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EXACT SOLUTIONS AND DYNAMICS OF
THE RAMAN SOLITON MODEL IN

NANOSCALE OPTICAL WAVEGUIDES, WITH
METAMATERIALS, HAVING PARABOLIC

LAW NON-LINEARITY∗

Yan Zhou1,2,†

Abstract This paper investigate the Raman soliton model in nanoscale op-
tical waveguides, with metamaterials, having parabolic law non-linearity by us-
ing the method of dynamical systems. The functions q(x, t) = ϕ(ξ) exp(i(−kx+
ωt)) are solutions of the equation (1.1) that governs the propagation of Ra-
man solitons through optical metamaterials, where ξ = x − vt and ϕ(ξ) in
the solutions satisfy a singular planar dynamical system (1.5) which has two
singular straight lines. By using the bifurcation theory method of dynamical
systems to the equation of ϕ(ξ), bifurcations of phase portraits for this dy-
namical system are obtained under 28 different parameter conditions. Based
on those phase portraits, 62 exact solutions of system (1.5) including periodic
solutions, heteroclinic and homoclinic solutions, periodic peakons and peakons
as well as compacton solutions are derived.

Keywords Integrable system, exact solution, homoclinic and heteroclinic
orbit, periodic solution, peakon, compacton.
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1. Introduction
Recently, Xu, et al. [11] stated that the dynamics of temporal optical solitons is a
treasuretrove in the area of non-linear optics. The starting point is Maxwell’s equa-
tion from electromagnetic theory. Electromagnetic properties of complex materials,
with simultaneous negative dielectric permittivity and magnetic permeability, also
known as double negative material, have attracted a lot of attention in research in
the last decades. Novel and interesting features of these engineered materials, that
are also known as metamaterials, and their possible applications to support short
duration optical soliton pulses have been investigated.
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The dimensionless form of non-linear Schröinger’s equation (NLSE) that governs
the propagation of Raman solitons through optical metamaterials, is given by (see
[11] and [10])

iqt + aqxx + (c1|q|2 + c2|q|4 + c3|q|6)q

= iαqx + iλ(|q|2q)x + iν(|q|2)xq + θ1(|q|2q)xx + θ2|q|2qxx + θ3q
2q∗xx,

(1.1)

where a ̸= 0 and q(x, t) represents the complex-valued wave function with the
independent variables being x and t that represent spatial and temporal variables,
respectively. On the right-hand side of (1.1), α represents the coefficient of inter-
modal dispersion. This arises when the group velocity of light propagating through
a metamaterial is dependent on the propagation mode in addition to chromatic
dispersion. The factors λ and ν are accounted for self-steepening for preventing
shock-waves, and non-linear dispersion. The terms with θj , j = 1, 2, 3 arise in the
context of optical metamaterials. We notice that cj , j = 1, 2, 3 are coefficients of
the non-linear terms and together form the polynomial-law nonlinearity.

We have studied the model (1.1) (see [14]) with c2 = c3 = 0 and c1 ̸= 0 which
collapses to the kerr-law nonlinearity, and obtained some interesting results. Now,
we make c3 = 0 and c1 ̸= 0, c2 ̸= 0 in model (1.1), and obtain the equation

iqt + aqxx + (c1|q|2 + c2|q|4)q

= iαqx + iλ(|q|2q)x + iν(|q|2)xq + θ1(|q|2q)xx + θ2|q|2qxx + θ3q
2q∗xx.

(1.2)

The equation (1.2) is explained as the parabolic-law nonlinearity. Consider the
solutions of equation (1.2) having the form

q(x, t) = ϕ(ξ) exp(i(−kx+ ωt)), ξ = x− vt, (1.3)

where ϕ(ξ) represents the wave profile, k and ω represent the soliton frequency and
wave number respectively, v is speed of the wave. Substituting (1.3) into (1.2) and
separating the real and imaginary parts, we have

[a− (3θ1 + θ2 + θ3)ϕ
2]ϕ′′ − a1ϕ+ a3ϕ

3 + c2ϕ
5 − 6θ1ϕ(ϕ

′)2 = 0, (1.4r)

(v + α+ 2ak) + [3λ+ 2ν − 2k(3θ1 + θ2 − θ3)]ϕ
2 = 0, (1.4i)

where a1 = ω+αk+ak2, a3 = c1−kλ+(θ1+θ2+θ3)k
2, the notation ϕ′ = dϕ

dξ . The
imaginary part equation (1.4i), upon setting the coefficients of linearly independent
functions to zero, gives the relations:

v = −(α+ 2ak), 3λ+ 2ν = 2k(3θ1 + θ2 − θ3).

Assume that θ1 ̸= 0 and 3θ1+θ2+θ3 ̸= 0. Making the parameter transformation:
a0 = a

3θ1+θ2+θ3
, β = 6θ1

3θ1+θ2+θ3
, α0 = a1

6θ1
, α2 = − a3

6θ1
, α4 = − c2

6θ1
, equation (1.4r) is

equivalent to the following planar dynamical system:

dϕ

dξ
= y,

dy

dξ
=

βϕ(y2 + α0 + α2ϕ
2 + α4ϕ

4)

a0 − ϕ2
. (1.5)

System (1.5) is a five-parameter integrable planar dynamical system depending on
the parameter group (a0, β, α0, α2, α4).
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We notice that in [11], the author considered the case of θj = 0, j = 1, 2, 3, in
the equation (1.1) and obtained an implicit solution. Recently, Biswas, et al. [1, 2]
considered the case of c2 = 0 for equation (1.1). By using the so called “the simplest
equation method”, they obtained a few exact solutions of system (1.5) with α4 = 0.

More recently, Zhou, et al. [12, 13] and Sonmezoglu et al. [9] used the extended
trial equation method to get some exact travelling wave solutions of equation (1.1).
Unfortunately, the dynamical behavior of the traveling wave system (1.5) depending
on the parameters has not been studied completely before. Recently, in paper
[14], we have used the method of dynamical system to investigate the dynamical
behavior of system (1.5) with α4 = 0, and find all possible exact explicit parametric
representations for the traveling wave solutions of system (1.5).

System (1.5) has the first integrals as follows: for β ̸= −1,−2,

H(ϕ, y) = y2(ϕ2 − a0)
β + 1

(β+1)(β+2) [α4β(β + 1)ϕ4 + β(βα2 + 2α4a0 + 2α2)ϕ
2

+ (α0β
2 + 3α0β + a0α2β + 2a0α2 + 2a20α4 + 2α0)](ϕ

2 − a0)
β = h,

(1.6)
for β = −1,

H(ϕ, y) =
y2

ϕ2 − a0
− α4ϕ

2 +
a20α4 + a0α2 + α0

ϕ2 − a0
− ln

∣∣∣∣ α2

α2
0α

2
4(ϕ

2 − a0)

∣∣∣∣ = h, (1.7)

for β = −2,

H(ϕ, y) =
y2

(ϕ2 − a0)2
+

2α2 + 4a0α4

ϕ2 − a0
+

a20α4 + a0α2 + α0

(ϕ2 − a0)2
− 2α4 ln |ϕ2 − a0| = h.

(1.8)
Clearly, for a0 > 0, system (1.5) is a singular nonlinear traveling wave system of the
first class defined in [4,5] and [7] with two singular straight lines ϕ = ±√

a0. It is very
interesting that singular traveling systems have peakon, pseudo-peakon, periodic
peakon and compacton solution families. Periodic peakon is classical solution with
two time scales of a singular traveling system. Peakon is a limit solution of a family
of periodic peakons or a limit solution of a family of pseudo-peakons under two
classes of limit senses (see [8]). Compacton family is a solution family of system (1.5)
for which all solutions ϕ(ξ) have finite support set, i.e., the defined region of every
ϕ(ξ) with respect to ξ is finite and the value region of ϕ is bounded. Corresponding
to different types of phase orbits, in [4,5] and [7], the authors derived a classification
for different wave profiles of ϕ(ξ).

In this paper, we use the method of dynamical systems to investigate the dy-
namical behavior of system (1.5) with α4 ̸= 0 and find all possible exact explicit
parametric representations for all bounded solutions ϕ(ξ) of system (1.5). We shall
see that the solutions of system (1.5) have very abounded dynamical behavior.

The main result of this paper is the following Theorem.

Theorem 1.1. Suppose that a0βα0α2α4 ̸= 0.
(1) For the five-parameter system (1.5), under 28 different parameter conditions,

it has 28 different phase portraits given by Figure.1-Figure.5.
(2) Corresponding to different level curves defined by H(ϕ, y) = h in (1.6) with

β = 1, 2,−3,−4, system (1.5) has at least 62 different exact explicit solutions ϕ(ξ)
given by (3.3)-(4.11) and (5.3)-(6.7). These solutions give rise to 62 different exact
explicit solutions with the form (1.3) for equation (1.2).
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(3) System (1.5) has 18 exact explicit solitary wave solutions given by (3.5),
(3.11), (3.14), (3.20), (3.34) and (4.1) for β = 1; (3.7), (3.13), (3.15), (3.21) and
(3.35) for β = 2; (5.5), (5.12) and (6.2) for β = −3; (5.10), (5.13), (6.3) and (6.5)
for β = −4.

(4) System (1.5) has 11 exact explicit kink and anti-kink wave solutions given
by (3.3), (3.10), (4.2), (4.5) and (4.8) for β = 1; (3.9), (4.5) and (4.9) for β = 2;
(5.4) for β = −3; (5.9) and (6.6) for β = −4.

(5) System (1.5) has 2 exact explicit solitary cusp wave solutions (peakons) given
by (3.22) for β = 1 and (3.23) for β = 2.

(6) System (1.5) has 4 exact explicit periodic peakon solutions given by (3.24)
and (4.7) for β = 1; (3.25) and (4.7) for β = 2.

(7) System (1.5) has 22 exact explicit periodic wave solutions given by (3.12),
(3.16), (3.18), (3.26), (3.31), (3.32), (4.10) and (4.11) for β = 1; (3.17), (3.18),
(3.27), (3.33), (4.10) and (4.11) for β = 2; (5.3), (5.6), (5.7), (5.8), (5.11), (6.1)
and (6.7) for β = −3; (6.4) for β = −4.

(8) For a0 > 0, corresponding to the open orbit families of system (1.5) which
when |y| → ∞ tend to two singular straight lines ϕ = ±√

a0, there exist a lot of
compacton families of system (1.5).

The proof of this theorem is given in Section 2–6.
This paper is organized as follows. In section 2, we discuss bifurcations of phase

portraits of system (1.5). In section 3-6, we consider the exact solutions of system
(1.5) under different parameter conditions.

2. Bifurcations of phase portraits of system (1.5)
In this section, we consider bifurcations of phase portraits of system (1.5) depending
on the parameter group (a0, β, α0, α2, α4). We study the associated regular system
of system (1.5) as follows:

dϕ

dζ
= y(a0 − ϕ2),

dy

dζ
= βϕ(y2 + α0 + α2ϕ

2 + α4ϕ
4), (2.1)

where dξ = (a0 − ϕ2)dζ, for a0 − ϕ2 ̸= 0. System (2.1) has the same first integrals
as (1.6) − (1.8). But when a0 > 0, the vector fields defined by system (2.1) and
system (1.5) are different (see [6, 7]).

We assume that α0α2α4 ̸= 0, β ̸= −1,−2. Clearly, system (2.1) always has the
equilibrium point E0(0, 0). Write that f(p) = α0 + α2p+ α4p

2.
(i) When ∆ = α2

2 − 4α0α4 > 0, and α0α4 > 0, α2α4 < 0, there exist two
positive equilibrium points E1(ϕ1, 0) and E2(ϕ2, 0) of system (2.1), where ϕ1 < ϕ2

and when α2 < 0, α4 > 0, ϕ2
1 = 1

2α4
(−α2 −

√
∆), ϕ2

2 = 1
2α4

(−α2 +
√
∆); when

α2 > 0, α4 < 0, ϕ2
2 = 1

2α4
(−α2 −

√
∆), ϕ2

1 = 1
2α4

(−α2 +
√
∆).

(ii) When ∆ > 0, α0α4 < 0, system (2.1) has only one positive equilibrium point
E1(ϕe, 0) where ϕ2

e = 1
2α4

(−α2+
√
∆) , if α4 > 0 or ϕ2

e = 1
2α4

(−α2−
√
∆), if α4 < 0.

(iii) When ∆ = 0 and α2α4 < 0, system (2.1) has a positive double equilibrium
point Ed

(√
− α2

2α4
, 0
)
.

In addition, when a0 > 0, if f(a0) < 0, then, there are four equilibrium points
Esj(∓

√
a0,∓Ys), j = 1, 2, 3, 4 of system (2.1) in two straight lines ϕ = ∓√

a0, where
Ys =

√
−f(a0).
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Let M(ϕj , yj) be the coefficient matrix of the linearized system of system (2.1)
at an equilibrium point Ej(ϕj , yj) and J(ϕj , yj) = detM(ϕj , yj). We have

J(0, 0)=−a0α0β, J(ϕj , 0)=−β(a0−ϕ2
j )(α0+3α2ϕ

2
j+5α4ϕ

4
j ), J(

√
a0, Ys)=−4βa0Y

2
s ,

(traceM(
√
a0, Ys))

2 − 4J(
√
a0, Ys) = 4a0Y

2
s (1 + β)2.

By the theory of planar dynamical systems (see [7]), for an equilibrium point of
a planar integrable system, if J < 0, then the equilibrium point is a saddle point;
If J > 0 and (TriceM)2 − 4J < 0(> 0), then it is a center point (a node point); if
J = 0 and the Poincaré index of the equilibrium point is 0, then this equilibrium
point is a cusp.

Write that h0 = H(0, 0), hj = H(ϕj , 0) and hs = H(
√
a0, Ys) = 0, for β > 0

and hs = ∞ for β < 0, where H(ϕ, y) is defined by (1.6).
We consider the case of system (1.5) has two positive equilibrium points. Espe-

cially, for β = 1, 2 and β = −3,−4, we can get exact explicit parametric represen-
tations for the solitary wave solutions, kink and anti-kink wave solutions and some
periodic solutions.

When β = 1, 2 and β = −3,−4, the Hamiltonian (1.6) becomes respectively as
follows:

H1(ϕ, y)=y2(ϕ2−a0)+
1

6
(ϕ2−a0)[2α4ϕ

4+(3α2+2a0α4)ϕ
2+(6α0+3a0α2+2a

2
0α4)] (2.2)

H2(ϕ, y)=y2(ϕ2−a0)
2+

1

12
(ϕ2−a0)2[6α4ϕ

4+4(2α2+a0α4)ϕ
2+(12α0+4a0α2+2a

2
0α4)]

(2.3)

H−3(ϕ, y)=
y2

(ϕ2−a0)3
+
6α4ϕ

4+(3α2−6a0α4)ϕ
2+2a20α4−a0α2+2α0

2(ϕ2−a0)3
(2.4)

and

H−4(ϕ, y) =
y2

(ϕ2 − a0)4
+

6α4ϕ
4 + 4(α2 − a0α4)ϕ

2 + (3α0 + a20α4 − a0α2)

3(ϕ2 − a0)4
. (2.5)

By using the above information to do qualitative analysis, we have the following
bifurcations of the phase portraits of system (1.5) shown in Figure.1-Figure.5.

1. The case β = 1, 2,∆ > 0, α0α4 > 0, α0 > 0, α2 < 0. In this case, the origin
E0(0, 0) is a saddle point.

We first assume that √
a0 > ϕ2. Then, when h2 < h0 < h1, we have phase

portrait Figure.1 (a1). When h2 =h0 < h1, we have phase portrait Figure.2 (a2).
When h0 <h2 < h1, we have phase portrait Figure.2 (a3). For three fixed three-
parameter groups (α0, α2, α4) satisfying the conditions of case 1, we decrease the
parameter a0, then the first fixed three-parameter group gives the bifurcations of
the phase portraits of system (1.5) shown in Figure.1 (a1)-(g).
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Figure.1 The bifurcations of phase portraits of system (1.5) for β = 1, 2

(a1)
√
a0 > ϕ2, h2 < h0 < h1. (b1)

√
a0 = ϕ2, Ys = 0, h2 = 0 < h0 < h1. (c)

ϕ1 <
√
a0 < ϕ2, h2 < 0 < h0 < h1. (d) ϕ1 <

√
a0 < ϕ2, h2 < 0 = h0 < h1. (e)

ϕ1 <
√
a0 < ϕ2, h2 < h0 < 0 < h1. (f) √

a0 = ϕ1, h2 < h0 < 0 = h1, Ys = 0. (g)√
a0 < ϕ1, h2 < h0 < h1. The values of h0, h1, h2 are obtained with β = 1.

The second fixed three-parameter group gives the bifurcations of the phase por-
traits of system (1.5) shown in Figure.2 (a2), (b2) and Figure.1 (e)-(g). The third
fixed three-parameter group gives the bifurcations of the phase portraits of system
(1.5) shown in Figure.2 (a3), (b3) and Figure.1 (e)-(g).
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Figure.2 The bifurcations of phase portraits of system (1.5) for β = 1, 2

(a2)
√
a0 > ϕ2, h2 = h0 < h1 (b2)

√
a0 = ϕ2, h2 = h0 = 0 < h1. (a3)

√
a0 > ϕ2, h0 <

h2 < h1 (b3)
√
a0 = ϕ2, h0 < h2 = 0 < h1. The values of h0, h1, h2 are obtained

with β = 1.

2. The case β = 1, 2,∆ > 0, α0α4 > 0, α0 < 0, α2 > 0. In this case, the origin
E0(0, 0) is a center point.

For a fixed three-parameter group (α0, α2, α4) satisfying the conditions in case
2, we vary the parameter a0 from √

a0 > ϕ2 to √
a0 < ϕ1. Then, we have the

bifurcations of phase portraits of system (1.5) shown in Figure.3 (a)-(f).
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Figure. 3 The bifurcations of phase portraits of system (1.5) for β = 1, 2

(a) ϕ2 < ϕM <
√
a0, 0 < h1 < h0 < h2. (b) ϕ2 <

√
a0, h1 = 0 < h0 < h2. (c) ϕ2 <√

a0, h1 < h0 < 0 < h2. (d) √
a0 = ϕ2, h1 < h0 < 0 = h2. (e) ϕ1 <

√
a0 < ϕ2, h1 <

h0 < 0 < h2. (f) √
a0 = ϕ1, h1 = 0 < h0 < h2. (g) 0 <

√
a0 < ϕ1, h1 < 0 < h0 < h2.

ϕM is the ϕ−coordinate of the right homoclinic orbit passing through the positive
ϕ−axis. The values of h0, h1, h2 are obtained with β = 1.

3. The case β = −3,−4,∆ > 0, α0α4 > 0, α0 > 0, α2 < 0. In this case, the
origin E0(0, 0) is a center point.

For a fixed three-parameter group (α0, α2, α4) satisfying the conditions in case
3, we vary the parameter a0 from √

a0 > ϕ2 to √
a0 < ϕ1. Then, we have the

bifurcations of phase portraits of system (1.5) shown in Figure.4 (a)-(e).
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Figure. 4 The bifurcations of phase portraits of system (1.5) for β = −3,−4

(a) √
a0 > ϕ2, h1 < h0 < h2 < 0. (b) √

a0 = ϕ2, h1 < h0 < 0 < h2 = ∞. (c)
ϕ1 <

√
a0 < ϕ2, h1 < h0 < 0 < h2. (d) √

a0 = ϕ1, h0 < 0 < h2. (e) 0 <
√
a0 <

ϕ1, h0 < h1 < 0 < h2. The values of h0, h1, h2 are obtained with β = −3.

4. The case β = −3,−4,∆ > 0, α0α4 > 0, α0 < 0, α2 > 0. In this case, the
origin E0(0, 0) is a saddle point.

For a fixed three-parameter group (α0, α2, α4) satisfying the conditions in case
4, we vary the parameter a0 from √

a0 > ϕ2 to √
a0 < ϕ1. Then, we have the

bifurcations of phase portraits of system (1.5) shown in Figure. 5 (a)-(e).
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Figure. 5 The bifurcations of phase portraits of system (1.5) for β = −3,−4

(a) √
a0 > ϕ2, h2 < h0 < h1. (b) √

a0 = ϕ2, h0 < h1. (c) ϕ1 <
√
a0 < ϕ2, h2 < 0 <

h0 < h1. (d) √
a0 = ϕ1, h2 < 0 < h0. (e) 0 <

√
a0 < ϕ1, h2 < 0 < h1 < h0. The

values of h0, h1, h2 are obtained with β = −3.
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3. Exact parametric representations of solutions of
system (1.5) when β = 1, 2 in Figure.1 and Fig-
ure.2

In this section, we discuss possible parametric representations of the level curves
defined by Hj(ϕ, y) = h, j = 1, 2 in (2.2) and (2.3) for the case 1 in section 2. In
this case, the parameter conditions ∆ > 0, α0α4 > 0, α0 > 0, α2 < 0 hold.

Notice that for j = 1, 2,Hj(ϕ, y) = h can be written as

y2 =
A0 − α0ϕ

2 − 1
2α2ϕ

4 − 1
3α4ϕ

6

ϕ2 − a0
≡ F6(ϕ)

ϕ2 − a0
, A0 = h+ a0α0 +

1

2
α2a

2
0 +

1

3
α4a

3
0.

(3.1)
and

y2 =
B0 + 2a0α0ϕ

2 + (a0α2 − α0)ϕ
4 + 2

3 (a0α4 − α2)ϕ
6 − 1

2α4ϕ
8

(ϕ2 − a0)2
≡ F8(ϕ)

(ϕ2 − a0)2
,

(3.2)
where B0 = h− a20α0 − 1

3α2a
3
0 − 1

6α4a
4
0.

By using the first equation of system (1.5), we know that ξ =
∫ ϕ

ϕ0

√
ϕ2−a0

F6(ϕ)
dϕ

and ξ =
∫ ϕ

ϕ0

|ϕ2−a0|dϕ√
F8(ϕ)

. Obviously, if and only if polynomial F6(ϕ) and F8(ϕ) can
be decomposed into a product of quadratic factors, then the two integrals can be
solved.

3.1. The case of Figure.1 (a1).
(i) For β = 1, corresponding to the two heteroclinic orbits defined by H1(ϕ, y) =

h2, we have y2 =
α4(ϕ

2
2−ϕ2)2(ϕ2+r21)
3(a0−ϕ2) , where r21 = α2+2

√
∆

2α4
. By using the first equation

of system (1.5), we obtain
√

4α4

3 ξ =
∫ u

0
(a0−u)du

(ϕ2
2−u)

√
(a0−u)u(u+r21)

, where u = ϕ2. It gives
rise to the following parametric representations of kink and anti-kink wave solutions
of system (1.5):

ϕ(χ) = ±kr1sn(χ,k)
dn(χ,k) , χ ∈

(
−sn−1

(
ϕ2

k
√

r21+ϕ2
2

, k

)
, sn−1

(
ϕ2

k
√

r21+ϕ2
2

, k

))
,

ξ(χ) =

√
3

α4

(r21+ϕ2
2)

[√
a0 + r21χ+

r21(a0−ϕ2
2)

ϕ2
2

√
a0+r21

Π(arcsin(sn(χ, k)), α̃2
1, k)

]
,

(3.3)

where α̃2
1 = k2

(
1 +

r21
ϕ2
2

)
, k2 = a0

a0+r21
.

Corresponding to the unstable manifold of the saddle point E2(ϕ2, 0) given by
H1(ϕ, y) = h2 in the upper phase plane tending to the straight line ϕ =

√
a0

when y → ∞, we have
√

4α4

3 ξ =
∫ a0

u
(a0−u)du

(u−ϕ2
2)
√

(a0−u)u(u+r21)
. Thus, we obtain the

parametric representation of a bounded solution of system (1.5) as follows:

ϕ(χ) =
√
a0cn(χ, k), χ ∈

(
−cn−1

(
ϕ2√
a0
, k
)
, 0
)
,

ξ(χ) =
√

3
α4(a0+r21)

(r21 + ϕ2
2)
[
−χ+Π(arcsin(sn(χ, k)), α̃2

2, k)
]
,

(3.4)

where α̃2
2 = a0

a0−ϕ2
2
, k2 = a0

a0+r21
.
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The level curves defined by H1(ϕ, y) = h0 are two homoclinic orbits and two
open curves which passing through ϕ−axis at the points (±r1, 0) and tending to
the straight lines ϕ = ±√

a0 when |y| → ∞, respectively, where h0 = − 1
6a0(6α0 +

3a0α2+2a20α4). Corresponding to the two homoclinic orbits, we have y2 =
α4ϕ

2(r21−ϕ2)(ϕ2
M−ϕ2)

3(a0−ϕ2) ,

where r21 =
3|α2|+

√
9α2

2−48α0α4

4α4
, ϕ2

M =
3|α2|−

√
9α2

2−48α0α4

4α4
. Hence, we get

√
4α4

3 ξ =∫ ϕ2
M

u
(a0−u)du

u
√

(a0−u)(r21−u)(ϕ2
M

−u)
. It give rise to the following solitary wave solutions of

system (1.5):

ϕ(χ) = ±
(
r21 −

r21−ϕ2
M

cn2(χ,k)

) 1
2

, χ ∈
(
−cn−1

(√
1− ϕ2

M

r21
, k
)
, cn−1

(√
1− ϕ2

M

r21
, k
))

,

ξ(χ) =

√
3

α4

r21

√
a0−ϕ2

M

[
(a0 − r21)χ+

a0(r
2
1−ϕ2

M )

ϕ2
M

Π(arcsin(sn(χ, k)), α̃2
3, k)

]
,

(3.5)

where α̃2
3 =

r21
ϕ2
M
, k2 =

a0−r21
a0−ϕ2

M
.

Corresponding to the open curves passing through the points (±r1, 0), we have√
4α4

3 ξ =
∫ a0

u
(a0−u)du

u
√

(a0−u)(u−r21)(u−ϕ2
M )

. Therefore, we obtain the following two com-
pacton solutions:

ϕ(χ) = ±
(
a0 − (a0 − r21)sn2(χ, k)

) 1
2 , χ ∈ (−K(k),K(k)),

ξ(χ) =

√
3

α4√
a0−ϕ2

M

[
−χ+Π(arcsin(sn(χ, k)), α̃2

4, k)
]
,

(3.6)

where k2 =
a0−r21
a0−ϕ2

M
, α̃2

4 =
a0−r21

a0
.

(ii) For β = 2, the level curves defined by H2(ϕ, y) = h0 are two homo-
clinic orbits and four open curves which passing through ϕ−axis at the points
(±r1, 0), (±r2, 0), r2 <

√
a0 < r1 and tending to the straight lines ϕ = ±√

a0 when
|y| → ∞, respectively, where h0 = − 1

6a
2
0(6α0 + 2a0α2 + a20α4).

Corresponding to two homoclinic orbits, we have
√
2α4ξ=

∫ ϕ2
M

u
(a0−u)du

u
√

(r21−u)(r22−u)(ϕ2
M−u)

.

We have the following solitary wave solutions of system (1.5):

ϕ(χ) = ±
(
r22 −

r22−ϕ2
M

cn2(χ,k)

) 1
2

, χ ∈
(
−cn−1

(√
1− ϕ2

M

r22
, k
)
, cn−1

(√
1− ϕ2

M

r22
, k
))

,

ξ(χ) =
√
2

r22

√
α4(r21−ϕ2

M )

[
(a0 − r22)χ+

a0(r
2
2−ϕ2

M )

ϕ2
M

Π(arcsin(sn(χ, k)), α̃2
5, k)

]
,

(3.7)

where α̃2
5 =

r22
ϕ2
M
, k2 =

r21−r22
r21−ϕ2

M
.

Corresponding to the open curves passing through the points (±r1, 0), we have
√
2α4ξ =

∫ r21
u

(u−a0)du

u
√

(r21−u)(u−r22)(u−ϕ2
M )

. Therefore, we obtain the following two com-
pacton solutions:

ϕ(χ) = ±
(
r21 − (r21 − r22)sn2(χ, k)

) 1
2 , χ ∈

(
−sn−1

(√
r21−a0

r21−r22
, k
)
, sn−1

(√
r21−a0

r21−r22
, k
))

,

ξ(χ) =
√
2

r21

√
α4(r21−ϕ2

M )

[
(r21χ− a0Π(arcsin(sn(χ, k)), α̃2

6, k)
]
,

(3.8)
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where k2 =
r21−r22
r21−ϕ2

M
, α̃2

6 =
r21−r22

r21
. Similarly, corresponding to the open curves passing

through the points (±r2, 0), we can obtain two compacton solutions.
The level curves defined by H2(ϕ, y) = h2 are two heteroclinic orbits connect-

ing the equilibrium points (±ϕ2, 0) and two open curves which passing through
ϕ−axis at the points (±r1, 0), a0 < r21 and tending to the straight lines ϕ =
±√

a0 when |y| → ∞, respectively. For two heteroclinic orbits, we have
√
2α4ξ =∫ u

0
(a0−u)du

(ϕ2
2−u)

√
(r21−u)u(u+r22)

. It gives rise to the following parametric representations of
kink and anti-kink wave solutions of system (1.5):

ϕ(χ) = ±kr2sn(χ,k)
dn(χ,k) , χ ∈

(
−sn−1

(
ϕ2

k
√

r22+ϕ2
2

, k

)
, sn−1

(
ϕ2

k
√

r21+ϕ2
2

, k

))
,

ξ(χ) =
√
2

(r22+ϕ2
2)
√

α4(r21+r22)

[√
a0 + r22χ+

r22(a0−ϕ2
2)

ϕ2
2

Π(arcsin(sn(χ, k)), α̃2
7, k)

]
,

(3.9)

where α̃2
7 = k2

(
1 +

r22
ϕ2
2

)
, k2 =

r21
r21+r22

.

3.2. The case of Figure.2 (a2).
(i) For β = 1, corresponding to the four heteroclinic orbits defined by H1(ϕ, y) =

h2 = h0 connecting the equilibrium points (±ϕ2, 0) and (0, 0), we have
√

α4

3 ξ =∫ ϕ

ϕ1

√
a0−ϕ2dϕ

ϕ(ϕ2
2−ϕ2)

=
∫ ϕ

ϕ1

dϕ

ϕ
√

a0−ϕ2
+ (a0 − ϕ2

2)
∫ ϕ

ϕ1

dϕ

ϕ(ϕ2
2−ϕ2)

√
a0−ϕ2

. thus, we obtain the
following parametric representation of the right heteoclinic orbit of system (1.5):

ϕ(χ) = 4a0P1

P 2
1 e

√
a0χ+4a0e

−√
a0χ ,

ξ(χ) =
√

3
α4

[
χ+

√
a0−ϕ2

2

2ϕ2
2

(
ln

(√
a0−ϕ2

2

√
a0−ϕ2(χ)+a0

)2
−ϕ2

2ϕ
2(χ)

ϕ2
2−ϕ2(χ)

−2
√

1− ϕ2
2

a0
ln

√
a0(a0−ϕ2(χ))+a0

ϕ(χ) −B0

)]
,

(3.10)

where

P1 =
2
√

a0(a0−ϕ2
1+2a0

ϕ1
,

B0 = ln

(√
a0−ϕ2

2

√
a0−ϕ2

1+a0

)2
−ϕ2

2ϕ
2
1

ϕ2
2−ϕ2

1
− 2
√

1− ϕ2
2

a0
ln

√
a0(a0−ϕ2

1)+a0

ϕ1
.

(ii) For β = 2, corresponding to the four heteroclinic orbits defined by H2(ϕ, y) =
h2 = h0 connecting the equilibrium points (±ϕ2, 0) and (0, 0), we have y2 =
α4(r

2
1−ϕ2)(ϕ2

2−ϕ2)2ϕ2

2(a0−ϕ2)2 . Thus, from
√

α4

2 ξ =
∫ ϕ

ϕ1

(a0−ϕ2)dϕ

ϕ(ϕ2
2−ϕ2)

√
r21−ϕ2

=
∫ ϕ

ϕ1

dϕ

ϕ
√

r21−ϕ2
+(a0−

ϕ2
2)
∫ ϕ

ϕ1

dϕ

ϕ(ϕ2
2−ϕ)

√
r21−ϕ2

, we obtain the similar parametric representation of the right

heteoclinic orbit of system (1.5) as (3.10), where a0 be changed to r21,
√

3
α4

be

changed to
√

2
α4

.

3.3. The case of Figure.2 (a3).
(i) For β = 1, corresponding to the two homoclinic orbits defined by H1(ϕ, y) =

h2 to the equilibrium points (±ϕ2, 0), we have y2 =
α4(ϕ

2
2−ϕ2)2(ϕ2−ϕ2

m)
3(a0−ϕ2) . Hence, from
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α4

3 ξ =
∫ ϕ

ϕm

(a0−ϕ2)dϕ

(ϕ2
2−ϕ2)

√
(a0−ϕ2)(ϕ2−ϕ2

m)
, we obtain the following parametric represen-

tations of the two homoclinic orbits of system (1.5):

ϕ(χ) = ± ϕm

dn(χ,k) , χ ∈
(
−dn−1

(
ϕm

ϕ2
, k
)
,dn−1

(
ϕm

ϕ2
, k
))

,

ξ(χ) =
√

3
a0α4

[
a0

ϕ2
2
χ+

ϕ2
m(a0−ϕ2

2)

ϕ2
2(ϕ

2
2−ϕ2

m)
Π(arcsin(sn(χ, k)), α̃2

8, k)
]
,

(3.11)

where k2 =
a0−ϕ2

m

a0
, α̃2

8 =
k2ϕ2

2

ϕ2
2−ϕ2

m
.

(ii) For β = 2, corresponding to the two homoclinic orbits defined by H2(ϕ, y) =

h2 to the equilibrium points (±ϕ2, 0), we have y2 =
α4(r

2
1−ϕ2)(ϕ2

2−ϕ2)2(ϕ2−ϕ2
m)

2(a0−ϕ2)2 ,

ϕm < ϕ2 <
√
a0 < r1. Hence, from

√
α4

2 ξ =
∫ ϕ

ϕm

(a0−ϕ2)dϕ

(ϕ2
2−ϕ2)

√
(r21−ϕ2)(ϕ2−ϕ2

m)
, we obtain

the similar parametric representations of the two homoclinic orbits of system (1.5)
as (3.11).

3.4. The case of Figure.1 (b1).
(i) For β = 1, the level curve defined by H1(ϕ, y) = h2 = 0 is a closed orbit

which contacts to two straight lines ϕ = ±√
a0 at the points (±√

a0, 0). We have
y2 = 1

3α4(a0 − ϕ2)(ϕ2 + r21),
√

α4

3 ξ =
∫ ϕ

0
dϕ√

(a0−ϕ2)(ϕ2+r21)
. Thus, we obtain the

following parametric representation of periodic solution of system (1.5):

ϕ(ξ) =
kr1sn(ω1ξ, k)

dn(ω1ξ, k)
, (3.12)

where k2 = a0

a0+r21
, ω1 =

√
α4(a0+r21)

3 .

Corresponding to the two homoclinic orbits defined by H1(ϕ, y) = h0 we have
the similar parametric representations of solitary wave solutions of system (1.5) as
(3.5).

(ii) For β = 2, the level curve defined by H2(ϕ, y) = h2 = 0 is a closed orbit
which contacts to two straight lines ϕ = ±√

a0 at the points (±√
a0, 0). We have

y2 = 1
2α4(a0−ϕ2)(ϕ2+r21),

√
α4

2 ξ =
∫ ϕ

0
dϕ√

(a0−ϕ2)(ϕ2+r21)
. Thus, we obtain the similar

parametric representation of periodic solution of system (1.5) as (3.12).
Corresponding to the two homoclinic orbits defined by H2(ϕ, y) = h0, we have

y2 =
α4ϕ

2(ϕ2
M−ϕ2)[(ϕ2−b1)

2+a2
1]

2(a0−ϕ2)2 . Hence, we obtain the following parametric represen-
tations of two solitary wave solutions of system (1.5):

ϕ(χ) = ±
(

(ϕ2
M−A1)+(ϕ2

M+A1)cn(χ,k)
1+cn(χ,k)

) 1
2

, χ ∈
(
−cn−1

(
A1−ϕ2

M

A1+ϕ2
M
, k
)
, cn−1

(
A1−ϕ2

M

A1+ϕ2
M
, k
))

ξ(χ) = 1√
2α4A1

[
1−ϕ2

M−A1

ϕ2
M+A1

χ− ϕ2
M−A1

2ϕ2
M (ϕ2

M+A1)
Π
(
arccos(cn(χ, k)), α̃2

9

α̃2
9−1

, k)
)
+ 1

2ϕ2
M
f1

]
,

(3.13)

where A1 = (b1 − ϕ2
M )2 + a1, k

2 =
A1−b1+ϕ2

M

2A1
, α̃9 =

ϕ2
M+A1

ϕ2
M−A1

, the function f1 can be
seen in [3](361.54).

3.5. The case of Figure.2 (b2).
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For β = 1, 2, the level curves defined by H1(ϕ, y) = h2 = 0 and H2(ϕ, y) =
h2 = 0 are two homoclinic orbits contacting two straight lines ϕ = ±√

a0 at the
points (±√

a0, 0), ϕ2 =
√
a0. In these cases, we have y2 = α4

3 ϕ2(a0 − ϕ2) and y2 =
α4

2 ϕ2(a0−ϕ2). Thus, we have the following parametric representations of two solitary
wave solutions of system (1.5):

ϕ(ξ) = ±
√
a0sech

(√
a0α4

3
ξ

)
, (3.14)

and
ϕ(ξ) = ±

√
a0sech

(√
a0α4

2
ξ

)
. (3.15)

3.6. The case of Figure.2 (b3).
For β = 1, 2, the level curves defined by H1(ϕ, y) = h2 = 0 and H2(ϕ, y) =

h2 = 0 are two periodic orbits contacting two straight lines ϕ = ±√
a0 at the points

(±√
a0, 0), ϕ2 =

√
a0. In these cases, we have y2 = α4

3 (a0 − ϕ2)(ϕ2 − r2m) and
y2 = α4

2 (a0 −ϕ2)(ϕ2 − r2m). Thus, we have the following parametric representations
of two periodic wave solutions of system (1.5):

ϕ(ξ) = ± rm

dn
(√

a0α4

3 ξ, k
) (3.16)

and
ϕ(ξ) = ± rm

dn
(√

a0α4

2 ξ, k
) , (3.17)

where k2 = 1− r2m
a0

.

3.7. The case of Figure.1 (c).
(i) For β = 1, 2, the level curves defined by H1(ϕ, y) = 0 and H2(ϕ, y) = 0

are two global closed orbits enclosing five equilibrium points (±ϕ1, 0), (±ϕ2, 0) and
(0, 0), which pass through two straight lines ϕ = ±√

a0 and intersects the ϕ−axis at
two points (±rM , 0), respectively. We have y2 = 1

3α4(r
2
M − ϕ2)(ϕ2 + r21) and y2 =

1
2α4(r

2
M − ϕ2)(ϕ2 + r21). Thus, we obtain the following parametric representations

of two periodic solutions of system (1.5):

ϕ(ξ) = rMcn(Ωjξ, k), j = 1, 2, ξ ∈ (−∞,∞), (3.18)

where k2 =
r2M

r2M+r21
,Ω1 =

√
α4(r2M+r21)

3 ,Ω2 =

√
α4(r2M+r21)

2 .

Notice that the two straight lines ϕ = ±√
a0 separate the inner region of the

above closed curve to three areas for which there exist three period annuluses sur-
rounding the centers (±ϕ2, 0) and other three equilibrium points (±ϕ1, 0) and the
origin (0, 0), defined by Hj(ϕ, y) = h, j = 1, 2, h ∈ (h2, 0) and h ∈ (0, h0), respec-
tively. When h → 0, these three families of periodic orbits give rise to three families
of periodic peakon solutions of system (1.5). As their limit orbits, two arches define
two periodic peakons with the parametric representations (see Figure.6 (b), (c)):

ϕ(ξ) = ±rMcn(Ωjξ, k), ξ ∈
(
− 1

Ωj
cn−1

(√
a0

rM
, k

)
,
1

Ωj
cn−1

(√
a0

rM
, k

))
. (3.19a)
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The curve quadrangle enclosing three equilibrium points also gives rise to a
periodic peakon with the parametric representations (see Figure.6 (a)):

ϕ(ξ) = ±rMcn(Ωjξ, k), j = 1, 2,

ξ ∈
(
−2K(k)

Ωj
+

1

Ωj
cn−1

(√
a0

rM
, k

)
,−2K(k)

Ωj
+

2

Ωj
cn−1

(√
a0

rM
, k

))
, (3.19b)
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Figure. 6 Periodic peakon and peakon solutions of system (1.5) for β = 1, 2

Corresponding to the two homoclinic orbits defined by H1(ϕ, y) = h0 we have
the same parametric representations of solitary wave solutions of system (1.5) as
(3.5).

The level curves defined by H2(ϕ, y) = h0 contain two homoclinic orbits to the
origin and two periodic solutions enclosing the equilibrium points (±ϕ2, 0). For the
two homoclinic orbits, we have the same parametric representations of solitary wave
solutions of system (1.5) as (3.7). For the two periodic orbits, we have the same
parametric representations of periodic wave solutions of system (1.5) as (3.8) with
χ ∈ (−∞,∞).

3.8. The case of Figure.1 (d).
For β = 1, 2, the level curves defined by H1(ϕ, y) = h0 = 0 and H2(ϕ, y) = h0 = 0

are two homoclinic orbits passing through two straight lines ϕ = ±√
a0 at the points

(±√
a0,±Ys). In these cases, we have y2 = α4

3 ϕ2(ϕ2
M − ϕ2) and y2 = α4

2 ϕ2(ϕ2
M −

ϕ2). Thus, we have the following parametric representations of two solitary wave
solutions of system (1.5):

ϕ(ξ) = ±ϕM sech
(
ϕM

√
α4

3
ξ

)
, (3.20)

and
ϕ(ξ) = ±ϕM sech

(
ϕM

√
α4

2
ξ

)
. (3.21)

Notice that as a limit solution of a family of periodic orbits defined by H1(ϕ, y) =
h, h ∈ (0, h1) and H2(ϕ, y) = h, h ∈ (h1, 0), enclosing the equilibrium point (ϕ1, 0),
there exists a curve triangle which gives rise to a peakon solution and an anti-peakon
solution of system (1.5) with the parametric representations (see Figure.6 (d)):

ϕ(ξ) = ±ϕM sech
(
ϕM

√
α4

3
ξ

)
, ξ ∈ (−∞,−ξp1), (ξp1,∞), (3.22)
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and
ϕ(ξ) = ±ϕM sech

(
ϕM

√
α4

2
ξ

)
, ξ ∈ (−∞,−ξp2), (ξp2,∞), (3.23)

where ξp1 = 1
ϕM

√
3
α4

sech−1
(√

a0

ϕM

)
, ξp2 = 1

ϕM

√
2
α4

sech−1
(√

a0

ϕM

)
.

As a limit solution of a family of periodic orbits defined by H1(ϕ, y) = h and
H2(ϕ, y) = h, h ∈ (h2, 0), enclosing the equilibrium point (ϕ2, 0), there exists a
curve arch which gives rise to a periodic peakon solution of system (1.5) with the
parametric representations:

ϕ(ξ) = ±ϕM sech
(
ϕM

√
α4

3
ξ

)
, ξ ∈ (−ξp1, ξp1), (3.24)

and
ϕ(ξ) = ±ϕM sech

(
ϕM

√
α4

2
ξ

)
, ξ ∈ (−ξp2, ξp2). (3.25)

3.9. The case of Figure.1 (e).
(i) For β = 1, 2, the level curves defined by H1(ϕ, y) = 0 and H2(ϕ, y) = 0

are two closed orbits passing through two straight lines ϕ = ±√
a0 at the points

(±√
a0,±Ys). In these cases, we have y2 = α4

3 (r21 − ϕ2)(ϕ2 − r22) and y2 = α4

2 (r21 −
ϕ2)(ϕ2−r22). Thus, we have the following parametric representations of two periodic
wave solutions of system (1.5):

ϕ(ξ) = ± r2

dn
(
r1
√

α4

3 ξ, k
) , (3.26)

and
ϕ(ξ) = ± r2

dn
(
r1
√

α4

2 ξ, k
) , (3.27)

where k2 = 1− r22
r21
.

Notice that straight line ϕ =
√
a0 separates the above right closed orbit as two

arches which are two limit solutions of two families of periodic orbits enclosing the
equilibrium points (ϕ1, 0) and (ϕ2, 0), respectively. The two arches give rise to two
periodic peakon solutions of system (1.5) with the parametric representations:

ϕ(ξ)=
r2

dn
(
r1
√

α4

3 ξ, k
) , ξ∈

− K(k)

r21

√
3
α4

,
K(k)

r21

√
3
α4

 ,

 K(k)

r21

√
3
α4

,
2K(k)

r21

√
3
α4

 , respectively,

(3.28)
and

ϕ(ξ)=
r2

dn
(
r1
√

α4

2 ξ, k
) , ξ∈

− K(k)

r21

√
2
α4

,
K(k)

r21

√
2
α4

 ,

 K(k)

r21

√
2
α4

,
2K(k)

r21

√
3
α4

 , respectively.

(3.29)
(ii) For β = 1, the level curves defined by H1(ϕ, y) = h0 are two closed orbits

enclosing the equilibrium points (±ϕ2, 0), respectively, and the stable and unstable
manifolds of the saddle point (0, 0). For the unstable manifold of the origin in the
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upper phase plane, we have 2
√

α4

3 ξ =
∫ a0

u
(a0−u)du

u
√

(r21−u)(r22−u)(a0−u)
. It gives rise to the

following bounded wave solutions of system (1.5):

ϕ(χ) =
(

a0−r22sn2(χ,k)
cn2(χ,k)

) 1
2

, χ ∈
(
−sn−1

(√
a0

r22
, k

)
, 0

)
,

ξ(χ) =

√
3

α4

r22

√
r21−a0

[
(a0 − r22)χ+ (r22 − a0)Π(arcsin(sn(χ, k)), α̃2

10, k)
]
,

(3.30)

where α̃2
10 =

r22
a0
, k2 =

r21−r22
r21−a0

.

For the two periodic orbits, we have 2
√

α4

3 ξ =
∫ u

r22

(u−a0)du

u
√

(r21−u)(u−r22)(u−a0)
. Thus,

we obtain the following parametric representations of two periodic wave solutions
of system (1.5):

ϕ(χ) = ±
(
a0 +

r22−a0

dn2(χ,k))

) 1
2

,

ξ(χ) =
√

3
α4(r21−a0)

(
1− a0

r22

)
Π(arcsin(sn(χ, k)), α̃2

11, k),
(3.31)

where k2 =
r21−r22
r21−a0

, α̃2
11 = k2a0

r22
.

3.10. The case of Figure.1 (f).
(i) For β = 1, 2, the level curves defined by H1(ϕ, y) = h1 = 0 and H2(ϕ, y) =

h1 = 0,
√
a0 = ϕ1 are two closed orbits contacting to two straight lines ϕ = ±√

a0
at the points (±√

a0, 0). In these cases, we have y2 = α4

3 (r21 − ϕ2)(ϕ2 − a0) and
y2 = α4

2 (r21 − ϕ2)(ϕ2 − a0). Thus, we have the following parametric representations
of two periodic wave solutions of system (1.5):

ϕ(ξ) = ±r1dn
(
r1

√
α4

3
ξ, k

)
, (3.32)

and
ϕ(ξ) = ±r1dn

(
r1

√
α4

2
ξ, k

)
, (3.33)

where k2 =
r21−a0

r21
.

For β = 1, the level curves defined by H1(ϕ, y) = h0 are two closed orbits
enclosing the equilibrium points (±ϕ2, 0), respectively, and the stable and unstable
manifolds of the saddle point (0, 0). We have the same parametric representations
as (3.30) and (3.31).

3.11. The case of Figure.1 (g).
(i) For β = 1, the level curves defined by H1(ϕ, y) = h1 contain two homoclinic

orbits to the equilibrium points (±ϕ1, 0), enclosing the equilibrium points (±ϕ2, 0),
respectively. We have 2

√
α4

3 ξ =
∫ ϕ2

M

u
(u−a0)du

(u−ϕ2
1)
√

(ϕ2
M−u)(u−a0)u

. Hence, we have the
following parametric representations of two solitary wave solutions of system (1.5):

ϕ(χ) = ± ϕMdn(χ, k), χ ∈
(
−sn−1

(√
ϕ2
M−ϕ2

1

ϕ2
M−a0

, k

)
, sn−1

(
ϕ2
M−ϕ2

1

ϕ2
M−a0

, k
))

,

ξ(χ) = 1
ϕM

√
3
α4

[
χ+

ϕ2
1−a0

ϕ2
M−ϕ2

1
Π(arcsin(sn(χ, k)), α̃2

12, k)
]
,

(3.34)
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where k2 = 1− a0

ϕ2
M
, α̃2

12 =
ϕ2
M−a0

ϕ2
M−ϕ2

1
.

(ii) For β = 2, the level curves defined by H2(ϕ, y) = h1 contain two homo-
clinic orbits to the equilibrium points (±ϕ1, 0), enclosing the equilibrium points
(±ϕ2, 0), respectively, and two open curves passing through the ϕ−axis at the points
(±r2, 0) with 0 < r2 <

√
a0 < ϕ1 < ϕ2 < ϕM . For two homoclinic orbits, we have

√
2α4ξ =

∫ ϕM

u
(u−a0)du

(u−ϕ2
1)
√

(ϕ2
M−u)(u−r22)u

. Therefore, we have the following parametric
representations of two solitary wave solutions of system (1.5):

ϕ(χ) = ± ϕMdn(χ, k), χ ∈
(
−sn−1

(√
ϕ2
M−ϕ2

1

ϕ2
M−r22

, k

)
, sn−1

(
ϕ2
M−ϕ2

1

ϕ2
M−r22

, k
))

,

ξ(χ) = 1
ϕM

√
2
α4

[
χ+

ϕ2
1−a0

ϕ2
M−ϕ2

1
Π(arcsin(sn(χ, k)), α̃2

13, k)
]
,

(3.35)

where k2 = 1− r22
ϕ2
M
, α̃2

13 =
ϕ2
M−r22

ϕ2
M−ϕ2

1
.

4. Exact parametric representations of solutions of
system (1.5) when β = 1, 2 in Figure.3

In this section, we study possible parametric representations of the level curves
defined by Hj(ϕ, y) = h, j = 1, 2, in (2.2) and (2.3) for the case 2 in section 2. In
this case, the parameter conditions ∆ > 0, α0α4 > 0, α0 < 0, α2 > 0 hold.

4.1. The case of Figure.3 (a).
(i) For β = 1, the level curves defined by H1(ϕ, y) = h1 contain two homiclinic

orbits to the points (±ϕ1, 0), enclosing the centers (±ϕ2, 0), and two heteroclinic
orbits connecting two equilibrium points (±ϕ1, 0). Corresponding to two homoclinic
orbits, we have 2

√
|α4|
3 ξ =

∫ ϕ2
M

u
(a0−u)du

(u−ϕ2
1)
√

(a0−u)(ϕ2
M−u)u

. Thus, we have the following
parametric representations of two solitary wave solutions of system (1.5):

ϕ(χ) = ±ϕMcn(χ,k)
dn(χ,k) , χ ∈

(
−cd−1

(
ϕ1

ϕM
, k
)
, cd−1

(
ϕ1

ϕM
, k
))

,

ξ(χ) =
√

3
a0|α4|

(
a0−ϕ2

M

ϕ2
M−ϕ2

1

)
Π(arcsin(sn(χ, k)), α̂2

1, k),
(4.1)

where k2 =
ϕ2
M

a0
, α̂2

1 =
k2(a0−ϕ2

1)

ϕ2
M−ϕ2

1
.

Corresponding to two heteroclinic orbits, we have 2
√

|α4|
3

ξ=
∫ u

0

(a0−u)du
(ϕ2

1−u)
√

(a0−u)(ϕ2
M

−u)u
.

Thus, we the following parametric representations of kink and anti-kink wave solu-
tions of system (1.5):

ϕ(χ) = ±ϕM sn(χ, k), χ ∈
(
−sn−1

(
ϕ1

ϕM
, k
)
, sn−1

(
ϕ1

ϕM
, k
))

,

ξ(χ) =
√

3
a0|α4|

[
χ+

(
1− a0

ϕ2
1

)
Π(arcsin(sn(χ, k)), α̂2

2, k)
]
,

(4.2)

where k2 =
ϕ2
M

a0
, α̂2

2 =
ϕ2
M

ϕ2
1
.

For β = 2, corresponding to the level curves defined by H2(ϕ, y) = h1, the
above two integrals becomes 2

√
|α4|
2 ξ =

∫ ϕ2
M

u
(a0−u)du

(u−ϕ2
1)
√

(r21−u)(ϕ2
M−u)u

and 2
√

|α4|
2 ξ =
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0
(a0−u)du

(ϕ2
1−u)

√
(r21−u)(ϕ2

M−u)u
. Therefore, we have similar parametric representations as

(4.1) and (4.2).
(ii) For β = 1, 2, the level curves defined by H1(ϕ, y) = 0 and H2(ϕ, y) = 0 con-

tain two straight lines ϕ = ±√
a0 and two open curves passing through the points

(±√
a0,±Ys). Now, we have y2 = |α4|

3 (ϕ2−ρ2)(ϕ2−ρ̄2) and y2 = |α4|
2 (ϕ2−ρ2)(ϕ2−ρ̄2),

respectively. For the segments of the above open curve between the points (−√
a0, Ys)

and (
√
a0, Ys), we have the parametric representations:

ϕ(ξ)=±
(
ρρ̄(1−cn(ω1ξ, k))

(1+cn(ω1ξ, k)

) 1
2

, ξ∈
(
− 1

ω1
cn−1

(
ρρ̄− a0
ρρ̄+ a0

, k

)
,
1

ω1
cn−1

(
ρρ̄− a0
ρρ̄+ a0

, k

))
,

(4.3)
and

ϕ(ξ)=±
(
ρρ̄(1−cn(ω2ξ, k))

(1+cn(ω2ξ, k)

) 1
2

, ξ∈
(
− 1

ω2
cn−1

(
ρρ̄− a0
ρρ̄+ a0

, k

)
,
1

ω2
cn−1

(
ρρ̄− a0
ρρ̄+ a0

, k

))
,

(4.4)

where k2 = − (ρ−ρ̄)2

4ρρ̄ , ω1 = 2
√

1
3 |α4|ρρ̄, ω2 = 2

√
1
2 |α4|ρρ̄.

Notice that the level curves defined by H1(ϕ, y) = h and H2(ϕ, y) = h, h ∈ (0, h1)
contain a global family of closed orbits enclosing five equilibrium points. When
h → 0, this family of periodic orbits attend to the curve quadrangle defined by
Hj(ϕ, y) = 0, j = 1, 2. When 0 < h ≪ 0 These periodic orbits give rise to a family
of periodic peakons. As a limit solution, (4.3) and (4.4) are also give rise two
periodic peakon solutions of system (1.5).

4.2. The case of Figure.3 (b).
For β = 1, 2, the level curves defined by H1(ϕ, y) = 0 and H2(ϕ, y) = 0 contain

two heteroclinic orbits, connecting two equilibrium points (±ϕ1, 0) and enclosing
the origin, and two curve triangles enclosing the equilibrium points (±ϕ2, 0). Now,
we have y2 = |α4|

3 (ϕ2
1 − ϕ2)2, for β = 1 and y2 = |α4|

2 (ϕ2
1 − ϕ2)2, for β = 2. Hence,

the two heteroclinic orbits has the parametric representations (kink and anti-kink
wave solutions):

ϕ(ξ) = ±ϕ1 tanh (ωjξ) , j = 3, 4, (4.5)

where ω3 =
√

1
3 |α4|ϕ1, ω4 =

√
1
2 |α4|ϕ1. The two segments of the left curve triangle

have the parametric representations:

ϕ(ξ) = ± (−ϕ1)(e
ωjξ +m0e

−ωjξ)

eωjξ −m0e−ωjξ
, j = 3, 4, (4.6)

where m0 =
√
a0+ϕ1√
a0−ϕ1

.

As a limit solution of a family of periodic orbits defined by Hj(ϕ, y) = h, h ∈
(0, h2) when h → 0, the parametric representations (4.6) of two curve triangles give
rise to a peakon and an anti-peakon solutions of system (1.5).

4.3. The case of Figure.3 (c).
(i) For β = 1, 2, the level curves defined by Hj(ϕ, y) = 0, j = 1, 2, are two straight

lines ϕ =
√
a0 and two arches enclosing the centers (±ϕ2, 0), respectively. In these

cases, we have y2 = 1
3 |α4|(ϕ− r2m)(r21 +ϕ2) and y2 = 1

2 |α4|(ϕ− r2m)(r21 +ϕ2). Thus,
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we obtain the following parametric representations of periodic peakon solutions of
system (1.5):

ϕ(ξ) =
±rm

cn(ωjξ, k)
, ξ ∈

(
− 1

ωj
cn−1

(
rm√
a0

, k

)
,
1

ωj
cn−1

(
rm√
a0

, k

))
, j = 5, 6,

(4.7)

where k2 =
r21

r21+r2m
, ω5 =

√
1
3 |α4|(r21 + r2m), ω6 =

√
1
2 |α4|(r21 + r2m).

(ii) For β = 1, the level curves defined by H1(ϕ, y) = h1 contain two heteroclinic
orbits connecting the equlibrium points (±ϕ1, 0) and enclosing the center (0, 0),
and two open curves passing through the ϕ−axis at (±r1, 0) with ϕ2 <

√
a0 < r1.

For the heteroclinic orbits, we have 2
√

|α4|
3 ξ =

∫ u

0
(a0−u)du

(ϕ2
1−u)

√
(r21−u)(a0−u)u

. Thus, we
obtain the following parametric representations of kink and anti-kink wave solutions
of system (1.5):

ϕ(χ) = ±√
a0sn(χ, k), χ ∈

(
−sn−1

(
ϕ1√
a0
, k
)
, sn−1

(
ϕ1√
a0
, k
))

,

ξ(χ) =
√

3
r21 |α4|

[
χ+
(
1− a0

ϕ2
1

)
Π(arcsin(sn(χ, k)), α̂2

3, k)
]
,

(4.8)

where k2 = a0

r21
, α̂2

3 = a0

ϕ2
1
.

For β = 2, the level curves defined by H2(ϕ, y) = h1 contain two heteroclinic or-
bits enclosing the center (0, 0) and connecting the equilibrium points (±ϕ1, 0). Now,
we have y2 =

1
2 |α4|(ϕ2

1−ϕ2)2(ϕ2−ρ2)(ϕ2−ρ̄2)

(a0−ϕ2) , where ρ is a complex number. By using

the integral 2
√

|α4|
2 ξ =

∫ u

0
(a0−u)du

(ϕ2
1−u)

√
u[(u−b1)2+a2

1]
, where a21 = − 1

4 (ρ
2 − ρ̄2)2, b1 =

1
2 (ρ

2 + ρ̄2), we obtain the following parametric representations of kink and anti-
kink wave solutions of system (1.5):

ϕ(χ) = ±
(

A1(1−cn(χ,k))
(1+cn(χ,k))

) 1
2

, χ ∈
(
−cn−1

(
A1−ϕ2

1

A1+ϕ2
1
, k
)
, cn−1

(
A1−ϕ2

1

A1+ϕ2
1
, k
))

,

ξ(χ) = 1√
2|α4|(a2

1+b21)

[(
a0+A1

ϕ2
1+A1

)
χ− (a0−ϕ2

1)

2ϕ2
1α̂

Π
(
arcsin(cn(χ, k)), α̂2

α̂2−1 , k
)

+
(a0−ϕ2

1)α̂

(ϕ2
1+A1)(1+α̂)

f1

]
,

(4.9)

where A2
1 = b21 + a21, k2 = A1+b1

2A1
, α̂ =

ϕ2
1+A1

ϕ2
1−A1

, f1 can be seen in [Byrd & Frid-
man,1971](361.54).

4.4. The case of Figure.3 (d) and (e).
For β = 1, 2, the level curves defined by Hj(ϕ, y) = h1, j = 1, 2 contain two

heteroclinic orbits, which have the same parametric representations as (4.8) and
(4.9).

4.5. The case of Figure.3 (f).
For β = 1, 2, the level curves defined by Hj(ϕ, y) = 0, j = 1, 2, are two

straight lines ϕ = ±√
a0 and a global closed orbit enclosing (0, 0) and (±ϕ1, 0),

which contacts to two straight lines at (±√
a0, 0). In these cases, we have y2 =

1
3 |α4|(r21 − ϕ2)(a0 − ϕ2) and y2 = 1

2 |α4|(r21 − ϕ)(a0 − ϕ2). Thus, we obtain the
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following parametric representations of smooth periodic wave solution of system
(1.5):

ϕ(ξ) =
√
a0sn(ωjξ, k), j = 7, 8, (4.10)

where k2 = a0

r21
, ω7 =

√
1
3 |α4|r21, ω8 =

√
1
2 |α4|r21.

4.6. The case of Figure.3 (g).
For β = 1, 2, the level curves defined by Hj(ϕ, y) = 0, j = 1, 2 are two straight

lines ϕ = ±√
a0 and a global closed orbit enclosing three centers (0, 0), (±ϕ1, 0),

which passes through two straight lines. In these cases, we have y2 = 1
3 |α4|(r21 −

ϕ2)(r22 − ϕ2) and y2 = 1
2 |α4|(r21 − ϕ)(r22 − ϕ2). Thus, we obtain the following para-

metric representations of smooth periodic wave solutions of system (1.5):

ϕ(ξ) = r2sn(ωjξ, k), j = 9, 10, (4.11)

where k2 =
r22
r21
, ω9 =

√
1
3 |α4|r21, ω10 =

√
1
2 |α4|r21.

5. Exact parametric representations of solutions of
system (1.5) when β = −3,−4 in Figure.4

In this section, we discuss possible parametric representations of the level curves
defined by Hj(ϕ, y) = h, j = −3,−4, in (2.4) and (2.5) for the case 3 in section 2.
Notice that Hj(ϕ, y) = h, j = −3,−4, give rise to

y2 = hϕ6 − 3(ha0 + α4)ϕ
4 + 3

(
ha20 + α4a0 −

1

2
α2

)
ϕ2 − C0 = F̃6(ϕ), (5.1)

where C0 = ha30 + α0 − 1
2α2a0 + α4a

2
0. and

y2 = hϕ8 − 4ha0ϕ
6 + 2(3ha20 − α4)ϕ

4 − 4

(
ha30 −

1

3
α4a0 +

1

3
α2

)
ϕ2 +D0 = F̃8(ϕ),

(5.2)
where D0 = ha40 − α0 +

1
3α2a0 − 1

3α4a
2
0.

In this case, we have α0 > 0, α2 < 0, α4 > 0. So that, for β = −3, we have
h0 = − 2a0−a0α2+2a2

0α4

2a3
0

,

h1 = −2α2
4[(3α

2
2 + 4a0α2α4 + 4a20α

2
4 − 8α0α4) + (3α2 + 6a0α4)

√
∆]

(
√
∆+ (α2 + 2a0α4))3

,

h2 =
2α2

4[(3α
2
2 + 4a0α2α4 + 4a20α

2
4 − 8α0α4)− (3α2 + 6a0α4)

√
∆]

(
√
∆− (α2 + 2a0α4))3

.

For β = −4, we have h0 =
3α0−a0α2+a2

0α4

2a4
0

,

h1 =
16α3

4[(a
2
0α

2
4 + (a0α2 − 3α0)α4 + α2

2) + (α2 + 2a0α4)
√
∆]

3(α2 + 2a0α4 +
√
∆)4

,

h2 =
16α3

4[(a
2
0α

2
4 + (a0α2 − 3α0)α4 + α2

2)− (α2 + 2a0α4)
√
∆]

3(α2 + 2a0α4 −
√
∆)4

.
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By using the first equation of system (1.5), we know that ξ =
∫ ϕ

ϕ0

dϕ√
F̃6(ϕ)

and ξ =∫ ϕ

ϕ0

dϕ√
F̃8(ϕ)

. Thus, we can calculate the parametric representations for all bounded
orbits given by Figure.4 and Figure.5 for β = −3,−4.

5.1. The case of Figure.4 (a).
(i) For β = −3, we consider the case h2 < 0. The level curves defined by

H−3(ϕ, y) = h, h ∈ (−∞, h1) are a global family of periodic orbits of system
(1.5) enclosing three equilibrium points. Now, we have from (5.1) that

√
|h|ξ =∫ ϕ

0
dϕ√

(r21−ϕ2)(ϕ2−ρ2)(ϕ2−ρ̄2))
. It gives rise to the following parametric representation

of the periodic solutions of system (1.5):

ϕ(ξ) =

(
r21B

2
1(1− cn(Ω1ξ, k))

(A1 +B1) + (A1 −B1)cn(Ω1ξ, k)

) 1
2

, (5.3)

where A1 = (r21 − b1)
2 + a21, B

2
1 = a21 + b21 = ρ2ρ̄2, a21 = − 1

4 (ρ
2 − ρ̄2)2, b1 = 1

2 (ρ
2 +

ρ̄2), k2 =
r41−(A1−B1)

2

4A1B1
,Ω1 = 2

√
|h|A1B1.

The level curves defined by H−3(ϕ, y) = h1 contain two homoclinic orbits to the
equilibrium points (±ϕ1, 0), respectively, and two heteroclinic orbits connecting two
points (±ϕ1, 0). Corresponding to the above heteroclinic orbit, we have

√
|h1|ξ =∫ ϕ

0
dϕ

(ϕ2
1−ϕ2)

√
ϕ2
M−ϕ2

. Thus, the two heteroclinic orbits have the following parametric
representations:

ϕ(ξ) = ±
(
ϕ2
1 −

2ϕ2
1(ϕ

2
M − ϕ2

1)

ϕ2
M cosh(ω1ξ)− (2ϕ2

1 − ϕ2
M )

) 1
2

, (5.4)

where ω1 = 2
√

|h1|ϕ1(ϕ2
M − ϕ2

1). Corresponding to the right homoclinic orbit, we
have

√
|h1|ξ =

∫ ϕM

ϕ
dϕ

(ϕ−ϕ2
1)
√

ϕ2
M−ϕ2

. Thus, the two homoclinic orbits have the fol-
lowing parametric representations:

ϕ(ξ) = ±
(
ϕ2
1 +

2ϕ2
1(ϕ

2
M − ϕ2

1)

ϕ2
M cosh(ω1ξ) + (2ϕ2

1 − ϕ2
M )

) 1
2

. (5.5)

The level curves defined by H−3(ϕ, y) = h, h ∈ (h1, h0) contain three fam-
ilies of periodic orbits of system (1.5) enclosing the equilibrium points (±ϕ2, 0)
and (0, 0), respectively. For the right family of periodic orbits, we have

√
|h|ξ =∫ ϕ

r2

dϕ√
(r21−ϕ2)(ϕ2−r22)(ϕ

2−r23)
. Hence, we obtain the following parametric representa-

tions of two families of periodic orbits of system (1.5):

ϕ(ξ) = ±
(
r23 +

r22 − r23
1− α̂2

1sn2(Ω2ξ, k)

) 1
2

, (5.6)

where α̂2
1 =

r21−r22
r21−r23

, k2 =
α̂2

1r
2
3

r22
,Ω2 = r2

√
|h|(r21 − r23). For the mid family of peri-

odic orbits, we have
√
|h|ξ =

∫ ϕ

0
dϕ√

(r21−ϕ2)(r22−ϕ2)(r23−ϕ2)
. We obtain the following

parametric representations of the family of periodic orbits of system (1.5):

ϕ(ξ) =

(
r21 −

r21
1− α̂2

2sn2(Ω2ξ, k)

) 1
2

, (5.7)
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where α̂2
2 = − r23

r21−r23
, k2 =

−α̂2
2(r

2
1−r22)

r22
.

The level curves defined by H−3(ϕ, y) = h, h ∈ (h0, h2) contain two families of
periodic orbits of system (1.5) enclosing the equilibrium points (±ϕ2, 0), respec-
tively. In this case, we have

√
|h|ξ =

∫ ϕ

r2

dϕ√
(r21−ϕ2)(ϕ2−r22)(ϕ

2+r23)
. Thus, we obtain

the following parametric representations of two families of periodic orbits of system
(1.5):

ϕ(ξ) = ±
(

r22
1− α̂2

3sn2(Ω3ξ, k)

) 1
2

, (5.8)

where α̂2
3 =

r21−r22
r21

, k2 =
α̂2

3r
2
3

r22+r23
,Ω3 = r1

√
|h|(r22 + r23).

(ii) For β = −4, the level curves defined by H−4(ϕ, y) = h1 contain two homo-
clinic orbits to the equilibrium points (±ϕ1, 0), respectively, and two heteroclinic
orbits connecting two points (±ϕ1, 0). Corresponding to the above heteroclinic or-
bit, we have

√
h1ξ =

∫ ϕ

0
dϕ

(ϕ2
1−ϕ2)

√
(r21−ϕ2)(ϕ2

M−ϕ2)
. Thus, the two heteroclinic orbits

have the following parametric representations:

ϕ(χ) = ±ϕM sn(χ, k), χ ∈
(
−sn−1

(
ϕ1

ϕM
, k
)
, sn−1

(
ϕ1

ϕM
, k
))

,

ξ(χ) = 1
r1ϕ2

1

√
h1
Π(arcsin(sn(χ, k)), α̂2

4, k),
(5.9)

where α̂4 = ϕM

ϕ1
, k = ϕM

r1
. Corresponding to the right homoclinic orbit, we have

√
h1ξ =

∫ ϕM

ϕ
dϕ

(ϕ−ϕ2
1)
√

(r21−ϕ2)(ϕ2
M−ϕ2)

. Thus, the two homoclinic orbits have the fol-
lowing parametric representations:

ϕ(χ) = ±ϕMcn(χ,k)
dn(χ,k) , χ ∈

(
−sn−1

(√
r21(ϕ

2
M−ϕ2

1)

ϕ2
M (r21−ϕ2

1)
, k

)
, sn−1

(√
r21(ϕ

2
M−ϕ2

1)

ϕ2
M (r21−ϕ2

1)
, k

))
,

ξ(χ) = 1
r1(r21−ϕ2

1)
√
h1

[
χ+

r21−ϕ2
M

ϕ2
M−ϕ2

1
Π(arcsin(sn(χ, k)), α̂2

5, k)
]
,

(5.10)

where α̂2
5 =

k2(r21−ϕ2
1)

ϕ2
M−ϕ2

1
, k = ϕM

r1
.

5.2. The case of Figure.4 (b).
(i) For β = −3, the level curves defined by H−3(ϕ, y) = h, h ∈ (−∞, h1) are

a global family of closed orbits which contacts to two singular straight lines at
(±√

a0, 0). It has similar parametric representation as (5.3), where we use a0 instead
of r21.

The level curves defined by H−3(ϕ, y) = h1 contain two homoclinic orbits to the
equilibrium points (±ϕ1, 0), respectively, and two heteroclinic orbits connecting two
points (±ϕ1, 0). They have similar parametric representations as (5.4) and (5.5),
where we use a0 instead of ϕ2

M .
The level curves defined by H−3(ϕ, y) = h, h ∈ (h1, h0) contain three families

of closed orbits of system (1.5) enclosing the equilibrium point (0, 0) and contact
to the equilibrium points (±√

a0, 0), respectively. They have similar parametric
representations as (5.6) and (5.7), where we use a0 instead of r21.

The level curves defined by H−3(ϕ, y) = h, h ∈ (h0, 0) contain two families of
closed orbits of system (1.5) contacting to the points (±√

a0, 0), respectively. They
have similar parametric representations as (5.8), where we use a0 instead of r21.
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The level curves defined by H−3(ϕ, y) = h, h ∈ (0,∞) contain two families of
closed orbits of system (1.5) contacting to the points (±√

a0, 0), respectively, and
two open curves passing through ϕ−axis at the points (±r1, 0). In this case, we
have

√
hξ =

∫ ϕ

r3

dϕ√
(r21−ϕ2)(a0−ϕ2)(ϕ2−r23)

. Therefore, we have the parametric repre-
sentations:

ϕ(ξ) = ±
(

r23
1− α̂2

6sn2(Ω4ξ, k)

) 1
2

, (5.11)

where k2 =
(a0−r23)r

2
1

a0(r21−r23)
, α̂2

6 =
a0−r23

a0
,Ω4 =

√
ha0(r21 − r23).

(ii) For β = −4, the level curves defined by H−4(ϕ, y) = h1 contain two ho-
moclinic orbits to the equilibrium points (±ϕ1, 0) and contacting to two singular
straight lines ϕ = ±√

a0, respectively, and two heteroclinic orbits connecting two
points (±ϕ1, 0). They have similar parametric representations as (5.9) and (5.10),
where we use a0 instead of ϕ2

M .

5.3. The case of Figure.4 (c).
We see from Figure.4 (c) that in the straight lines ϕ = ±√

a0, there exist two
nodes of system (2.1). For singular system (1.5), when a phase point passes through
the above two straight lines the vector field defined by system (1.5) changes to the
inverse direction defined by system (2.1). The following Figure.7 (a)-(f) give the
changes of the level curves defined by system (1.5).
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Figure. 7 The changes of the level curves defined by H−3(ϕ, y) = h for in Figure.4 (c)

(i) For β = −3, corresponding the level curves defined by H−3(ϕ, y) = h, h ∈
(−∞, h2), the parametric representations of orbits of system (1.5) are the same as
(5.3)-(5.8).

Along the two homoclinic orbits to the equilibrium points (±ϕ2, 0) of system
(1.5) defined by H−3(ϕ, y) = h2, We have

√
hξ =

∫ ϕ

ϕM

dϕ

(ϕ2
2−ϕ2)

√
ϕ2−ϕM

2
. Therefore,
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we obtain the following parametric representations:

ϕ(ξ) = ±
(
ϕ2
2 −

2ϕ2
2(ϕ

2
2 − ϕM

2)

ϕM
2 cosh(ω2ξ) + (2ϕ2

2 − ϕM
2)

) 1
2

, (5.12)

where ω2 = 2ϕ2

√
h(ϕ2

2 − ϕM
2).

(ii) For β = −4, The level curves defined by H−4(ϕ, y) = h2 are two homoclinic
orbits to the equilibrium points (±ϕ2, 0). we have

√
hξ=

∫ ϕ

ϕM

dϕ

(ϕ2
2−ϕ2)

√
(ϕ2−ϕM

2)(ϕ2+r21)
.

Hence, we obtain the following parametric representations:

ϕ(χ) = ± ϕM

cn(χ,k) , χ ∈
(
−cn−1

(
ϕM

ϕ2
, k
)
, cn−1

(
ϕM

ϕ2
, k
))

,

ξ(χ) = 1

ϕ2
2

√
h(ϕM

2+r21)

[
χ+ ϕM

2

ϕ2
2−ϕM

2Π(arccos(cn(χ, k)), α̂2
7, k)

]
,

(5.13)

where k2 =
r21

ϕM
2+r21

, α̂2
7 =

ϕ2
2

ϕ2
2−ϕM

2 .

5.4. The case of Figure.4 (d).
(i) For β = −3, the level curves defined by H−3(ϕ, y) = h, h ∈ (−∞, h0) contain

three families of closed orbits of system (1.5) enclosing the equilibrium point (0, 0)
and contact to the equilibrium points (±√

a0, 0), respectively. They have similar
parametric representations as (5.6) and (5.7), where we use a0 instead of r22.

The level curves defined by H−3(ϕ, y) = h, h ∈ (h0, 0) contain two families of
closed orbits of system (1.5) contacting to the points (±√

a0, 0), respectively. They
have similar parametric representations as (5.8), where we use a0 instead of r22.

The level curves defined by H−3(ϕ, y) = h, h ∈ (0, h2) contain two families of
closed orbits of system (1.5) contacting to the points (±√

a0, 0), respectively and
two open curves passing through ϕ−axis at the points (±r1, 0). Two families of
closed orbits of system (1.5) have the similar parametric representations as (5.11),
where we use a0 instead of r23 and use r22 instead of a0 in (5.11).

The level curves defined by H−3(ϕ, y) = h2 are two homoclinic orbits to the
equilibrium points (±ϕ2, 0) and contact to two straight lines ϕ = ±√

a0. They have
the similar parametric representations as (5.12), where we use a0 instead of ϕ2

M .
(ii) For β = −4, the level curves defined by H−4(ϕ, y) = h2 are two homoclinic

orbits to the equilibrium points (±ϕ2, 0) and contact to two straight lines ϕ = ±√
a0.

They have the similar parametric representations as (5.13), where we use a0 instead
of ϕ2

M .

5.5. The case of Figure.4 (e).
(i) For β = −3, the level curves defined by H−3(ϕ, y) = h, h ∈ (−∞, h0) are a

family of periodic orbits of system (1.5) enclosing the origin (0, 0), which has the
same parametric representation as (5.3).

The level curves defined by H−3(ϕ, y) = h, h ∈ (h1, 0) are two families of periodic
orbits of system (1.5) enclosing two equilibrium points (±ϕ1, 0), which have the same
parametric representations as (5.8).

The level curves defined by H−3(ϕ, y) = h, h ∈ (0, h2) are two families of periodic
orbits of system (1.5) enclosing two equilibrium points (±ϕ1, 0) and two open curves
passing through ϕ−axis at the points (±r1, 0). Two families of periodic orbits have
the similar parametric representations as (5.11), where we use r22 instead of a0.
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The level curves defined by H−3(ϕ, y) = h2 are two homoclinic orbits to the
equilibrium points (±ϕ2, 0), which have the same parametric representations as
(5.12).

(ii) For β = −4, the level curves defined by H−4(ϕ, y) = h2 are two homo-
clinic orbits to the equilibrium points (±ϕ2, 0), which have the same parametric
representations as (5.13).

6. Exact parametric representations of solutions of
system (1.5) when β = −3, 4 in Figure.5

In this section, we discuss possible parametric representations of the level curves
defined by H(ϕ, y) = h in (2.4) and (2.5) for the case 4 in section 2.

6.1. The case of Figure.5 (a).
(i) For β = −3, we assume that h2 < 0. In the two straight lines ϕ = ±√

a0
there exist four node points of system (2.1). The level curves defined by H−3(ϕ, y) =
h, h ∈ (−∞, h2) contain a global family of closed orbits of system (1.5) enclosing
three equilibrium points and pass though two straight lines ϕ = ±√

a0, respectively
(see Figure.7 (a)). It has the same parametric representation as (5.3).

The level curves defined by H−3(ϕ, y) = h2 contain two homoclinic orbits to
the equilibrium points (±ϕ2, 0), respectively, and two heteroclinic orbits connecting
two points (±ϕ2, 0), which have the similar parametric representations as (5.4) and
(5.5), where we use ϕ2

2 instead of ϕ2
1.

The level curves defined by H−3(ϕ, y) = h, h ∈ (h2, 0) contain three families of
periodic orbits of system (1.5) enclosing the equilibrium points (±ϕ1, 0) and (0, 0),
which have the same parametric representations as (5.6) and (5.7).

The level curves defined by H−3(ϕ, y) = h, h ∈ (0, h0) contain a family of closed
orbits of system (1.5) enclosing three equilibrium points and two open curves passing
through the ϕ−axis at the points (±r1, 0) and connecting two node points, respec-
tively. In this case, for the periodic family, we have

√
hξ =

∫ ϕ

0
dϕ√

(r21−ϕ2)(r22−ϕ2)(ϕ2+r23)
.

Thus, we have the parametric representation of the periodic solution family as fol-
lows:

ϕ(ξ) =

(
r23α̌

2
1sn2(Ω̌1ξ, k)

1− α̌2
1sn2(Ω̌1ξ, k)

) 1
2

, (6.1)

where α̌2
1 =

r22
r22+r23

, k2 =
α̌2

1(r
2
1+r23)

r21
, Ω̌1 = r1

√
h(r22 + r23).

The level curves defined by H−3(ϕ, y) = h0 contain two homoclinic orbits of
system (1.5) to the origin and two open curves passing through the ϕ−axis at the
points (±r1, 0) and connecting two node points, respectively. In this case, for the
right homoclinic orbit, we have

√
h0ξ =

∫ ϕM

ϕ
dϕ

ϕ
√

(ϕ2
M−ϕ2)(r21−ϕ2)

. Therefore, we have
the parametric representations of two homoclinic orbits of system (1.5) as follows:

ϕ(ξ) = ±
(

2r21ϕ
2
M

(r21 − ϕ2
M ) cosh(ω̌1ξ) + (r21 + ϕ2

M )

) 1
2

, (6.2)

where ω̌1 = 2r1ϕM

√
h0.

The level curves defined by H−3(ϕ, y) = h, h ∈ (h0, h1) contain two families of
closed orbits of system (1.5) enclosing the equilibrium points (±ϕ1, 0) and two
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open curves passing through the ϕ−axis at the points (±r1, 0) and connecting
two node points, respectively. In this case, for the right periodic family, we have√
hξ =

∫ ϕ

r3

dϕ√
(r21−ϕ2)(r22−ϕ2)(ϕ2−r23)

. Thus, the parametric representations of two pe-
riodic solution families are similar to (5.11), where we use r22 instead of a0.

(ii) For β = −4, we consider the case h1 < h0 < h2 < 0. The level curves defined
by H−4(ϕ, y) = h0 < 0, contain two homoclinic orbits to the origin and two closed
orbits passing through two straight lines ϕ = ±√

a0, respectively. For the right
homoclinic orbit, we have

√
|h0|ξ =

∫ ϕM

ϕ
dϕ

ϕ
√

(r21−ϕ2)(r22−ϕ2)(ϕ2
M−ϕ2)

. Thus, we obtain
the parametric representations of two homoclinic solutions as follows:

ϕ(χ) = ±
(
r22 −

r22−ϕ2
M

cn2(χ,k)

) 1
2

, χ ∈
(
−cn−1

(√
1− ϕ2

M

r22
, k
)
, cn−1

(√
1− ϕ2

M

r22
, k
))

,

ξ(χ) = 1

r22

√
|h0|(r21−ϕ2

M )

[
χ+

r22−ϕ2
M

ϕ2
M

Π(arcsin(sn(χ, k)), α̌2
2, k)

]
,

(6.3)

where k2 =
r21−r22
r21−ϕ2

M
, α̌2

2 =
r22
ϕ2
M
.

For the right periodic orbit, we have
√

|h0|ξ =
∫ ϕ

r2

dϕ

ϕ
√

(r21−ϕ2)(ϕ2−r22)(ϕ
2−ϕ2

M )
.

Hence, we have the following parametric representations of two periodic solutions
of system (1.5):

ϕ(χ) = ±
(
ϕ2
M +

r22−ϕ2
M

dn2(χ,k)

) 1
2

,

ξ(χ) = 1

ϕ2
M

√
|h0|(r21−ϕ2

M )

[
χ− r22−ϕ2

M

r22
Π(arcsin(sn(χ, k)), α̌2

3, k)
]
,

(6.4)

where k2 =
r21−r22
r21−ϕ2

M
, α̌2

3 =
k2ϕ2

M

r22
.

The level curves defined by H−4(ϕ, y) = h2, contain two homoclinic orbits to two
equilibrium points (±ϕ2, 0) passing through two straight lines ϕ = ±√

a0, respec-
tively and two heteroclinic orbits enclosing three equilibrium points (±ϕ1, 0) and
(0, 0). For the right homoclinic orbit, we have

√
|h2|ξ =

∫ ϕM

ϕ
dϕ

(ϕ2−ϕ2
2)
√

(ϕ2
M−ϕ2)(ϕ2+r21)

.

Thus, we obtain the parametric representations of two homoclinic solutions as fol-
lows:

ϕ(χ) = ±ϕ
M

cn(χ, k), χ ∈
(
−cn−1

(
ϕ2

ϕM
, k
)
, cn−1

(
ϕ2

ϕM
, k
))

,

ξ(χ) = 1

(ϕ2
M−ϕ2

2)
√

|h2|(r21+ϕ2
M )

Π(arcsin(sn(χ, k)), α̌2
4, k),

(6.5)

where k2 =
ϕ2
M

r21+ϕ2
M
, α̌2

4 =
ϕ2
M

ϕ2
M−ϕ2

2
.

For the above heteroclinic orbit, we have
√
|h2|ξ =

∫ ϕ

0
dϕ

(ϕ2
2−ϕ2)

√
(ϕ2

M−ϕ2)(ϕ2+r21)
.

Hence, we obtain the parametric representations of two heteroclinic solutions as
follows:

ϕ(χ) = ± r1ksn(χ,k)
dn(χ,k) , χ ∈

(
−sn−1

(√
ϕ2
2

k2(r21+ϕ2
2)
, k
)
, sn−1

(√
ϕ2
2

k2(r21+ϕ2
2)
, k
))

,

ξ(χ) = 1

(r21+ϕ2
2)
√

|h2|(r21+ϕ2
M )

[
χ+

r21
ϕ2
2
Π(arcsin(sn(χ, k)), α̌2

5, k)
]
,

(6.6)

where k2 =
ϕ2
M

r21+ϕ2
M
, α̌2

5 = k2
(
1 +

r21
ϕ2
2

)
.
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6.2. The case of Figure.5 (b).
(i) For β = −3, we consider the case 0 < h0 < h1. The level curves defined by

H−3(ϕ, y) = h < 0 contain three families of periodic orbits for which one family
enclose three equilibrium points (0, 0) and (±ϕ1, 0), other two families contact to
two straight lines ϕ = ±√

a0 at the points (±ϕ2, 0), respectively, ϕ2 =
√
a0. These

families of orbits have the similar parametric representations as (5.6) and (5.7),
where we use a0 instead of r22.

The level curves defined by H−3(ϕ, y) = h, h ∈ (0, h0) contain a family of pe-
riodic orbits enclosing three equilibrium points (0, 0) and (±ϕ1, 0), and two open
curve families contacting to two straight lines ϕ = ±√

a0 at the points (±ϕ2, 0),
respectively. This family of orbits has the similar parametric representations as
(6.1), where we use a0 instead of r21.

The level curves defined by H−3(ϕ, y) = h0 contain two homoclinic orbits of
system (1.5) to the origin and two open curves contact to two straight lines ϕ =
±√

a0 at the points (±ϕ2, 0),respectively. Two homoclinic orbits have the similar
parametric representations as (6.2), where we use a0 instead of r21.

The level curves defined by H−3(ϕ, y) = h, h ∈ (h0, h1) contain two families
of closed orbits of system (1.5) enclosing the equilibrium points (±ϕ1, 0) and two
open curves contact to two straight lines ϕ = ±√

a0 at the points (±ϕ2, 0). In this
case, we have

√
hξ =

∫ ϕ

r2

dϕ√
(a0−ϕ2)(r21−ϕ2)(ϕ2−r22)

. Therefore, we have the parametric
representations of two periodic families of system (1.5):

ϕ(ξ) = ±
(

r22
1− α̌2

6sn2(Ω̌2ξ, k)

) 1
2

, (6.7)

where k2 =
(r21−r22)a0

r21(a0−r22)
, α̌2

6 =
r21−r22

r21
, Ω̌2 =

√
hr21(a0 − r22).

(ii) For β = −4, the level curves defined by H−4(ϕ, y) = h0 < 0, contain two
homoclinic orbits to the origin and two closed orbits contacting to two straight lines
ϕ = ±√

a0, respectively. They have the similar parametric representations as (6.3)
and (6.4), where we use a0 instead of r22.

For the cases of Figure.5 (c) and Figure.5 (d), the orbits of system (1.5) have
not given new forms of the parametric representations. So that, we do not make
new discussion.
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