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CRITICAL POINT APPROACHES TO
GRADIENT-TYPE SYSTEMS ON THE
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Abstract We investigate the existence of multiple solutions for parametric
quasi-linear systems of the gradient-type on the Sierpiński gasket. We give
some new criteria to guarantee that the systems have at least three weak
solutions by using a variational method and some critical points theorems due
to Ricceri. We extend and improve some recent results. Finally, we give two
examples to illustrate the main results.
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1. Introduction
In this paper, we are interested in Dirichlet gradient type system of the form:

∆ui(x) + ai(x)ui(x) = λp(x)Fui
(u1(x), . . . , un(x))

+νq(x)Gui
(u1(x), . . . , un(x)), x ∈ V/V0

ui|V0 = 0

(PF,G
λ,ν )

for i = 1, . . . , n, where V stands for the Sierpiński gasket, V0 is its intrinsic bound-
ary, ∆ denotes the weak Laplacian on V , λ and ν are positive real parameters,
F,G : Rn → R are continuously differentiable in (x1, . . . , xn) and F (0, . . . , 0) =
G(0, . . . , 0) = 0, Fui

and Gui
denote the partial derivative of F and G with respect
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to ui, respectively, the variable potentials a1, . . . , an, p, q : V −→ R satisfy the
following conditions:

(h1) ai ∈ L1(V, µ) and ai ≤ 0 (i = 1, . . . , n) almost everywhere in V.
(h2) p, q ∈ C(V ) with p ≤ 0 and q ≤ 0 such that the restriction of p and q on every

open subset of V is not identically zero.

Here µ denotes the restriction to V of the normalized logN
log 2 −dimentional Hausdorff

measure on V , so that µ(V ) = 1 (see [10] for more details).
The ‘fractal’ was originally due to Mandelbrot in 1975. A fractal often has the

following properties: it has a simple recursive definition, it has a fine structure at
arbitrary small scales, it is self-similar, and it has a Hausdorff dimension which
is greater than its topological dimension. A simple example of a fractal is the
Sierpiński gasket (triangle). It was introduced by Waclaw Sierpiński in [25], and
plays an important role in the theory of curves. It is one of the basic examples of
post critically finite fractals and the complement of it is a union of triangles [18].

Recently, there has been an increasing interest in studying nonlinear partial
differential equations on fractals. One of the difficulties in studying PDEs on fractal
domains is how to define differential operators, like the Laplacian, on the fractal
domains. There is no concept of a generalized derivative of a function, and so we
need to clarify the idea of differential operators such as the Laplacian on fractal
domains. So, we cannot expect the solutions of PDEs on fractal domains to behave
like the solutions of their Euclidean analogues. For example, Barlow and Kigami [2]
proved that many fractals have Laplacian eigenfunctions vanishing identically on
large open sets, whereas the eigenfunctions of the Laplace operator are analytic in
Rn. On the other hand, many researchers have used the variational method and
critical point theory to investigate the nonlinear elliptic equations of fractals. We
refer the readers to [6, 13,14] for more details.

We refer to [27] for an elementary introduction to the Sierpiński Gasket, and [28]
for important applications of fractals. Moreover, the study of the Laplacian on
fractals originated in physics, literature, where the so-called spectral decimation
method was developed in [1,21]. For completeness, we recall that the Laplacian on
the Sierpiński gasket was first constructed as the generator of a diffusion process
(see [16,19]). In [30], Teplyaev proved that the Laplacian with the Neumann bound-
ary condition has pure point spectrum. Moreover, the set of eigenfunctions with
compact support is complete. The same is true if the infinite Sierpiński gasket has
no boundary, but is false for the Laplacian with the Dirichlet boundary condition.

The nonlinear problem (PF,G
λ,ν ) is closely related to physical phenomena such as

reaction-diffusion problems and elastic properties of fractal media and flow through
fractal regions. There is an extensive theory for the study of nonlinear elliptic equa-
tions (PF,G

λ,ν ) on classical domains, that is, on open sets of RN , using Sobolev spaces
and Sobolev embedding theorems (see [3–5, 8, 12]). In [9], by extending a method
introduced by Faraci and Kristály in the framework of Sobolev spaces to the case
of function spaces on fractal domains, Breckner et. al established the existence of
infinitely many weak solutions for the problem ∆u(x) + a(x)u(x) = g(x)f(u(x))
in V/V0 and u|V0 = 0, where a : V → R, f : R → R and g : V → R are con-
tinuous functions with appropriate properties. Moreover, in [26], Stancu-Dumitru
studied the Dirichlet problem involving the weak Laplacian on the Sierpiński gas-
ket −∆u(x) = f(x)|u(x)|p−2u(x) + (1 − g(x))|u(x)|q−2u(x) in V/V0 and u|V0

= 0,
where ∆ is the Laplacian on V , 1 < p < 2 < q are real numbers, f, g ∈ C(V ) satisfy
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f+ = max{f, 0} ̸= 0 and 0 ≤ g(x) < 1 for all x ∈ V , and proved the existence of
at least two distinct nontrivial weak solutions using Ekeland’s Variational Principle
and standard tools in critical point theory combined with corresponding variational
techniques. In [7], Bonanno et. al used variational methods to prove the existence of
infinitely many solutions for a system of gradient type (PF,G

λ,ν ), under an appropriate
oscillating behavior either at zero or at infinity of the nonlinear data. Moreover,
by adopting the same hypotheses on the potential and in presence of suitable small
perturbations, the same conclusion is achieved.

In the present paper, we are interested to look for the existence of at least three
weak solutions for the problem (PF,G

λ,ν ) for appropriate values of the parameters λ
and ν belonging to real intervals. Employing variational methods and two three
critical points theorems due Ricceri [22, 23], we establish two existence results for
the problem (PF,G

λ,ν ). Two examples are presented to illustrate our main results.

2. Preliminaries
The proof of the main results are based on the following two three critical points
theorem obtained by Ricceri in [22,23]. Let X be a real Banach space, we use WX

to denote the class of all functionals Φ : X → R possessing the following property: if
{un} is a sequence in X converging weakly to u ∈ X and lim infn→∞ Φ(un) ≤ Φ(u),
then {un} has a subsequence converging strongly to u.

Remark 2.1. If X is uniformly convex and g : [0,+∞) → R is a continuous and
strictly increasing function, then the functional u → g(∥u∥) belongs to the class
WX .

Theorem 2.1 ( [22]). Let X be a separable and reflexive real Banach space; let
Φ : X → R be a coercive, sequentially weakly lower semicontinuous C1-functional,
belonging to WX , bounded on each bounded subset of X and whose derivative admits
a continuous inverse on X∗; J : X → R a C1-functional with compact derivative.
Assume that Φ has a strict local minimum u0 with Φ(u0) = J(u0) = 0. Finally,
setting

ρ = max

{
0, lim sup

∥u∥→+∞

J(u)

Φ(u)
, lim sup

u→u0

J(u)

Φ(u)

}
,

σ = sup
u∈Φ−1(0,+∞)

J(u)

Φ(u)
,

assume that ρ < σ. Then, for each compact interval [c, d] ⊂ ( 1σ ,
1
ρ ) (with the

conventions 1
0 = ∞, 1

∞ = 0), there exists R > 0 with the following property: for
every λ ∈ [c, d] and every C1-functional Ψ : X → R with compact derivative, there
exists γ > 0 such that, for each ν ∈ [0, γ],

Φ′(u) = λJ ′(u) + νΨ′(u)

has at least three solutions in X whose norms are less than R.

Theorem 2.2 ( [23]). Let X be a reflexive real Banach space; I ⊆ R an interval; let
Φ : X → R be a sequentially weakly lower semi-continuous C1-functional, bounded
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on each bounded subset of X, whose derivative admits a continuous inverse on X∗;
J : X → R a C1-functional with compact derivative. Assume that

lim
∥u∥→+∞

(Φ(u)− λJ(u)) = +∞

for all λ ∈ I, and that there exists ρ ∈ R such that

sup
λ∈I

inf
u∈X

(Φ(u) + λ(ρ− J(u))) < inf
u∈X

sup
λ∈I

(Φ(u) + λ(ρ− J(u))).

Then, there exist a nonempty open set A ⊆ I and a positive number R′ with the
following property: for every λ ∈ A and every C1 functional Ψ : X → R with
compact derivative, there exists δ > 0 such that, for each ν ∈ [0, δ], the equation
Φ′(u)− λJ ′(u)− νΨ′(u) = 0 has at least three solutions in X whose norms are less
than R′.

Proposition 2.1 ( [24]). Let X be a nonempty set, and Φ and J be two real
functions on X. Assume that there are r > 0 and u0, u1 ∈ X such that

Φ(u0) = J(u0) = 0, Φ(u1) > r, sup
u∈Φ−1(−∞,r]

J(u) < r
J(u1)

Φ(u1)
.

Then for each ρ satisfying

sup
u∈Φ−1(−∞,r]

J(u) < ρ < r
J(u1)

Φ(u1)
,

one has

sup
λ≥0

inf
u∈X

(Φ(u) + λ(ρ− J(u))) < inf
u∈X

sup
λ≥0

(Φ(u) + λ(ρ− J(u))).

We refer the reader to the paper [11,29] in which Theorems 2.1 and 2.2 were suc-
cessfully employed to ensure the existence of at least three solutions for perturbed
second-order Hamiltonian systems with impulsive effects. We also refer the readers
to [10, 17] in which Theorem 2.1 was successfully employed to ensure the existence
of three solutions for Dirichlet problem on the Sierpiński gasket and impulsive per-
turbed elastic beam fourth-order equations of Kirchhoff-type, respectively.

In this paper, we denote by N the set of natural numbers {0, 1, 2, ...}, by N∗ :=
N\{0} the set of positive naturals, and by | · | the Euclidian norm on the spaces
Rn, n ∈ N∗. Now we give the two remarks below to more understanding about
Sierpiński gasket.

Remark 2.2. The Sierpiński gasket is the connected subset of the plane obtained
from an equilateral triangle by removing the open middle inscribed equilateral tri-
angle of a quarter ( 1

4 ) of the area. Removing the corresponding open triangle from
each of the three constituent triangles, and continuing this way. The gasket can
also be obtained as the closure of the set of vertices arising in this construction.

Remark 2.3. Let N ≥ 2 be a natural number and let p1, . . . , pN ∈ RN−1 be so
that |pi − pj | = 1 for i ̸= j. Define, for every i ∈ {1, ..., N}, the map Si : RN−1 →
RN−1 by Si(x) = 1

2x + 1
2pi. Obviously, every Si is a similarity with ratio 1

2 . Let
S := {S1, . . . , SN} and set F : P(RN−1) → P(RN−1) with F (A) =

∪N
i=1 Si(A). It is
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known (see [14, Theorem 9.1]) that there is a unique non-empty compact subset V of
RN−1, called the attractor of the family S, such that F (V ) = V . The set V is called
the Sierpiński gasket (SG for short) in RN−1. It can be constructed inductively as
follows: Put V0 := {p1, ..., pN}, Vm := F (Vm−1), for m ≥ 1, and V∗ := ∪m≥0Vm.
Since pi = Si(pi) for i = 1, ..., N, we have V0 ⊆ V1 and F (V∗) = V∗. Taking into
account that the maps Si, i = 1, ..., N, are homeomorphisms, we conclude that V∗
is a fixed point of F . On the other hand, V∗ is non-empty, compact and V = V∗.
The set V0 is called the intrinsic boundary of the SG. The Hausdorff dimension d
of V satisfies the equality

∑N
i=1(

1
2 )

d = 1 (see [14, Theorem 9.3]). Hence d = lnN
ln 2 ,

and 0 < Hd(V ) < ∞, where Hd is the d-dimensional Hausdorff measure on RN−1.
Let µ be the normalized restriction of Hd to the subsets of V , and so µ(V ) = 1.
Moreover µ(B) > 0 for every nonempty open subset B of V . In other words, the
support of µ coincides with V .

Now, denote by C(V ) the space of real-valued continuous functions on V and

C0(V ) := {u ∈ C(V ); u|V0
= 0}.

The space C(V ) and C0(V ) endowed with the usual supremum norm ∥ · ∥∞. For a
function u : V −→ R and for m ∈ N , let

Wm = (
N + 2

N
)m

∑
x,y∈Vm,|x−y|=2−m

[u(x)− u(y)]2. (2.1)

We have Wm(u) ≤ Wm+1(u) for every natural m. So we can put

W (u) = lim
m→∞

Wm(u). (2.2)

Define
H1

0 (V ) := {u ∈ C0(V ); W (u) < ∞}.

It turns out H1
0 (V ) is a dense linear subset of L2(V, µ) equipped with the ∥ · ∥2

norm. We endow H1
0 (V ) with the norm

∥u∥ =
√

W (u).

In fact, there is an inner product defining this norm: for u, v ∈ H1
0 (V ) and m ∈ N ,

let
Wm =

(
N + 2

N

)m ∑
x,y∈Vm,|x−y|=2−m

(u(x)− u(y))(v(x)− v(y)).

Put
W(u, v) = lim

m→∞
Wm(u, v).

Then, W (u, v) ∈ R and H1
0 (V ), equipped with the inner product W (which obvi-

ously induces the norm ∥ · ∥) becomes real Hilbert space. Moreover,

∥u∥∞ ≤ (2N + 3)∥u∥, for allu ∈ H1
0 (V ), (2.3)

and the embedding
(H1

0 (V ), ∥ · ∥) ↪→ (C0(V ), ∥ · ∥∞), (2.4)
is compact. We refer to [15] for further details.
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We now define Laplacian on the Sierpiński gasket V . Let H−1(V ) be the closure
of L2(V) with respect to the pre-norm

∥w∥−1 = sup
w∈H1

0 (V ),∥g∥=1

|⟨w, g⟩|

where
⟨w, g⟩ =

∫
V

wgdµ,

for w ∈ L2(V ) and g ∈ H1
0 (V ). Then H−1(V ) is a Hilbert space. Let W (u, v) be

the inner product of u, v ∈ H1
0 (V ). Then the relation

−W (u, v) = ⟨∆u, v⟩, for all v ∈ H1
0 (V ),

uniquely defines a function ∆u ∈ H−1(V ) for all u ∈ H1
0 (V ); we term ∆ the (weak)

Laplacian on V (see [20]).

Remark 2.4. As pointed out by Falconer and Hu [14], we just observe that if
a ∈ L1(V ) and a ≤ 0 in V , then from (2.3), the norm

∥u∥∗ :=

(
W (u, u)−

∫
V

a(x)u2(x)dµ

) 1
2

,

is equivalent to
√

W (u) in H1
0 (V ).

Fix λ > 0. We say that a function (u1, . . . , u2) ∈ H1
0 (V ) × H1

0 (V ) is called a
weak solution of (PF,G

λ,ν ) if
n∑

i=1

[
(W (ui, vi)−

∫
V

ai(x)ui(x)vi(x)dµ) + λ

∫
V

g(x)Fui(u1(x), u2(x))vi(x)dµ

]
= 0

for every (v1, v2) ∈ H1
0 (V )× . . .×H1

0 (V ).

Remark 2.5. If a1, a2 ∈ C(V ), arguing as in Lemma 2.16 of [14], it follows that
every weak solution of the problem (PF,G

λ,ν ) is also a strong solution.

Here and in the sequel, E will denote the product space E = H1
0 (V )×. . . ,×H1

0 (V )
endowed with the norm

∥u∥E = ∥(u1, u2 . . . , un)∥E :=

n∑
i=1

(
W (ui)−

∫
V

ai(x)u
2
i (x)dµ

) 1
2

.

We say that a function u = (u1, . . . , un) ∈ H1
0 (V ) × . . . ,×H1

0 (V ) is called a weak
solution of (PF,G

λ,ν ) if
n∑

i=1

[
W (ui, vi)−

∫
V

ai(x)ui(x)vi(x)dµ
]

+ λ

∫
V

n∑
i=1

p(x)Fui
(u1(x), . . . , un(x))vi(x)dµ

+ ν

∫
V

n∑
i=1

q(x)Gui(u1(x), . . . , un(x))vi(x)dµ = 0
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for every v = (v1, . . . , vn) ∈ H1
0 (V )× . . . ,×H1

0 (V ).
Now for every u = (u1, . . . , un) ∈ E, we define

Φ(u) =
1

2

n∑
i=1

(
∥ui∥2H1

0 (V ) −
∫
V

ai(x)u
2
i (x)dµ

)
(2.5)

J(u) =

∫
V

p(x)F (u1(x), . . . , un(x))dµ (2.6)

and
Ψ(u) =

∫
V

q(x)G(u1(x), . . . , un(x))dµ. (2.7)

Standard arguments show that I =: Φ − µΨ − λJ is a Gâteaux differentiable
functional whose Gâteaux derivative at the point u = (u1, . . . , un) ∈ E given by

I ′(u)(v) =

n∑
i=1

[
W (ui, vi)−

∫
V

ai(x)ui(x)vi(x)dµ
]

+ λ

∫
V

p(x)

n∑
i=1

Fui(u1(x), . . . , un(x))vi(x)dµ

+ ν

∫
V

n∑
i=1

q(x)Gui
(u1(x), . . . , un(x))vi(x)dµ = 0

for all v = (v1, . . . , vn) ∈ E. We observe that a vector u ∈ E is a solution of problem
(PF,G

λ,ν ) if and only if u is a critical point of the function I.

Proposition 2.2. Let J := Φ′ : E −→ E∗ be the operator defined by

J (u)(v) =

n∑
i=1

[
W (ui, vi)−

∫
V

ai(x)ui(x)vi(x)dµ
]

for every u = (u1, . . . , un), v = (v1, . . . , vn) ∈ E. Then J admits a continuous
inverse on X∗.

Proof. We should show that J is strictly monotone and coercive operator. we
have

⟨J (u1, . . . , un)(u1 − v1, . . . , un − vn)− J (v1, . . . , vn)(u1 − v1, . . . , un − vn)⟩

=

n∑
i=1

(W (ui, ui − vi)−
∫
V

aiui(ui − vi)dµ)

−
n∑

i=1

(W (vi, ui − vi)−
∫
V

aivi(ui − vi)dµ)

=

n∑
i=1

−
∫
V

ai(x)ui(ui − vi)dµ+

n∑
i=1

∫
V

ai(x)vi(ui − vi)dµ

= −
n∑

i=1

∫
V

ai(ui − vi)(ui − vi)dµ

= −
n∑

i=1

∫
V

ai(x)(ui − vi)
2dµ.
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Since ai ∈ L1(V, µ) and ai ≤ 0, i = 1, . . . , n then

⟨J (u1, . . . , un)(u1 − v1, . . . , un − vn)− J (v1, . . . , v2)(u1 − v1, . . . , un − vn)⟩

≥ τ

[∫
V

(u1 − v1)
2dµ+ . . .+

∫
V

(u2 − v2)
2dµ

]
= τ∥u− v∥2,

where τ =
∑n

i=1

∫
V
ai dµ, and so J is a strictly monotone and coercive operator.

Then J admits a continuous inverse on E∗.

3. Main results
In this section, we formulate our main results. Let us denote by F the class of all
functions F : Rn → R that are continuously differentiable in ξ satisfy the standard
summability condition

sup
|ξ|≤ϱ1

{
max{|F (ξ)|, |G(ξ)|, |Fξi(ξ)|, |Gξi(ξ)|, i = 1, . . . , n}

}
∈ L1(V, µ) (3.1)

for any ϱ1 > 0 with ξ = (ξ1, . . . , ξn).
Let

λ1 = inf

{∑n
i=1

(
∥ui∥2H1

0 (V )
−
∫
V
ai(x)u

2
i (x)dµ

)
2
∫
Ω
p(x)F (u1(x), . . . , un(x))dx

:

u ∈ E ,

∫
Ω

p(x)F (u1(x), . . . , un(x))dµ > 0

}
and λ2 = 1

max{0,λ0,λ∞} , where

λ0 = lim sup
|u|→0

2
∫
Ω
p(x)F (u1(x), . . . , un(x))dµ∑n

i=1

(
∥ui∥2H1

0 (V )
−
∫
V
ai(x)u2

i (x)dµ
) ,

and

λ∞ = lim sup
∥u∥→+∞

2
∫
Ω
p(x)F (u1(x), . . . , un(x))dµ∑n

i=1

(
∥ui∥2H1

0 (V )
−
∫
V
ai(x)u2

i (x)dµ
) ,

where u = (u1, . . . , un) and |u| =
(
u2
1 + . . .+ un

) 1
2 ,

Theorem 3.1. Let F ∈ F and p : V → R satisfy in the assumption (h2). Assume
that
(A1) there exists a constant ε > 0 such that

sup
x∈V

p(x).max

{
lim sup

(u1,...,un)→(0,...,0)

F (u1(x), . . . , un(x))

|u|p
,

lim sup
|u|→+∞

maxx∈Ω p(x)F (u1(x), . . . , un(x))

|u|p

}
< ε

where |u| =
√∑n

i=1 u
2
i ;
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(A2) there exists a function w = (w1, . . . , wn) ∈ E such that

Kw :=

n∑
i=1

(
∥wi∥2H1

0 (V ) −
∫
V

ai(x)w
2
i (x)dµ

)
̸= 0

and
ε <

2
∫
Ω
p(x)F (w1(x), . . . , wn(x))dµ

(2N + 3)2Kw
.

Then, for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 with the
following property: for every λ ∈ [c, d] and, for every G ∈ F and every q : V → R
satisfy in the assumption (h2) there exists γ > 0 such that for each ν ∈ [0, γ], the
problem (PF,G

λ,ν ) has at least three weak solutions whose norms in E are less than R.

Proof. Take X = E. It is clear that E is a separable and uniformly convex
Banach space. Let the functionals Φ, J and Ψ be as given in (2.5), (2.6) and (2.7),
respectively. The functional Φ is C1, and by Proposition 2.2, its derivative admits a
continuous inverse on X∗. Moreover, clearly, Φ is coercive and sequentially weakly
lower semicontinuous functional. Furthermore, let A be a bounded subset of X.
That is, there exist constant c > 0, such that ∥u∥E ≤ c for each u = (u1, . . . , un) ∈
A. Then, by (2.5) there exist constants c1, c2, . . . , cn such that c =

∑n
i=1 ci and

∥ui∥2H1
0 (V )

−
∫
V
ai(x)u

2
i (x)dµ ≤ c2i for i = 1, . . . , n, and we have

|Φ(u)| ≤ 1

2

n∑
i=1

(
∥ui∥2H1

0 (V ) −
∫
V

ai(x)u
2
i (x)dµ

)
≤ 1

2

n∑
i=1

c2i .

Hence Φ is bounded on each bounded subset of X. Furthermore, by Remark 2.1,
Φ ∈ WX . The functionals J and Ψ are two C1-functionals with compact derivatives.
Moreover, Φ has a strict local minimum 0 with Φ(0) = J(0) = 0. In view of (A1),
there exist τ1, τ2 with 0 < τ1 < τ2 such that

F (u1, . . . , un) ≤ ε|u|2 (3.2)

for every u with |u| ∈ [0, τ1)∪(τ2,+∞), where |u| =
√∑n

i=1 u
2
i . Since F (u1, . . . , un)

is continuous on Rn, it is bounded on |u| =
√∑n

i=1 u
2
i ∈ [τ1, τ2]. Thus we can choose

η > 0 and υ > 2 such that

F (u1, . . . , un) ≤ ε|u|2 + η|u|υ

for all (x, u1, . . . , un) ∈ V × Rn. So, by (2.3) and Remark 2.4, we have

J(u) ≤ε

∫
V

n∑
i=1

u2
idµ+ η

∫
V

( n∑
i=1

u2
i

) ν
2

dµ (3.3)

≤ε(2N + 3)2
(∫

V

p(x)dµ
)
∥u∥2E + η(2N + 3)

υ
2

(∫
V

p(x)dµ
)
∥u∥υE

for all u = (u1, . . . , un) ∈ X. Hence, from (3.3) we have

lim sup
|u|→0

J(u)

Φ(u)
≤

ε(2N + 3)2
( ∫

V
p(x)dµ

)
2

. (3.4)
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Moreover, by using (3.2), for each u = (u1, . . . , un) ∈ E \ {(0, 0, . . . , 0)}, we obtain

J(u)

Φ(u)
=

∫
|u|≤τ2

p(x)F (u1, . . . , un)dµ

Φ(u)
+

∫
|u|>τ2

p(x)F (u1, . . . , un)dµ

Φ(u)

≤
supx∈V p(x). sup|u|∈[0,τ2] F (u1, . . . , un)

Φ(u)
+

ε(2N + 3)2
( ∫

V
p(x)dµ

)
∥u∥2E

Φ(u)

≤
2 supx∈Ω,|u|∈[0,τ2] F (x, u)

∥u∥2
+

ε(2N + 3)2
( ∫

V
p(x)dµ

)
2

.

So, we get

lim sup
∥u∥→+∞

J(u)

Φ(u)
≤

ε(2N + 3)2
( ∫

V
p(x)dµ

)
2

. (3.5)

In view of (3.4) and (3.5), we have

ρ = max

{
0, lim sup

∥u∥→+∞

J(u)

Φ(u)
, lim sup
(u1,...,un)→(0,...,0)

J(u)

Φ(u)

}
≤

ε(2N + 3)2
( ∫

V
p(x)dµ

)
2

,

(3.6)
where u = (u1, . . . , un). Assumption (A2) in conjunction with (3.6) yields

σ = sup
u∈Φ−1(0,+∞)

J(u)

Φ(u)
= sup

X\{(0,...,0)}

J(u)

Φ(u)
≥

∫
V
p(x)F (w1(x), . . . , wn(x))dµ

Φ(w(x))

=

∫
Ω
p(x)F (w1(x), . . . , wn(x))dx

Kw
>

ε(2N + 3)2
( ∫

V
p(x)dµ

)
2

≥ ρ.

Thus, all the hypotheses of Theorem 2.1 are satisfied. Clearly, λ1 = 1
σ and λ2 = 1

ρ .
Then, using Theorem 2.1, for each compact interval [c, d] ⊂ (λ1, λ2), there exists
R > 0 with the following property: for every λ ∈ [c, d] and, for every G ∈ F and
every q : V → R satisfy in the assumption (h2) there exists γ > 0 such that for each
ν ∈ [0, γ], the system (PF,G

λ,ν ) has at least three solutions whose norms in X are less
than R.

Theorem 3.2. Let F ∈ F , p : V → R satisfy in the assumption (h2),

sup
x∈V

p(x).max

{
lim sup

(u1,...,un)→(0,...,0)

F (u1(x), . . . , un(x))

|u|p
, (3.7)

lim sup
|u|→+∞

F (u1(x), . . . , un(x))

|u|p

}
≤ 0

where |u| =
√∑n

i=1 u
2
i , and

sup
u∈E

2
∫
Ω
p(x)F (u1(x), . . . , un(x))dµ∑n

i=1

(
∥ui∥2H1

0 (V )
−
∫
V
ai(x)u2

i (x)dµ
) > 0 (3.8)

where u = (u1, . . . , un). Then for each compact interval [c, d] ⊂ (λ1,+∞) there
exists R > 0 with the following property: for every λ ∈ [c, d] and, for every G ∈ F
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and every q : V → R satisfy in the assumption (h2) there exists γ > 0 such that for
each ν ∈ [0, γ], the problem (PF,G

λ,ν ) has at least three weak solutions whose norms
in E are less than R.

Proof. In view of (3.7), there exist an arbitrary ε > 0 and τ1, τ2 with 0 < τ1 < τ2
such that

F (u1, . . . , un) ≤ ε|u|2

for every u with |u| ∈ [0, τ1)∪ (τ2,+∞). Since F (u1, . . . , un) is continuous on Rn, it
is bounded on |u| ∈ [τ1, τ2]. Thus we can choose η > 0 and υ > p in a manner that

F (u1, . . . , un) ≤ ε|u|2 + η|u|υ

for all (u1, . . . , un) ∈ Rn. So, by the same process in proof of Theorem 3.1 we have
Relations (3.4) and (3.5). Since ε is arbitrary, (3.4) and (3.5) gives

max

{
0, lim sup

∥u∥→+∞

J(u)

Φ(u)
, lim sup
(u1,...,un)→(0,...,0)

J(u)

Φ(u)

}
≤ 0

where u = (u1, . . . , un). Then, with the notation of Theorem 2.1, we have ρ = 0.
By (3.8), we also have σ > 0. In this case, clearly λ1 = 1

σ and λ2 = +∞. Thus, by
using Theorem 2.1 result is achieved.

Now we formulate the following applications of Theorems 2.2 as our second main
result.

Theorem 3.3. Assume that

(B1) there exist two positive constants κ, ξ and α ∈ [0, 2) such that

|F (u1, . . . , un)| ≤ κ|u|α + ξ for allu = (u1, . . . , un) ∈ Rn

where |u| =
√∑n

i=1 u
2
i ;

(B2) there exist a positive constant r and w = (w1, . . . , wn) ∈ E such that Kw > r
where Kw is as given in Assumption (A2) in Theorem 3.1, and

max
|u|≤

√
2r

2N+3

F (u1, . . . , un) <
r
∫
V
p(x)F (w1(x), . . . , wn(x))dµ

Kw

∫
V
p(x)dµ

.

Then, there exist a nonempty open set A ⊂ [0,+∞) and a positive number R′ with
the following property: for every λ ∈ A and, for every G ∈ F and every q : V → R
satisfy in the assumption (h2) there exists δ > 0 such that for each ν ∈ [0, δ], the
problem (PF,G

λ,ν ) has at least three weak solutions whose norms in E are less than R′.

Proof. Take X = E. Let the functionals Φ and J be as given in (2.5) and (2.6),
respectively. For any λ ≥ 0 and u = (u1, . . . , un) ∈ E with |u| =

√∑n
i=1 u

2
i , by
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Remark 2.4, (2.3) and (B1) we have

Φ(u)− λJ(u) =
1

2

n∑
i=1

(
∥ui∥2H1

0 (V ) −
∫
V

ai(x)u
2
i (x)dµ

)
− λ

∫
V

p(x)F (u1(x), . . . , un(x))dµ

≥ 1

2

n∑
i=1

(
∥ui∥2H1

0 (V ) −
∫
V

ai(x)u
2
i (x)dµ

)
− λ

∫
V

(κp(x)|u(x)|α + ξp(x)) dµ

≥ 1

2

n∑
i=1

(
∥ui∥2H1

0 (V ) −
∫
V

ai(x)u
2
i (x)dµ

)
− λ

[
(2N + 3)ακ∥u∥αE − ξ

] ∫
V

p(x)dµ.

Since α < 2 and ∥u∥E =
∑n

i=1

(
∥ui∥2H1

0 (V )
−

∫
V
ai(x)u

2
i (x)dµ

) 1
2 , one has

lim
∥u∥E→+∞

(Φ(u)− λJ(u)) = +∞

for all λ ≥ 0. If Φ(u) ≤ r, we have ∥u∥ ≤
√
2r, that is,

Φ−1(−∞, r] ⊆

{
u ∈ X : max

x∈V
|u(x)| ≤

√
2r

2N + 3

}
.

Therefore,

sup
u∈Φ−1(−∞,r]

J(u) ≤ max
|u|≤

√
2r

2N+3

J(u) (3.9)

= max
|u|≤

√
2r

2N+3

∫
V

p(x)F (u1(x), . . . , un(x))dµ

≤ max
|u|≤

√
2r

2N+3

F (u1, . . . , un).

∫
V

p(x)dµ.

It is clear that Φ(0, . . . , 0) = J(0 . . . , 0) = 0 and owing to (B2) and (3.9), Φ(w) =
Φ(w1, . . . , wn) > r and

sup
u∈Φ−1(−∞,r]

J(u) < r
J(w)

Φ(w)
.

Thus we can fix ρ such that

sup
u∈Φ−1(−∞,r]

J(u) < ρ < r
J(w)

Φ(w)
.

Now from Proposition 2.1, we obtain

sup
λ≥0

inf
u∈E

(Φ(u) + λ(ρ− J(u))) < inf
u∈E

sup
λ≥0

(Φ(u) + λ(ρ− J(u))).
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Therefore, by Theorem 2.2, and for each compact interval [a, b] ⊆ (λ1, λ2), there
exists R′ > 0 with the following property: for every λ ∈ [a, b], for every G ∈ F and
every q : V → R satisfy in the assumption (h2) there exists δ > 0 such that, for
each ν ∈ [0, δ], Φ′(u)−λJ ′(u)−µΨ′(u) = 0 has at least three solutions in E. Hence,
the problem (PF,G

λ,ν ) has at least three weak solutions whose norms are less than R′.

Here B(x0, s) denotes the ball with center at x0 and radius of s. Put

ϑ(x) = sup{ϑ > 0 : B(x, ϑ) ⊆ V }

for all x ∈ V, one can prove that there exists x0 ∈ V such that B(x0, D) ⊆ V , where
D := supx∈V ϑ(x). Put

L := 2DN−2(2N − 1)πN/2
n∑

i=1

∥ai∥L1(V ). (3.10)

The next two theorems provide sufficient conditions for applying Theorems 3.1 and
3.3 which does not require to know a test function w = (w1, . . . , wn) satisfying (A2)
and (B2), respectively.

Theorem 3.4. Assume that the assumption (A1) in Theorem 3.1 holds and there
exists a positive constant b such that

(A3) p(x) ≥ 0 for each x ∈ B(x0, D) \ B(x0,
D
2 ) and F (t1, . . . , tn) ≥ 0 for each

(t1, . . . , tn) ∈ Rn with |t| =
√∑n

i=1 t
2
i ∈ [0, b];

(A4) there is j ∈ {1, . . . , n} such that aj ̸= 0 and

ε <
Γ(1 +N/2)F (b, . . . , b)

∫
B(x0,

D
2 )

p(x)dµ

b2L(2N + 3)2

where Γ is the Gamma function and L is given in (3.10).

Then, for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 with the
following property: for every λ ∈ [c, d] and, for every G ∈ F and every q : V → R
satisfy in the assumption (h2) there exists γ > 0 such that, for each ν ∈ [0, γ], the
problem (PF,G

λ,ν ) has at least three weak solutions whose norms in E are less than R.

Proof. We claim that all the assumptions of Theorem 3.1 are fulfilled by choosing
w = (w1(x), . . . , wn(x)) as follows

wi(x) =


0, x ∈ V \B(x0, D)

2b
D (D − |xi − x0|), x ∈ B(x0, D)\B(x0,

D
2 )

b, x ∈ B(x0,
D
2 )

(3.11)

for i = 1, . . . , n, where | · | denotes the Euclidean norm on RN . It is easy to see that
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w ∈ E, and one has

Φ(w) =
1

2

n∑
i=1

∫
B(x0,D)\B(x0,D/2)

ai(x)
(2b)2

D2
dµ (3.12)

=
meas(B(x0, D))−meas(B(x0, D/2))

2

n∑
i=1

∥ai∥L1(V )
(2b)2

D2

=
2b2DN−2(2N − 1)πN/2

Γ(1 +N/2)

n∑
i=1

∥ai∥L1(V ) =
Lb2

Γ(1 +N/2)
.

From Assumptions (A3) and (A4) we observe that Assumption (A2) in Theorem
3.1 is satisfied. Hence, Theorem 3.1 follows the result.

Theorem 3.5. Assume that Assumption (B1) in Theorem 3.3 and Assumption
(A3) in Theorem 3.4 hold and there exist three positive constants b, c and α with
α ∈ [0, 2), and

√
2Lb < (2N + 3)c

√
Γ(1 +N/2) where Γ is the Gamma function

and L is given in (3.10) such that

(B3) max|u|≤c F (u1, . . . , un) <
F (b,...,b)

2
∫
V

p(x)dµ

∫
B(x0,

D
2 )

p(x)dµ.

Then, there exist a nonempty open set A ⊂ [0,+∞) and a positive number R′ with
the following property: for every λ ∈ A and, for every G ∈ F and every q : V → R
satisfy in the assumption (h2) there exists δ > 0 such that, for each ν ∈ [0, δ], the
problem (PF,G

λ,ν ) has at least three weak solutions whose norms in E are less than R′.

Proof. We claim that all the hypotheses of Theorem 3.1 are satisfied by choosing
w = (w1, . . . , wn) as given in (3.11) and r = Lb2

2Γ(1+N/2) . We observe that

Kw =
2b2DN−2(2N − 1)πN/2

Γ(1 +N/2)

n∑
i=1

∥ai∥L1(V ) =
Lb2

Γ(1 +N/2)
>

Lb2

2Γ(1 +N/2)
= r,

where Kw is as given in Assumption (A1). Owing to (B3) and F (0, . . . , 0) = 0, one
has

∫
B(x0,

D
2 )

F (w1(x), . . . , wn(x))dµ > 0. So by (A3), (B3) and (3.12), we have

r

∫
V
p(x)F (w1(x), . . . , wn(x))dµ

Kw

∫
V
p(x)dµ

=
Lb2

2Γ(1 +N/2)

Γ(1 +N/2)
∫
V
p(x)F (w1(x), . . . , wn(x))dµ

Lb2
∫
V
p(x)dµ

>
F (b, . . . , b)

2
∫
V
p(x)dµ

∫
B(x0,

D
2 )

p(x)dµ

> max
|u|≤c

F (u1, . . . , un)

> max
|u|≤

√
2r

2N+3

F (u1, . . . , un).

Thus, the assumption (B2) in Theorem 3.3 holds. Therefore, by Theorem 3.3,
for each compact interval [a, b] ⊆ (λ1, λ2), there exists R′ > 0 with the following
property: for every λ ∈ A and, for every G ∈ F and every q : V → R satisfy in the
assumption (h2) there exists δ > 0 such that, for each ν ∈ [0, δ], Φ′(u) − λJ ′(u) −
µΨ′(u) = 0 has at least three solutions in E. Hence, the problem (PF,G

λ,ν ) has at
least three weak solutions whose norms are less than R′.
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4. Scalar case
As an application of the results from Section 3, we consider the problem∆u(x) + a(x)u(x) = λp(x)f(u(x))− νg(u(x)), x ∈ V/V0

u|V0
= 0

(P f,g
λ,ν )

where V , V0, ∆, λ and ν are as introduced in the problem (PF,G
λ,ν ) in Introduction.

We assume that f : R → R is a continuous function and that the variable potentials
a, p : V → R satisfy the conditions (h1) and (h2) in the Introduction.

Set F (t) =
∫ t

0
f(ξ)dξ for all t ∈ R. The following existence results are conse-

quences of Theorem 3.4.

Theorem 4.1. Assume that

(A6) there exists a constant ε > 0 such that

sup
x∈V

p(x).max

{
lim sup
u→0

F (u)

u2
, lim sup

|u|→∞

F (u)

u2

}
< ε;

(A7) a ̸= 0 and there exist a positive constant b such that

ε <
Γ(1 +N/2)F (b)

∫
B(x0,

D
2 )

p(x)dµ

2b2DN−2(2N − 1)πN/2(2N + 3)2∥a∥L1(V )

where Γ is the Gamma function.

Then, for each compact interval [c, d] ⊂ (λ3, λ4) where λ3 and λ4 are the same as
λ1 and λ2, but

∫
V
p(x)F (u1(x), . . . , un(x))dµ replaced by

∫
V
p(x)F (u(x))dµ, respec-

tively, there exists R > 0 with the following property: for every λ ∈ [c, d] and every
continuous function g : R → R there exists γ > 0 such that for each ν ∈ [0, γ], the
problem (P f,g

λ,ν ) has at least three weak solutions whose norms in E are less than R.

Theorem 4.2. Assume that a ̸= 0 and there exists a positive constant b such that
F (b) > 0. Moreover, suppose that

lim sup
u→0

f(u)

|u|
= lim sup

|u|→∞

f(u)

|u|
= 0. (4.1)

Then, for each compact interval [c, d] ⊂ (λ3,∞) where λ3 is the same as λ1 but∫
V
p(x)F (u1(x), . . . , un(x))dµ replaced by

∫
V
p(x)F (u(x))dµ, there exists R > 0

with the following property: for every λ ∈ [c, d] and every continuous function
g : R → R there exists γ > 0 such that for each ν ∈ [0, γ], the problem (P f,g

λ,ν ) has at
least three weak solutions whose norms in E are less than R.

Proof. We easily observe that from (4.1) the assumption (A6) is satisfied for every
ε > 0. Moreover, using the assumptions a ̸= 0 and F (d) > 0, by choosing ε > 0
small enough one can drive the assumption (A7). Hence, the conclusion follows
from Theorem 4.1.

Remark 4.1. Our results show that no asymptotic conditions on f and g are
required, and merely the algebraic conditions on f are supposed to guarantee the
existence of solutions.
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Remark 4.2. Our existence results to establish three solutions for the problem
(P f,g

λ,ν ) in Theorem 4.2 in the case a = 0 and the existence results of Breckner et al.
in [10, Theorem 5.1] are the same. Indeed, the assumptions (4.1) in Theorem 4.2
and (C2) in [10, Theorem 5.1] are the same.

Now, we present the following example to illustrate Theorem 4.2.

Example 4.1. Let

f(t) =

 2(t+ sin t)2, if t < π,

2π2 + tanh(t− π), if t ≥ π.

Thus, F (b) = F (1) =
∫ 1

0
2(t + sin t)2dt > 0 and limu→0

f(u)
|u| = limu→∞

f(u)
|u| = 0.

Hence, by applying Theorem 4.2 for each compact interval [c, d] ⊂ (0,∞), there
exists R > 0 with the following property: for every λ ∈ [c, d] and every continuous
function g : R → R, there exists γ > 0 such that, for each ν ∈ [0, γ], the problem∆u(x)− 1

1+x2u(x) = −λexf(u(x))− νg(u(x)), x ∈ V/V0

u|V0 = 0

has at least three weak solutions whose norms in the space E are less than R.

The following existence result is a consequences of Theorem 3.5.

Theorem 4.3. Assume that there exist five positive constants b, c, α, κ and ξ with
2DN−2π

N
2 (2N − 1)∥a∥L1(V )b

2 < Γ(1 +N/2)(2N + 3)2c2 and α ∈ [0, 2) such that

(B4) max|u|≤c F (u) < F (b)∫
V

p(x)dµ

∫
B(x0,

D
2 )

p(x)dµ;

(B5) F (u) > 0 for each u ∈ R;
(B6) |F (u)| ≤ κu2 + ξ for all u ∈ R.

Then, there exist a nonempty open set A ⊂ [0,∞) and a positive number R′ with
the following property: for every λ ∈ A and every continuous function g : R → R
there exists δ > 0 such that, for each ν ∈ [0, δ], the problem (P f,g

λ,ν ) has at least three
weak solutions whose norms in E are less than R′.

Remark 4.3. We should note that Theorem 4.3, under a weaker condition than
Theorem 4.2, gives us the existence of three solutions for the problem (P f,g

λ,ν ). Indeed,
the assumption lim sup|u|→∞

f(u)
|u| = 0 in Theorem 4.3 is not necessary.

Finally, we present the following example to illustrate Theorem 4.3.

Example 4.2. Let N = 2, x0 = 0, a(x) = − 1
1+x2 and p(x) = − ex

4 for all x ∈ V ,
f(t) = 1

1+t2 for all t ∈ R. Thus, f is a continuous function. By choosing b = 1,
c = 2, α = 1, κ = 1 and ξ = π we have α = 1 ∈ [0, 2),

2DN−2π
N
2 (2N − 1)∥a∥L1(V )b

2 < 6π2 < 196 = Γ(1 +N/2)(2N + 3)2c2,

max
|u|≤c

F (u) = max
|u|≤2

F (u) = arctan(2) <
π

2
< π ≤ F (b)∫

V
p(x)dµ

∫
B(x0,

D
2 )

p(x)dµ,
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F (b) = F (1) = arctan(1) =
π

4
> 0

and
|F (u)| ≤ |u|2 + π = κu2 + ξ for all u ∈ R.

Hence, by applying Theorem 4.3 and there exist a nonempty open set A ⊂ [0,+∞)
and a positive number R′ with the following property: for every λ ∈ A and every
non-negative continuous function g : R → R there exists δ > 0 such that, for each
µ ∈ [0, δ], the problem∆u(x)− 1

1+x2u(x) = −λex

4 f(u(x))− νg(u(x)), x ∈ V/V0

u|V0
= 0

has at least three weak solutions whose norms in the space E are less than R.
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