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Abstract A Type of second-order Dirichlet problems of Tikhonov system
with piecewise-continuous right hand side is studied. By using the multiscale
theory and the theory of contrast structures, a first-order continuous, uniform
and effective asymptotic solution of the problem is constructed. Existence of
the solution is proved and the remainder is estimated. An illustrative example
for explaining this method is also given.
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1. Statement of the Problem
In recent years, close attention has been paid to the study of singularly perturbed
dynamical system with discontinuous term, which has widely appeared in the fields
of physical and biological researchers. Valuable contributions and achievements
were obtained by many researchers in this field [2,3,5,8,9]. At present, three main
methods, i.e., the asymptotic theory, the theory of differential inequality and the
geometric singular perturbation theory, are used for solving problems of discon-
tinuous singularly perturbed dynamical system. In this paper, by the asymptotic
theory, Tikhonov system was studied on the base of Nefedov [6]. For such problem,
an asymptotic solution was constructed by using the method of boundary layer
function [10, 11]. The existence of smooth solution was proved by the “connection
method” given in the theory of contrast structures [1,12,13]. Finally, an estimation
of remainder of the solution was given.

The following singularly perturbed problem is considered£º{
µ2y′′ = F (y, z, t, µ), z′′ = G(y, z, t, µ), 0 ≤ t ≤ 1,

y(0) = y0, y(1) = y1, z(0) = z0, z(1) = z1,
(1.1)
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where

F (y, z, t, µ) =

{
F (−)(y, z, t, µ), 0 ≤ t < t0,

F (+)(y, z, t, µ), t0 < t ≤ 1,
(1.2)

and 0 < µ ≪ 1 is a small parameter, t0 is a given value, satisfying 0 < t0 < 1 .
Condition 1: Let F (−)(y, z, t, µ) be sufficiently smooth on the set D1 =

{(y, z, t, µ)| |y| ≤ l, |z| ≤ l, t ∈ [0, t0]}, F (+)(y, z, t, µ) is sufficiently smooth on
the set D2 = {(y, z, t, µ)| |y| ≤ l, |z| ≤ l, t ∈ [t0, 1]}, and G(y, z, t, µ) is sufficiently
smooth on the set D = D1 ∪D2. Moreover, F (−)(y, z, t0, µ) ̸= F (+)(y, z, t0, µ) for
arbitrary (y, z, t0, µ) in D, where l is a positive constant.

Condition 2: Let the degenerate function F (y, z, t, 0) = 0 have isolated solu-
tions in D ,

y =

{
φ(−)(z, t), 0 ≤ t < t0,

φ(+)(z, t), t0 < t ≤ 1,
(1.3)

(which means that F
(−)
y (φ(−)(z, t), z, t, 0) ̸= 0 in D1 , and F

(+)
y (φ(+)(z, t), z, t, 0) ̸=

0 in D2 ), and for any q0 the following two problems:
z̄
(∓)
0 (t)′′ = G(φ(∓)(z̄

(∓)
0 , t), z̄

(∓)
0 , t, 0),

z̄
(−)
0 (0) = z0, z̄

(−)
0 (t0) = q0,

(z̄
(+)
0 (t0) = q0, z̄

(+)
0 (1) = z1),

(1.4)

have solutions z̄
(∓)
0 (t) such that

φ(−)(z̄
(−)
0 (t0), t0) = φ(−)(q0, t0) ̸= φ(+)(q0, t0) = φ(+)(z̄

(+)
0 (t0), t0).

Condition 3: Let the following problems have only trivial solutions:z(∓)(t)′′ = [Ḡz(t)− Ḡy(t)
F̄

(∓)
z (t)

F̄
(∓)
y (t)

]z(∓)(t),

z(−)(0)(z(+)(t0)) = 0, z(−)(t0)(z
(+)(1)) = 0,

(1.5)

where F̄
(−)
(·) (t) = F

(−)
(·) (ȳ

(−)
0 , z̄

(−)
0 , t, 0) and Ḡ(·)(t) = G(·)(ȳ

(−)
0 , z̄

(−)
0 , t, 0).

Condition 4: Let F
(±)
y (φ(t), z̄0(t), t, 0) > 0, 0 ≤ t ≤ 1.

In general, based on the above conditions, sufficiently smooth solutions for prob-
lem (1.1) and (1.2) are expected. But considering the fact that the second deriva-
tives are not continuous at the point t = t0 , and the “connection method” will be
used to sew up at the discontinuous point, the solution found should just be smooth
in first derivative, hence, the following definition is given:

Definition 1.1. The function pair {y(t, µ), z(t, µ)} ∈ C1[0, 1]∩(C2(0, t0)∪C2(t0, 1))
satisfying problems (1.1)-(1.2) is the solution for the original problem.

2. Algorithm for Construction of Asymptotic Ex-
pansion

The original problem is classified into two auxiliary problems, namely the left and
the right problems, by taking t = t0 as boundary. Their solutions are found and
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smoothed by connection. Superscripts of “-” and “+” are added to the functions
y(t) and z(t) , by taking y(−)(t) and z(−)(t) for the left problem, and y(+)(t)
and z(+)(t) for the right problem. The value of the solution at the point t = t0 is
assumed as: {

y(t0, µ) = p(µ) = p0 + µp1 + µ2p2 + . . . ,

z(t0, µ) = q(µ) = q0 + µq1 + µ2q2 + . . . ,
(2.1)

where the coefficients pi, qi, i ∈ N are remained to be determined.
The left problem may be written as:{

µ2y(−)(t)′′ = F (−)(y(−), z(−), t, µ), z(−)(t)′′ = G(y(−), z(−), t, µ), 0 ≤ t ≤ t0,

y(−)(0, µ) = y0, y(−)(t0, µ) = p(µ), z(−)(0, µ) = z0, z(−)(t0, µ) = q(µ),

(2.2)
and the right problem may be written as:{
µ2y(+)(t)′′ = F (+)(y(+), z(+), t, µ), z(+)(t)′′ = G(y(+), z(+), t, µ), t0 ≤ t ≤ 1,

y(+)(t0, µ) = p(µ), y(+)(1, µ) = y1, z(+)(t0, µ) = q(µ), z(+)(1, µ) = z1.

(2.3)
The formal asymptotic expansion solutions of the respective constructed left

(right) problems with the regular part, the left (right) boundary layer part and the
internal layer part are as follows:{

y(−)(t, µ) = ȳ(−)(t, µ) + Ly(τ0, µ) +Q(−)y(τ, µ),

z(−)(t, µ) = z̄(−)(t, µ) + Lz(τ0, µ) +Q(−)z(τ, µ),
(2.4)

{
y(+)(t, µ) = ȳ(+)(t, µ) +Ry(τ1, µ) +Q(+)y(τ, µ),

z(+)(t, µ) = z̄(+)(t, µ) +Rz(τ1, µ) +Q(+)z(τ, µ),
(2.5)

where
τ0 =

t

µ
, τ =

t− t0
µ

, τ1 =
t− 1

µ
,

ȳ(±)(t, µ) =

+∞∑
n=0

µnȳ(±)
n (t), z̄(±)(t, µ) =

+∞∑
n=0

µnz̄(±)
n (t),

Ly(τ0, µ) =
+∞∑
n=0

µnLny(τ0), Lz(τ0, µ) =
+∞∑
n=0

µnLnz(τ0),

Ry(τ1, µ) =

+∞∑
n=0

µnRny(τ1), Rz(τ1, µ) =

+∞∑
n=0

µnRnz(τ1),

Q(±)y(τ, µ) =

+∞∑
n=0

µnQ(±)
n y(τ), Q(±)z(τ, µ) =

+∞∑
n=0

µnQ(±)
n z(τ),

by substitution of the formal asymptotic solution of (2.4) and (2.5) into the problems
of (2.2) and (2.3), and by multiscale separation of variables, the regular part, the
boundary layer part and the internal layer part are obtained respectively.

Among which, the regular part is:

µ2ȳ(∓)(t)′′ = F (∓)(ȳ(∓), z̄(∓), t, µ), z̄(∓)(t)′′ = G(ȳ(∓), z̄(∓), t, µ), (2.6)
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and the internal layer part is:

d2Q(±)y

dτ2
= F (±)(ȳ(±)(µτ) +Q(±)y, z̄(±)(µτ) +Q(±)z, µτ, µ)

− F (±)(ȳ(±)(µτ), z̄(±)(µτ), µτ, µ), (2.7)
Q(±)y(0, µ) = p(µ), Q(±)y(±∞) = 0,

Q(±)z(0, µ) = q(µ), Q(±)z(±∞) = 0.

Since the left (right) boundary layer part is quite similar to the internal layer
part, some details of the boundary layer part are omitted in the following. Problems
of (2.6) and (2.7) are expanded with respect to µ , and exponential coefficients of
same order of µ are compared. Then a series of second-order ordinary differential
boundary values of various terms of coefficients for defining the formal asymptotic
solutions are obtained. After that, uniform and valid expansion of the formal asymp-
totic solution is achieved by solving these problems.

Furthermore, coefficient of every term of the formal asymptotic solution is dis-
cussed. By expanding the regular term of the left problem with respect to µ ,
problems used respectively to define ȳ

(−)
k (t), z̄

(−)
k (t), k ≥ 0, are obtained. Assum-

ing z̄(−)(0) = z0, z̄
(−)
0 (t0) = q0, equations and conditions of solutions satisfied with

ȳ
(−)
0 , z̄

(−)
0 are as follows:

0 = F (−)(ȳ
(−)
0 , z̄

(−)
0 , t, 0), 0 ≤ t ≤ t0,

z̄
(−)
0 (t)′′ = G(ȳ

(−)
0 , z̄

(−)
0 , t, 0),

z̄
(−)
0 (0) = z0, z̄

(−)
0 (t0) = q0,

(2.8)

it is known from condition 2 that y = φ(−)(z, t). Putting it into the second equation
of (2.8), the following equation is obtained: z̄

(−)
0 (t)′′ = G(φ(−)(z̄

(−)
0 , t), z̄

(−)
0 , t, 0) .

By combining this equation with the condition of boundary value, z̄
(−)
0 (t) can be

solved, and ȳ
(−)
0 (t) = φ(−)(z̄

(−)
0 , t) is obtained further.

The equations and conditions of solutions for ȳ
(−)
k , z̄

(−)
k , k ≥ 1 are set as( ȳ(−)

−1 =
0 ): 

ȳ
(−)
k−2(t)

′′ = F̄
(−)
y (t)ȳ

(−)
k + F̄

(−)
z (t)z̄

(−)
k + F̄

(−)
k (t),

z̄
(−)
k (t)′′ = Ḡy(t)ȳ

(−)
k + Ḡz(t)z̄

(−)
k + Ḡk(t),

z̄
(−)
k (0) = −Lkz(0), z̄

(−)
k (t0) = qk −Qkz

(−)(0),

(2.9)

where F̄
(−)
(·) (t) = F

(−)
(·) (ȳ

(−)
0 , z̄

(−)
0 , t, 0), Ḡ(·)(t) = G(·)(ȳ

(−)
0 , z̄

(−)
0 , t, 0).

Since the term ȳ
(−)
k−2(t) is known, the expression of ȳ

(−)
k as related to z̄

(−)
k can

be obtained from the first equation of (2.9) as follows:

ȳ
(−)
k (t) = (ȳ

(−)
k−2(t)

′′ − F̄ (−)
z (t)z̄

(−)
k − F̄

(−)
k (t))/F̄ (−)

y (t),

by putting it into (2.9) and after some simplification, the following form is obtained:z̄
(−)
k (t)′′ = [Ḡz(t)− Ḡy(t)

F̄
(−)
z (t)

F̄
(−)
y (t)

]z̄
(−)
k + [

(ȳ
(−)
k−2(t)

′′ − F̄
(−)
k (t))Ḡy(t)

F̄
(−)
y (t)

+ Ḡk(t)],

z̄
(−)
k (0) = −Lkz(0), z̄

(−)
k (t0) = qk −Q

(−)
k z(0),

(2.10)
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as from condition 3, the existence of trivial solution for the linear part of the prob-
lem (2.10) is shown, hence solution of problem (2.10) exists Lin etc [4, p65-69].
Meanwhile, it is obvious that the problem (2.10) depends on Lkz(0) , Q

(−)
k z(0),

and the solution of the problem can be found by the Green function method after
solving Lkz(τ0), Q

(−)
k z(τ). Thus, the terms of ȳ

(−)
k (t), z̄

(−)
k (t), k ≥ 0 can be de-

fined. For the right problems, similar discussion can be made, and the details are
omitted.

The internal layer part is now to be considered. It should be pre-stated that the
consensus of “± ” is strictly adhered in the following discussion, except in special
cases. Problem of (2.7) is expanded in respect to the order of µ , and problems
to define respectively the terms of Q

(±)
k y(τ), Q

(±)
k z(τ), k ≥ 0 are obtained. In

which, equations and conditions of solution satisfied with Q
(±)
0 y(τ), Q

(±)
0 z(τ) are

as follows:

d2Q
(±)
0 y

dτ2
= F (±)(ȳ

(±)
0 (t0) +Q

(±)
0 y, z̄

(±)
0 (t0) +Q

(±)
0 z, t0, 0),

d2Q
(±)
0 z

dτ2
= 0,

Q
(±)
0 y(0) = p0 − ȳ

(±)
0 (t0), Q

(±)
0 y(±∞) = 0,

Q
(±)
0 z(0) = 0, Q

(±)
0 z(±∞) = 0,

(2.11)
as known from the second equation of problem (2.11) and from the conditions
of boundary value, it is evident that Q

(±)
0 z(τ) ≡ 0, and problem (2.11) may be

rewritten as: 
d2Q

(±)
0 y

dτ2
= F (±)(ȳ

(±)
0 (t0) +Q

(±)
0 y, q0, t0, 0),

Q
(±)
0 y(0) = p0 − ȳ

(±)
0 (t0), Q

(±)
0 y(±∞) = 0,

(2.12)

by setting ỹ(±)(τ) = ȳ
(±)
0 (t0) + Q

(±)
0 y(τ), ũ(±) =

dỹ(±)

dτ
, problem (2.12) may be

written as: 
dũ(±)

dτ
= F (±)(ỹ(±), q0, t0, 0),

dỹ(±)

dτ
= ũ(±),

ỹ(±)(0) = p0, ỹ(±)(±∞) = ȳ
(±)
0 (t0),

(2.13)

the eigenvalue of problem (2.13) at the point (ȳ(±)
0 (t0),0) is λ=±

√
F

(±)
y (ỹ(±), q0, t0,0),

hence, as known from condition 4, the point (ȳ
(±)
0 (t0), 0) are all saddle points.

By dividing the left(right) part of the first equation by the left(right) part of
the second equation in (2.13), the following equation is obtained:

dũ(±)

dỹ(±)
=

F (±)(ỹ(±), q0, t0, 0)

ũ(±)
,

integrating this equation, explicit formulas for the unstable manifold Ω(−) of the
fixed point ỹ(−) = ȳ

(−)
0 (t0) and for the stable manifold Ω(+) of the fixed point

ỹ(+) = ȳ
(+)
0 (t0) can be obtained:

Ω(−) : ũ(−) =
√
2

[∫ ỹ(−)(τ)

ȳ
(−)
0 (t0)

F (−)(y, q0, t0, 0) dy

] 1
2

,



110 X. Qi & M. Ni

Ω(+) : ũ(+) =
√
2

[∫ ỹ(+)(τ)

ȳ
(+)
0 (t0)

F (+)(y, q0, t0, 0) dy

] 1
2

.

The solvability condition for problem (2.12) can be formulated as the condition
that the boundary values belong to the domain of attraction of the corresponding
roots of the reduced equation. It can be written as follows:

Condition 5: Assume that {ỹ(±) = p0}
∩

Ω(−) ̸= ∅, and {ỹ(+) = p0}
∩

Ω(+) ̸=
∅, which means that∫ ỹ(−)

ȳ
(−)
0 (t0)

F (−)(y, q0, t0, 0) dy > 0 for all ỹ(−) ∈ (ȳ
(−)
0 (t0), p0],

and
∫ ỹ(+)

ȳ
(+)
0 (t0)

F (+)(y, q0, t0, 0) dy > 0 for all ỹ(+) ∈ [p0, ȳ
(+)
0 (t0)).

Based on the work of Ni etc [7, p24-29], if condition 5 is satisfied, problem (2.11)
has the solution Q

(±)
0 y(τ), and

|Q(−)
0 y(τ)| ≤ ceκτ , |Q(+)

0 y(τ)| ≤ ce−κτ ,

where c and κ are given real numbers.
Although the details of the boundary layer part are not expounded, in fact,

conditions, similar to condition 5, are also necessary to be fulfilled and consensus of
the proposed conditions is same with the only difference of expressing the variables.

After the discussion on Q
(±)
0 (τ), each term of Q

(±)
k (τ), k ≥ 1 will be studied one

by one. As mentioned previously in the expanding of the problem (2.7) with respect
to µ , equations and conditions for solution used to define Q

(±)
k y(τ), Q

(±)
k z(τ), k ≥

1 are obtained as follows(Q(±)
−1 y = 0, Q

(±)
−1 z = 0 ):

d2Q
(±)
k y

dτ2
= F̃ (±)

y (τ)Q
(±)
k y + F̃ (±)

z (τ)Q
(±)
k z +Q

(±)
k F (τ),

d2Q
(±)
k z

dτ2
= G̃y(τ)Q

(±)
k−2y + G̃z(τ)Q

(±)
k−2z +Q

(±)
k G(τ),

Q
(±)
k y(0) = pk − ȳ

(±)
k (t0), Q

(±)
k y(±∞) = 0,

Q
(±)
k z(0) = qk − z̄

(±)
k (t0), Q

(±)
k z(±∞) = 0,

(2.14)

where F̃
(±)
(·) (τ) = F

(±)
(·) (ȳ

(±)
0 (t0) + Q

(±)
0 y(τ), q0, t0, 0), G̃(·)(τ) = G(·)(ȳ

(±)
0 (t0) +

Q
(±)
0 y(τ), q0, t0, 0), while Q

(±)
k F (τ), Q

(±)
k G(τ) are known functions depending on

Q
(±)
j y(τ), Q

(±)
j z(τ), ȳ

(±)
j (t0), z̄

(±)
j (t0), 0 ≤ j ≤ k − 1 .

Functions Q
(±)
j y(τ) and Q

(±)
j z(τ) are exponentially decaying and ȳ

(±)
j (t0) and

z̄
(±)
j (t0) are bounded, therefore there exist positive numbers c, κ such that

|Q(−)
k F (τ)| ≤ ceκτ , |Q(+)

k F (τ)| ≤ ce−κτ , |Q(−)
k G(τ)| ≤ ceκτ , |Q(+)

k G(τ)| ≤ ce−κτ .

Noticing that the expression of Q
(±)
k z(τ) can be found by integrating twice, and

ũ(±)(τ) is a solution of corresponding homogeneous problem of (2.14), by Liouville
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formula and variation of constants formula Vasil’eva etc [15, p44], the solution of
the above problem have the following forms:

Q
(±)
k z(τ) =

∫ τ

±∞

∫ η

±∞
[G̃y(s)Q

(±)
k−2y + G̃z(s)Q

(±)
k−2z +Q

(±)
k G(s)] ds dη,

Q
(±)
k y(τ) = (pk − ȳ

(±)
k (t0))

ũ(±)(τ)

ũ(±)(0)
+H

(±)
k (τ), τ ≤ 0, (2.15)

H
(±)
k (τ) = ũ(±)(τ)

∫ τ

0

(ũ(±))−2

∫ η

±∞
ũ(±)(s)(F̃ (±)

z (s)Q
(±)
k z(s) +Q

(±)
k F (s)) ds dη,

and estimations for Q
(±)
k y(τ), Q

(±)
k z(τ) are obtained, and real numbers of c, κ

exist, thus giving:

|Q(−)
k y(τ)| ≤ ceκτ , |Q(−)

k z(τ)| ≤ ceκτ , (2.16)

|Q(+)
k y(τ)| ≤ ce−κτ , |Q(+)

k z(τ)| ≤ ce−κτ . (2.17)
Although every term of the formal asymptotic solution was discussed, some

parameters, such as pi and qi , are still unknown. Ways to define these parameters
will be carried on in the following. As mentioned before, the solution should be
first-order smooth, which means that derivative of the solution at the point t = t0
should be continuous, and the “connection method” can be used to determine these
parameters. The parameters p0 and q0 are to be defined first. Every term in the
following equations

d
dτ

Q
(−)
0 y(0) =

d
dτ

Q
(+)
0 y(0), z

(−)
0 (t0)

′ = z
(+)
0 (t0)

′, (2.18)

is related to p0 . In order to have the expression in terms of p0, the following form
is set:

H1(p0, q0) =

∫ p0

ȳ
(−)
0 (t0)

F (−)(y, q0, t0, 0) dy −
∫ p0

ȳ
(+)
0 (t0)

F (+)(y, q0, t0, 0) dy, (2.19)

according to the definition of H1(p0, q0), its continuity is ensured by the continuity
of F (±)(y, z, t, µ) . Owing to the fact that H1(ȳ

(−)
0 (t0), q0) ≤ 0, H1(ȳ

(+)
0 (t0), q0) ≥

0, and according to the intermediate value theorem, it is known that H1(p0, q0) =

0 has a solution of p0 = p0(q0) , satisfying ȳ
(−)
0 (t0) < p0(q0) < ȳ

(+)
0 (t0), and

d
dp0

H1(p0, q0) ̸= 0 because:

d
dp0

H1(p0, q0) =
F (−)(p0, q0, t0, 0)− F (+)(p0, q0, t0, 0)√∫ p0

ȳ
(−)
0 (t0)

F (−)(p0, q0, t0, 0) dy
̸= 0, (2.20)

which implies that p0 is locally unique.
Setting:

H2(q0) = (z̄
(−)
0 )′(t0, q0)− (z̄

(+)
0 )′(t0, q0), (2.21)

then q0 can be determinated by H2(q0) = 0.
Condition 6: It is assumed that H2(q0) = 0 has a solution q0, and:

d
dq0

H2(q0) =
d

dq0
[(z̄

(−)
0 )′(t0, q0)− (z̄

(+)
0 )′(t0, q0)] ̸= 0. (2.22)
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By virtue of condition 6, (p0, q0) exists and is locally unique.
After determination of p0, q0, pk and qk will be explored. Conditions to be

satisfied when k ≥ 1 are considered:

ȳ
(−)
k−1(t0)

′ +
d
dτ

Q
(−)
k y(0) = ȳ

(+)
k−1(t0)

′ +
d
dτ

Q
(+)
k y(0), (2.23)

z̄
(−)
k (t0)

′ +
d
dτ

Q
(−)
k+1z(0) = z̄

(+)
k (t0)

′ +
d
dτ

Q
(+)
k+1z(0), (2.24)

introduce (2.13) (2.15) into (2.23), and the following form is obtained after simplifi-
cation:

pk =[F (−)(p0, q0, t0, 0)− F (+)(p0, q0, t0, 0)]
−1[F (−)(p0, q0, t0, 0)ȳ

(−)
k (t0)

− F (+)(p0, q0, t0, 0)ȳ
(+)
k (t0)−

∫ 0

−∞
ũ(−)(s)f (−)(s) ds+

∫ 0

+∞
ũ(+)(s)f (+)(s) ds

− ũ(−)(0)ȳ
(−)
k−1(t0)

′ + ũ(+)(0)ȳ
(+)
k−1(t0)

′],

where f (−)(s)= F̃
(−)
z (s)Q

(−)
k z(s)+Q

(−)
k F (s), f (+)(s)= F̃

(+)
z (s)Q

(+)
k z(s)+Q

(+)
k F (s).

Consider (2.24), since

dQ(±)
k+1z(0)

dτ
=

∫ 0

±∞
G̃y(s)Q

(±)
k−1y(s) + G̃z(s)Q

(±)
k−1z(s) +Q

(±)
k+1G ds, (2.25)

is not related to qk, denote A =
dQ(+)

k+1z(0)

dτ
−

dQ(−)
k+1z(0)

dτ
, it is obvious that A is

a constant, hence (2.24) can be rewritten as:

z̄
(−)
k (t0)

′ − z̄
(+)
k (t0)

′ = A. (2.26)

Lemma 2.1. d
dqk

[z̄
(−)
k (t0)

′ − z̄
(+)
k (t0)

′] =
d

dq0
[z̄

(−)
0 (t0)

′ − z̄
(+)
0 (t0)

′] is true for
arbitrary k ≥ 0 .

Proof. As known from (2.10), the equation used to define z̄
(−)
k (t) may be written

in the following form:
z̄
(−)
k (t)′′ = A(t)z̄

(−)
k (t) +B(t), (2.27)

where A(t) = Ḡz(t)− Ḡy(t)
F̄

(−)
z (t)

F̄
(−)
y (t)

, B(t) =
(ȳ

(−)
k−2(t)

′′ − F̄
(−)
k (t))Ḡy(t)

F̄
(−)
y (t)

+ Ḡk(t) .

Set ξ =
d

dqk
z̄
(−)
k (t), and differentiate both sides of equation (2.27) with respect

to qk, problem used for defining ξ is obtained:

ξ′′ = A(t)ξ, ξ(0) = 0, ξ(t0) = 1. (2.28)

Meanwhile, set η =
d

dq0
z̄
(−)
0 (t), and differentiate both sides of equation (2.8)

with respect to q0, problem used for defining η is obtained:

η′′ = A(t)η, η(0) = 0, η(t0) = 1. (2.29)
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By virtue of condition 2, both problem (2.28) and (2.29) have unique solution:
d

dqk
z̄
(−)
k (t0) =

d
dq0

z̄
(−)
0 (t0).

Similarly, it can be proved:
d

dqk
z̄
(+)
k (t0) =

d
dq0

z̄
(+)
0 (t0),

Since both the equation and boundary value conditions of problem (2.10) for
defining z̄

(−)
k are linear, the following form is obtained:

z̄
(−)
k (t0)

′ − z̄
(+)
k (t0)

′ =
d

dqk
[z̄

(−)
k (t0)

′ − z̄
(+)
k (t0)

′]qk. (2.30)

As known from Lemma, equation (2.26) may be transformed into:
d

dq0
[z̄

(−)
0 (t0)

′ − z̄
(+)
0 (t0)

′]qk = A,

hence,
qk = [

d
dq0

z̄
(−)
0 (t0)

′ − d
dq0

z̄
(+)
0 (t0)

′]−1A, (2.31)

then, the parameters pk and qk are defined.

3. Existence of Solutions and Estimation of Remain-
der

The left and right problems above are all ordinary problem of boundary value of
Tikhonov system. Both the existence of solutions and the estimation of remain-
der are obvious (see Vasil’eva etc [10, p97] and Vasil’eva etc [14, p36–44]), what
needs prompt consideration are the existence and uniqueness and the asymptotic
estimation of internal layer. Thus, the assumption (2.1) is rewritten as:{

y(t0, µ) = p(µ) = p0 + µp1 + µ2p2 + . . .+ µn+1(pn+1 + δ1),

z(t0, µ) = q(µ) = q0 + µq1 + µ2q2 + . . .+ µn+1(qn+1 + δ2),
(3.1)

where pj , qj , j ≤ n + 1 are known quantities. According to existence of solutions
and estimation of remainder of left and right problems, the expression of asymptotic
solution is given as:

y(−)(t, µ) =

n+1∑
k=0

µk(ȳ
(−)
k (t) + Lky(τ0) +Q

(−)
k y(τ) +O(µn+1), 0 ≤ t ≤ t0,

y(+)(t, µ) =

n+1∑
k=0

µk(ȳ
(+)
k (t) +Rky(τ1) +Q

(+)
k y(τ) +O(µn+1), t0 ≤ t ≤ 1,

z(−)(t, µ) =

n+1∑
k=0

µk(z̄
(−)
k (t) + Lkz(τ0) +Q

(−)
k z(τ) +O(µn+1), 0 ≤ t ≤ t0,

z(+)(t, µ) =

n+1∑
k=0

µk(z̄
(+)
k (t) +Rkz(τ1) +Q

(+)
k z(τ) +O(µn+1), t0 ≤ t ≤ 1.

(3.2)
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Since y(t, µ), z(t, µ) are first-order smooth at the point t = t0, above solutions
should satisfy: 

d
dt

y(−)(t0, µ) =
d
dt

y(+)(t0, µ),

d
dt

z(−)(t0, µ) =
d
dt

z(+)(t0, µ).

(3.3)

Let M(p, µ)=
d
dt

y(−)(t0, µ)−
d
dt

y(+)(t0, µ), N(q, µ)=
d
dt

z(−)(t0, µ)−
d
dt

z(+)(t0, µ),
and after some simplification, the following form is obtained:

M(p, µ) = µn+1[ȳ(−)
n (t0)

′ − ȳ(+)
n (t0)

′ +
d
dτ

Q
(−)
n+1y(0)−

d
dτ

Q
(+)
n+1y(0)] +O(µn+1)

= µn+1[
F (−)(p0, q0, t0, 0)− F (+)(p0, q0, t0, 0)

ũ(0)
δ1] +O(µn+1),

N(q, µ) = µn+1[z̄(−)
n (t0)

′ − z̄(+)
n (t0)

′ +
d
dτ

Q
(−)
n+1z(0)−

d
dτ

Q
(+)
n+1z(0)] +O(µn+1)

= µn+1[
d

dq0
[z̄

(−)
0 (t0)

′ − z̄
(+)
0 (t0)

′]δ2] +O(µn+1),

based on condition 1, F (−)(p0, q0, t0, 0) ̸= F (+)(p0, q0, t0, 0), which means that the
coefficient of δ1 is not equal to zero, thus the unique solution δ1 = δ∗1 = O(1) can be
found. Similarly, based on condition 6, d

dq0
[z̄

(−)
0 (t0)

′− z̄
(+)
0 (t0)

′] ̸= 0 , which means
that the unique solution δ2 = δ∗2 = O(1) can be found. Hence, the smoothness of
the solution at the point t = t0 is guaranteed by these facts.

Theorem 3.1. Under conditions 1-6, asymptotic solutions of the problems ex-
pounded in this paper exists on [0,1], and can be expressed in the following form:

y(t, µ) =


y(−)(t, µ) =

n+1∑
k=0

µk(ȳ
(−)
k (t) + Lky(τ0) +Q

(−)
k y(τ) +O(µn+1), 0 ≤ t ≤ t0,

y(+)(t, µ) =

n+1∑
k=0

µk(ȳ
(+)
k (t) +Rky(τ1) +Q

(+)
k y(τ) +O(µn+1), t0 ≤ t ≤ 1,

z(t, µ) =


z(−)(t, µ) =

n+1∑
k=0

µk(z̄
(−)
k (t) + Lkz(τ0) +Q

(−)
k z(τ) +O(µn+1), 0 ≤ t ≤ t0,

z(+)(t, µ) =

n+1∑
k=0

µk(z̄
(+)
k (t) +Rkz(τ1) +Q

(+)
k z(τ) +O(µn+1), t0 ≤ t ≤ 1.

4. Example
The Dirichlet problem with boundary value conditions is considered:{

µ2y′′ = F (y, z, t, µ), z′′ = y + z, 0 ≤ t ≤ 1,

y(0) = −1, y(1) = 2, z(0) = 0, z(1) = 1,
(4.1)

where

F (y, z, t, µ) =

{
y + z + 2, 0 ≤ t ≤ 1

2 ,

y + z − 2, 1
2 ≤ t ≤ 1.

(4.2)



asymptotic solution to a type of piecewise-continuous. . . 115

Step 1: When µ = 0, φ(−)(z) = −z − 2, φ(+)(z) = 2− z can be found.
Step 2: Introduce φ(±) into problem (4.1), two problems used to define z̄

(±)
0

are obtained:
z̄
(−)
0 (t)′′ = −2, z̄

(−)
0 (0) = 0, z̄

(−)
0 (

1

2
) = q0, (4.3)

z̄
(+)
0 (t)′′ = 2, z̄

(+)
0 (

1

2
) = q0, z̄

(+)
0 (1) = 1, (4.4)

the following form is obtained by solving (4.3) and (4.4):
z̄
(−)
0 (t) = −t2 + (2q0 +

1

2
)t,

z̄
(+)
0 (t) = t2 + (

1

2
− 2q0)t+ 2q0 −

1

2
,

(4.5)

from the formula (2.21), q0 =
1

2
is found, hence:

z̄
(−)
0 (t) = −t2 +

3

2
t,

z̄
(+)
0 (t) = t2 − 1

2
t+

1

2
,

(4.6)

and 
ȳ
(−)
0 (t) = t2 − 3

2
t− 2,

ȳ
(+)
0 (t) = −t2 +

1

2
t+

3

2
.

(4.7)

Step 3: By substitution of (4.7) into left and right boundary value problem,
two problems used to define L0y(τ0), R0y(τ1) are obtained:

d2L0y

dτ20
= L0y, L0y(0) = 1, L0y(+∞) = 0, (4.8)

d2R0y

dτ21
= R0y, R0y(0) = 1, R0y(−∞) = 0, (4.9)

and by solving problems (4.8) and (4.9), L0y(τ0) = e−τ0 , R0y(τ1) = eτ1 are ob-
tained.

Step 4: By substitution of (4.7) into problem (2.11), two problems used to
define Q

(−)
0 y(τ), Q

(+)
0 y(τ) are obtained:

d2Q
(−)
0 y

dτ2
= Q

(−)
0 y, Q

(−)
0 y(0) = p0 +

5

2
, Q

(−)
0 y(−∞) = 0, (4.10)

d2Q
(+)
0 y

dτ2
= Q

(+)
0 y, Q

(+)
0 y(0) = p0 −

3

2
, Q

(+)
0 y(+∞) = 0, (4.11)

by solving problems (4.10) and (4.11), Q
(−)
0 y(τ) = (p0 +

5

2
)eτ , Q

(+)
0 y(τ) = (p0 −

3

2
)e−τ are found.

According to formula (2.18), p0 = −1

2
. Hence, Q

(−)
0 y(τ) = 2eτ , Q

(+)
0 y(τ) =

−2e−τ .
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Step 5:
The solutions of problem (4.1)-(4.2) can be written in the following form:

y(t, µ) =


t2 − 3

2
t− 2 + e−

t
µ + 2e

t− 1
2

µ +O(µ), 0 ≤ t ≤ 1

2
,

−t2 +
1

2
t+

3

2
+ e

t−1
µ − 2e

1
2
−t

µ +O(µ),
1

2
≤ t ≤ 1,

(4.12)

z(t, µ) =


−t2 +

3

2
t+O(µ), 0 ≤ t ≤ 1

2
,

t2 − 1

2
t+

1

2
+O(µ),

1

2
≤ t ≤ 1.

(4.13)
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