918 0.48675

Example 5.2. Consider the nonlinear time-fractional Fisher’s equation:

cDα
τ (ν(ρ, τ)) = νρρ(ρ, τ) + 6 ν(ρ, τ)(1− ν(ρ, τ)), ρ ∈ R, τ > 0, 0 < α ≤ 1. (5.24)

Accompanied by its I.C.:

ν(ρ, 0) =
1

(1 + eρ)2
. (5.25)

Solution: Apply the transform-ג to Eq. (5.24), we get:

ג [cDα
τ (ν(ρ, τ))] = ג [νρρ(ρ, τ) + 6ν(ρ, τ)(1− ν(ρ, τ))] . (5.26)

Using property 4, and Eq. (5.25), we get:

ג [ν(ρ, τ)]−
ι−1∑
k=0

uk+2

sk+1

[
Dk

τ (ν(ρ, 0))
]
=
uα

sα
ג [νρρ(ρ, τ) + 6 ν(ρ, τ)(1− ν(ρ, τ))] . (5.27)

Substituting Eq. (5.25) into Eq. (5.27) to arrive at:

ג [ν(ρ, τ)] =
u2

s

1

(1 + eρ)2
+
uα

sα
ג [νρρ(ρ, τ) + 6(1− ν(ρ, τ))ν(ρ, τ)] . (5.28)

Applying the 1−ג to Eq. (5.28), one can conclude:

ν(ρ, τ) =
1

(1 + eρ)2
+ 1−ג

[
uα

sα
ג
[
νρρ(ρ, τ) + 6ν(ρ, τ)− 6 ν2(ρ, τ)

]]
. (5.29)
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Assume we have an infinite series solution of the form:

ν(ρ, τ) =
∞∑
ι=0

νι(ρ, τ). (5.30)

And,

ν2(ρ, τ) =

∞∑
ι=0

Aι, (5.31)

where,

A0 = ν20(ρ, τ),

A1 = 2(ν0(ρ, τ)) (ν1(ρ, τ)),

A2 = 2(ν0(ρ, τ)) (ν2(ρ, τ)) + ν21(ρ, τ),

A3 = 2(ν1(ρ, τ)) (ν2(ρ, τ)) + 2(ν0(ρ, τ)) (ν3(ρ, τ)).

Substituting Eq. (5.30) into Eq. (5.29), we arrive at

∞∑
ι=0

νι(ρ, τ) =
1

(1 + eρ)2
+ 1−ג

[
uα

sα
ג

[ ∞∑
ι=0

(νι)ρρ(ρ, τ) + 6

∞∑
ι=0

νι(ρ, τ)− 6

∞∑
ι=0

Aι

]]
. (5.32)

Comparing both sides of Eq. (5.32), to arrive at:

ν0(ρ, τ) =
1

(1 + eρ)2
,

ν1(ρ, τ) = 1−ג

[
uα

sα
ג [(ν0)ρρ(ρ, τ) + 6ν0(ρ, τ)− 6A0]

]
,

ν2(ρ, τ) = 1−ג

[
uα

sα
ג [(ν1)ρρ(ρ, τ) + 6ν1(ρ, τ)− 6A1]

]
,

ν3(ρ, τ) = 1−ג

[
uα

sα
ג [(ν2)ρρ(ρ, τ) + 6ν2(ρ, τ)− 6A2]

]
.

We continue in the same manner to obtain:

νι+1(ρ, τ) = 1−ג

[
uα

sα
ג

[
(νι)ρρ(ρ, τ) + 6νι(ρ, τ)− 6

∞∑
ι=0

Aι

]]
, ι ≥ 0, (5.33)

A0 = ν20(ρ, τ) =
1

(1 + eρ)4
.

From Eq. (5.33), we conclude:

ν1(ρ, τ) = 1−ג

[
uα

sα
ג [(ν0)ρρ(ρ, τ) + 6ν0(η, τ)− 6A0]

]
= 1−ג

[
uα

sα
ג
(
−2eρ(−2eρ + 1)

(1 + eρ)4
+

6

(1 + eρ)2
− 6

(1 + eρ)4

)]
= 1−ג

[
uα+2

sα+1

(
10eρ

(eρ + 1)3

)]
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=
τα

Γ(α+ 1)

(
10eρ

(eρ + 1)3

)
.

And,

A1 = 2 ν0(ρ, τ) ν1(ρ, τ)

= 2

(
1

(1 + eρ)2

)(
τα

Γ(α+ 1)

(
10eρ

(eρ + 1)3

))
=

2τα

Γ(α+ 1)

(
10eρ

(eρ + 1)5

)
.

Thus,

ν2(ρ, τ) = 1−ג

[
uα

sα
ג [(ν1)ρρ(ρ, τ) + 6ν1(ρ, τ)− 6A1]

]
= 1−ג

[
uα+2

sα+1

(
10eρ(−7eρ + 42ρ + 1)

(1 + eρ)5
+

60eρ

(1 + eρ)3
− 120eρ

(1 + eρ)5

)]
=

τ2α

Γ(2α+ 1)

(
100e2ρ − 50eρ

(eρ + 1)4

)
.

Similarly,

ν3(ρ, τ) = 1−ג

[
uα

sα
ג [(ν2)ρρ(ρ, τ) + 6ν2(ρ, τ)− 6[A2]]

]
= 1−ג

[
uα

sα
ג
[

τ2α

Γ(2α+ 1)

(
50eρ(18eρ + 8e3ρ − 33e2ρ − 1)

(eρ + 1)6

)]]
+ 1−ג

[
uα

sα
ג
[
6ν2(ρ, τ)− 12 ν0(ρ, τ) (ν2(ρ, τ) + 6 ν1(ρ, τ)

2
]]

=
50eρ τ3α(Γ(α+ 1)2 (5e2ρ(4eρ − 3)− 6eρ + 5)− 12Γ(1 + 2α)eρ)

(Γ(1 + α))2 Γ(3α+ 1)(1 + eρ)6
.

The exact solution of ν(ρ, τ) is given by

ν(ρ, τ) =
∞∑
ι=0

νι(ρ, τ)

= ν0(ρ, τ) + ν1(ρ, τ) + ν2(ρ, τ) + ν3(ρ, τ) + ν4(ρ, τ) + ...

=
1

(1 + eρ)2
+

tα

Γ(α+ 1)

(
10eρ

(eρ + 1)3

)
+

τ2α

Γ(2α+ 1)

(
100e2ρ − 50eρ

(eρ + 1)4

)
+

50eρ τ3α(Γ(α+ 1))2 (5e2ρ(4eρ − 3)− 6eρ + 5)− 12Γ(1 + 2α)eρ)

Γ(1 + α)2Γ(1 + 3α)(1 + eρ)6
+ . . . .

(5.34)

Substituting α = 1 in Eq. (5.34), the exact solution is given by:

ν(ρ, τ) =
1

(1 + eρ)2
+

10eρ τ

(1 + eρ)3
+

25eρ(2eρ − 1) τ2

(1 + eρ)4

+
25eρ(5− 30eη − 15e2η + 20e3ρ) τ3

3(1 + eρ)6
+ . . .
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=
1

(1 + eρ−5τ )2
. (5.35)

This is the exact solution of Fisher’s equation in the standard case, i.e., of integer order.

Remark 5.2. According to Figures 4 and 5, and the numerical results in Table 2, the approxi-
mate solutions decrease as both ρ and τ increase. Moreover, the absolute error for Example 5.2
when α = 0.75 is presented in Figure 6. Finally, Table 2 presents numerical values, to Example
5.2 for different values of α, τ , and ρ.

Figure 4. Plot of the exact solution and approximate for α = 1.

Figure 5. Plot of solutions for different values of α at ρ = 0.06 and τ = 5, respectively.

Figure 6. Plot of the absolute error of Example 5.2 for α = 1 at ρ and τ .
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Table 2. Outcomes of Example 5.2, for various α values with n = 5.

ρ τ α = 0.60 α = 0.75 α = 0.90 α = 1

-5 0.002 0.98827 0.98731 0.98691 0.98679

0.004 0.98900 0.98774 0.98712 0.98692

0.008 0.98997 0.98841 0.98751 0.98717

3 0.002 0.002945 0.002483 0.002333 0.002292

0.004 0.00342 0.00266 0.00240 0.002336

0.008 0.004347 0.002994 0.002558 0.002427

5 0.002 0.0000594 0.0000496 0.0000465 0.0000457

0.004 0.0000697 0.00005341 0.0000481 0.0000466

0.008 0.0000901 0.0000604 0.0000512 0.0000485

Example 5.3. Consider the nonlinear time-fractional Harry Dym equation of the form:

cDα
τ ν(ρ, τ) = ν3(ρ, τ) νρρρ(ρ, τ), ρ ∈ R, τ > 0, 0 < α ≤ 1. (5.36)

Accompanied by its I.C.:

ν(ρ, 0) =

(
a− 3

√
b

2
ρ

)2/3

, where a and b are constants. (5.37)

Solution: Apply the transform-ג to Eq. (5.36), we get:

ג [cDα
τ (ν(ρ, τ))] = ג

[
ν3(ρ, τ)νρρρ(ρ, τ)

]
. (5.38)

Using property 4, and Eq. (5.37), we get:

sα

uα
ג [ν(ρ, τ)]−

ι−1∑
k=0

(u)
( s
u

)α−k−1 [
Dk

τ (ν(ρ, τ))
]
τ=0

= ג
[
ν3(ρ, τ)νρρρ(ρ, τ)

]
. (5.39)

Substitute Eq. (5.37) into Eq. (5.39) to obtain:

ג [ν(ρ, τ)] =
u2

s

(
a− 3

√
b

2
ρ

)2/3

+
uα

sα
ג
[
ν3(ρ, τ) νρρρ(ρ, τ)

]
. (5.40)

Applying 1−ג to Eq. (5.40), to obtain:

ν(ρ, τ) =

(
a− 3

√
b

2
ρ

)2/3

+ 1−ג

[
uα

sα
ג
[
ν3(ρ, τ) νρρρ(ρ, τ)

]]
. (5.41)

Assume we have an infinite series solution of the form:

ν(ρ, τ) =
∞∑
ι=0

νι(ρ, τ). (5.42)

And,

ν3ρρρ(ρ, τ) =

∞∑
ι=0

Aι. (5.43)
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Substituting Eq. (5.42), into Eq. (5.41), we arrive at:

∞∑
ι=0

νι(ρ, τ) =

(
a− 3

√
b

2
ρ

)2/3

+ 1−ג

[
uα

sα
ג

[ ∞∑
ι=0

Aι

]]
. (5.44)

Comparing both sides of Eq. (5.44) to conclude:

ν0(ρ, τ) =

(
a− 3

√
b

2
ρ

)2/3

,

ν1(ρ, τ) = 1−ג

[
uα

sα
[A0]ג

]
,

ν2(ρ, τ) = 1−ג

[
uα

sα
[A1]ג

]
,

ν3(ρ, τ) = 1−ג

[
uα

sα
[A2]ג

]
.

We continue in a similar manner to obtain:

νι+1(ρ, τ) = 1−ג

[
uα

sα
[Aι]ג

]
, ι ≥ 0. (5.45)

But,

A0 = ν20(ρ, τ) =
1

(1 + eρ)4
.

From Eq. (5.45), we can conclude:

ν1(ρ, τ) = 1−ג

[
uα

sα
[A0]ג

]
= 1−ג

[
uα

sα
ν30]ג (ν0)

3
ρρρ]

]

= 1−ג

uα
sα

ג

−b3/2(a− 3
√
b

2
ρ

)−1/3


=
−τα

Γ(α+ 1)

(
a− 3

√
b

2
ρ

)−1/3

b3/2.

And,

ν2(ρ, τ) = 1−ג

[
uα

sα
[A1]ג

]
= 1−ג

[
uα

sα
3]ג ν20 ν1 (ν0)ρρρ + ν30 (ν1)ρρρ]

]

= 1−ג

uα
sα

ג

−b3(a− 3
√
b

2
ρ

)−4/3
τα

2Γ(α+ 1)


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=
−b3 τ2α

2Γ(2α+ 1)

(
a− 3

√
b

2
ρ

)−4/3

.

Similarly,

ν3(ρ, τ) = 1−ג

[
uα

sα
[A2]ג

]

=
b9/2 τ3α

Γ(3α+ 1)

(
a− 3

√
b

2
ρ

)−7/3(
15Γ(2α+ 1)

4(Γ(α+ 1))2
− 16

)
.

Thus, the approximate solution is given by:

ν(ρ, τ) =
∞∑
ι=0

νι(ρ, τ)

= ν0(ρ, τ) + ν1(ρ, τ) + ν2(ρ, τ) + ν3(ρ, τ) + ...

=

(
a− 3

√
b

2
ρ

)2/3

− τα

Γ(α+ 1)

(
a− 3

√
b

2
ρ

)−1/3

b3/2

− b3 τ2α

2Γ(2α+ 1)

(
a− 3

√
b

2
ρ

)−4/3

+ b9/2
τ3α

Γ(3α+ 1)

(
15Γ(2α+ 1)

4(Γ(α+ 1)2)
− 16

) (
a− 3

√
b

2
ρ

)−7/3

− . . . .

(5.46)

Substituting α = 1 in Eq. (5.46), the approximate solution is:

ν(ρ, τ) =
∞∑
ι=0

νι(ρ, τ)

= ν0(ρ, τ) + ν1(ρ, τ) + ν2(ρ, τ) + ν3(ρ, τ) + ...

=

(
a− 3

√
b

2
ρ

)2/3

− b3/2

(
a− 3

√
b

2
ρ

)−1/3

τ

− b3

4

(
a− 3

√
b

2
ρ

)−4/3

τ2 − τ3
17 b9/2

12

(
a− 3

√
b

2
ρ

)−7/3

+ · · ·

=

(
a− 3

√
b

2
(ρ+ bτ)

)2/3

.

(5.47)

This is the exact solution for the Harry Dym equation in the standard case, i.e., integer order
derivative. As a result, the approximate solution converges quickly to the exact solution.

Remark 5.3. Figure 7 represents the numerical results for the exact solution provided in [23]
and the approximate solution produced by FJADM for various values of ρ, τ , and α for
a = 4, b = 1. Figure 7 shows the approximate solution for α = 1 and the exact solution. The
approximate solutions decreases as both ρ and τ increase in values. Additionally, the numerical
results for the exact and approximate solutions produced by FJADM for various values of ρ,
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τ , and α are displayed in Figure 8. Moreover, the absolute error for Example 5.3 when α = 0.75
is presented in Figure 9. Finally, Table 3 presents numerical values, to Example 5.3 for multiple
values of α, τ , and ρ.

Figure 7. Plot of the exact solution and approximate for α = 1, respectively.

Figure 8. Plot of solutions for different values of α and τ .

Figure 9. Plot of the absolute error of Example 5.3 for α = 1 at ρ and τ .
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Table 3. Results obtained for Example 5.3, for multiple values of α with n = 5.

ρ τ α = 0.60 α = 0.75 α = 0.90 α = 1

-5 0.002 0.98827 0.98731 0.98691 0.98679

0.004 0.98900 0.98774 0.98712 0.98692

0.008 0.98997 0.98841 0.98751 0.98717

3 0.002 0.002945 0.002483 0.002333 0.002292

0.004 0.00342 0.00266 0.00240 0.002336

0.008 0.004347 0.002994 0.002558 0.002427

5 0.002 0.0000594 0.0000496 0.0000465 0.0000457

0.004 0.0000697 0.00005341 0.0000481 0.0000466

0.008 0.0000901 0.0000604 0.0000512 0.0000485

6. Concluding remarks

The diffusion, Harry-Dym, and Fisher equations play a very crucial role in science and engineer-
ing. In this research work, we used a new method to find approximate and exact solutions for
time-fractional differential equations, such as nonlinear time-fractional diffusion, Harry-Dym,
and Fisher equations. We successfully gave detailed proofs to the existence, uniqueness, and
error estimate applied to nonlinear ODEs of fractional order using the FJADM. The cur-
rent technique’s simplicity and efficiency led us to believe that the method has demonstrated a
great degree of improvement over other approaches that exist in the literature. The suggested
new technique was used to experiment with various aspects of fractional Caputo derivatives,
including their properties. In conclusion, we can apply the method more successfully for solv-
ing further fractional systems that are commonly seen in geometry and mathematical physics
because this method has proven to be very successful in finding exact and approximate solutions.
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