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NUMERICAL RESOLUTION OF AN EXACT
HEAT CONDUCTION MODEL WITH A DELAY

TERM∗

Marco Campo1, José R. Fernández2,† and Ramón Quintanilla3

Abstract In this paper we analyze, from the numerical point of view, a
dynamic thermoelastic problem. Here, the so-called exact heat conduction
model with a delay term is used to obtain the heat evolution. Thus, the ther-
momechanical problem is written as a coupled system of partial differential
equations, and its variational formulation leads to a system written in terms of
the velocity and the temperature fields. An existence and uniqueness result is
recalled. Then, fully discrete approximations are introduced by using the clas-
sical finite element method to approximate the spatial variable and the implicit
Euler scheme to discretize the time derivatives. A priori error estimates are
proved, from which the linear convergence of the algorithm could be derived
under suitable additional regularity conditions. Finally, a two-dimensional
numerical example is solved to show the accuracy of the approximation and
the decay of the discrete energy.

Keywords Thermoelasticity, exact heat condution, delay parameter, finite
elements, a priori error estimates.

MSC(2010) 74K10, 35G50, 37N15, 74F05, 65M60, 65M12.

1. Introduction
The classical linear theory of heat conduction, based on Fourier’s law, implies that
thermal perturbations will be felt instantly at all the points of the body. That is, the
thermal waves propagate with infinity speed. It is physically unrealistic because of
causality’s fundamental role in modern physics. Different heat conduction theories
have been put forth over the course of the 20th century and the present century
(see Chandrasekharaiah [2], Hetnarski and Ignaczak [10,11] and the references cited
therein). In the books [12,26], several studies concerning applicability of nonclassical
thermoelastic theories are considered.
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In 1995, Tzou [24, 25] suggested a theory where the heat flux and the gradient
of the temperature have a delay in the constitutive equations. The constitutive
equations proposed by Tzou are given by

qi(x, t+ τ1) = −κθ,i(x, t+ τ2), κ > 0, (1.1)

where τ1 and τ2 are the delay parameters which are assumed to be positive.This
equation says that the temperature gradient established across a material volume
at position x and time t + τ2 results in a heat flux to flow at a different time
t+τ1. The delays can be understood in terms of the microstructure of the material.
This theory has several derivations when the heat flux and the gradients of the
temperature and the thermal displacement are replaced by Taylor approximations.
More recently, Choudhuri [3] proposed a constitutive law with three-phase-lag which
is an extension of Tzou’s proposition. The equation is

qi(x, t+ τ1) = −k1α,i(x, t+ τ3)− k2θ,i(x, t+ τ2), (1.2)

where α̇ = θ. The variable α is called the thermal displacement. The parameter
τ3 is another delay parameter. It seems that the aim of Choudhuri was to estab-
lish a mathematical model that includes phase-lags in the heat flux vector, in the
temperature gradient and in the thermal displacement gradient. Moreover, if Tay-
lor approximation is introduced in the equation, the Green and Naghdi models are
obtained [7, 8].

These two proposals lead to ill-posed problems in the sense of Hadamard. In fact,
it can be shown that combining equation (1.1) (or (1.2)) with the energy equation

c θ̇ + div q = 0, (c > 0), (1.3)

leads to the existence of a family of elements in the point spectrum such that its
real part tends to infinity [5]. It has been also showed that the Tzou’s theory is
not compatible with the basic axioms of the thermomechanics [6]. Therefore, it is
difficult to accept these proposals either from a mathematical point of view or from
the thermodynamical perspective.

In a recent note [21] it was proved that when τ3 < τ1 = τ2, equation (1.2)
combined with the energy equation (1.3) defines a well posed problem. That is, a
well posed problem in the context of the exact three-dual-phase theory. This was a
non-trivial case with this property. We could accept it as a possible exact phase-lag
constitutive equation to describe the heat conduction which is different from the
ones proposed in [19,20].

As it was used in the theories proposed by Choudhuri and Tzou, we could
replace equation (1.2) by truncated Taylor expansions. If we consider a second
order approximation we find the heat equation:

ν̈ − k∗τ2

2
∆ν̈ = (k1 + k∗τ)∆θ + k∗∆ν,

where now we assume that τ = τ3 − τ1(= τ2) > 0. This heat conduction equation
has been complemented with other equations to obtain a thermoelastic problem
and several contributions has been dedicated to study it. We recall some of them
[13–18,22].
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2. The mechanical and variational problems: exis-
tence and uniqueness

In this section, we present a brief description of the model and we obtain its me-
chanical and variational formulations (details can be found in [22]). We also recall
an existence and uniqueness result.

Let Ω ⊂ Rd, d = 1, 2, 3, be the domain and denote by [0, T ], T > 0, the time
interval of interest. The boundary of the body Γ = ∂Ω is assumed to be Lipschitz.
Moreover, let x ∈ Ω and t ∈ [0, T ] be the spatial and time variables, respectively.
In order to simplify the writing, we do not indicate the dependence of the functions
on x = (xj)

d
j=1 and t, and a subscript after a comma under a variable represents its

spatial derivative with respect to the prescribed variable, i.e. fi,j =
∂fi
∂xj

. The time

derivatives are represented as a dot for the first order and two points for the second
order over each variable. Finally, as usual the repeated index notation is used for
the summation.

We denote by u = (ui)
d
i=1 and ν the displacement field and the thermal dis-

placement, respectively. We note that the temperature θ is then obtained as θ = ν̇.
Assuming that the material is isotropic and homogeneous and following the work

by Quintanilla [22], the model is written as follows, for i, j = 1, . . . , d, in Ω× (0, T ),

ρüi − µui,jj − (λ+ µ)uj,ji − βθ,i = 0,

cν̈ − τ2

2
k∗∆ν̈ = βu̇i,i + k∗∆ν + (k1 + τk∗)∆ν̇.

(2.1)

In the above equations, constants ρ and k∗ denote the mass density and the thermal
diffusion coefficient, respectively, and λ and µ represent the Lamé’s coefficients.
Moreover, β is a thermal expansion coefficient and τ is the delay parameter.

As boundary conditions, we assume, for i = 1, . . . , d,

ui(x, t) = θ(x, t) = 0 for (x, t) ∈ ∂Ω× (0, T ). (2.2)

We point out that other boundary conditions could be used but we restrict ourselves
to this case for the sake of simplicity.

In order to complete the definition of the mechanical problem we impose the
following initial conditions for x ∈ Ω:

ui(x, 0) = u0
i (x), u̇i(x, 0) = v0i (x), ν(x, 0) = ν0(x),

ν̇(x, 0) = θ0(x),
(2.3)

where u0 = (u0
i )

d
i=1, v0 = (v0i )

d
i=1, ν0 and θ0 are prescribed functions.

Therefore, the thermo-mechanical problem modelling the deformation of a ther-
moelastic body with an exact heat conduction model with a delay is the following
(see [22] for details).
Problem P. Find the displacement field u = (ui)

d
i=1 : Ω× [0, T ] → Rd and the ther-

mal displacement ν : Ω× [0, T ] → R such that equations (2.1), boundary conditions
(2.2) and initial conditions (2.3) are fulfilled.

Now, in order to obtain the variational formulation of Problem P, let Y = L2(Ω),
H = [L2(Ω)]d and Q = [L2(Ω)]d×d and denote by (·, ·)Y , (·, ·)H and (·, ·)Q the
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respective scalar products in these spaces, with corresponding norms ∥ · ∥Y , ∥ · ∥H
and ∥ · ∥Q. Moreover, let us define the variational spaces V and E as follows,

V = {z ∈ [H1(Ω)]d ; z = 0 on Γ},

E = {r ∈ H1(Ω) ; r = 0 on Γ},

with respective scalar products (·, ·)V and (·, ·)E , and norms ∥ · ∥V and ∥ · ∥E .
By using Green’s formula and boundary conditions (2.2), we write the variational

formulation of Problem P in terms of the velocity field v = u̇ and the temperature
θ = ν̇.
Problem VP. Find the velocity field v : [0, T ] → V and the temperature θ : [0, T ] →
E such that v(0) = v0, θ(0) = θ0, and, for a.e. t ∈ (0, T ) and for all w ∈ V , r ∈ E,

ρ(v̇(t),w)H + (λ+ µ)(divu(t),divw)Y + µ(∇u(t),∇w)Q

−β(∇θ(t),w)H = 0, (2.4)

c(θ̇(t), r)Y +
τ2

2
k∗(∇θ̇(t),∇r)H + k∗(∇ν(t),∇r)H

+(k1 + τk∗)(∇θ(t),∇r)H = β(divv(t), r)Y , (2.5)

where the displacement field and the thermal displacement are then recovered from
the relations

u(t) =

∫ t

0

v(s) ds+ u0, ν(t) =

∫ t

0

θ(s) ds+ θ0, (2.6)

and we note that div represents the classical divergence operator.
In [22] it has been proved the following existence and uniqueness result.

Theorem 2.1. Let the following conditions on the constitutive coefficients hold:

ρ > 0, µ > 0, λ > 0, c > 0, τ > 0, k∗ > 0, k1 > 0.

If the initial conditions satisfy:

u0,v0 ∈ V, ν0, θ0 ∈ E,

then there exists a unique solution to Problem VP with the following regularity:

u ∈ C1([0, T ];V ) ∩ C2([0, T ];H), ν ∈ C2([0, T ];E).

3. Fully discrete approximations: an a priori error
analysis

In this section, we now consider a fully discrete approximation of Problem V P .
This is done in two steps. First, we assume that the domain Ω is polyhedral and
we denote by T h a regular triangulation in the sense of [4]. Thus, we construct the
finite dimensional spaces V h ⊂ V and Eh ⊂ E given by

V h = {wh ∈ [C(Ω)]d ; wh
|Tr ∈ [P1(Tr)]

d ∀Tr ∈ T h, wh = 0 on Γ}, (3.1)
Eh = {rh ∈ C(Ω) ; rh|Tr ∈ P1(Tr) ∀Tr ∈ T h, rh = 0 on Γ}, (3.2)
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where P1(Tr) represents the space of polynomials of degree less or equal to one in
the element Tr, i.e. the finite element spaces V h and Eh are composed of continuous
and piecewise affine functions. Here, h > 0 denotes the spatial discretization para-
meter. Moreover, we assume that the discrete initial conditions, denoted by u0h,
v0h, θ0h and ν0h, are given by

u0h = Ph
1u

0, v0h = Ph
1 v

0, θ0h = Ph
2 θ

0, ν0h = Ph
2 ν

0, (3.3)

where Ph
1 and Ph

2 are the classical finite element interpolation operators over V h

and Eh, respectively (see, e.g., [4]).
Secondly, we consider a partition of the time interval [0, T ], denoted by 0 =

t0 < t1 < · · · < tN = T . In this case, we use a uniform partition with step
size k = T/N and nodes tn = nk for n = 0, 1, . . . , N . For a continuous function
z(t), we use the notation zn = z(tn) and, for the sequence {zn}Nn=0, we denote by
δzn = (zn − zn−1)/k its corresponding divided differences.

Therefore, using the backward Euler scheme, the fully discrete approximations
are considered as follows.
Problem VPhk. Find the discrete velocity vhk = {vhk

n }Nn=0 ⊂ V h and the discrete
temperature θhk = {θhkn }Nn=0 ⊂ Eh such that vhk

0 = v0h, θhk0 = θ0h, and, for
n = 1, . . . , N and for all wh ∈ V h and rh ∈ Eh,

ρ(δvhk
n ,wh)H + (λ+ µ)(divuhk

n ,divwh)Y + µ(∇uhk
n ,∇wh)Q

−β(∇θhkn ,wh)H = 0, (3.4)

c(δθhkn , rh)Y +
τ2

2
k∗(∇δθhkn ,∇rh)H + k∗(∇νhkn ,∇rh)H

+(k1 + τk∗)(∇θhkn ,∇rh)H = β(divvhk
n , rh)Y , (3.5)

where the discrete displacement field and the discrete thermal displacement are then
recovered from the relations

uhk
n = k

n∑
j=1

vhk
j + u0h, νhkn = k

n∑
j=1

θhkj + ν0h. (3.6)

We note that the existence of a unique discrete solution to Problem V Phk is
obtained in a straightforward way using the classical Lax-Milgram lemma.

Now, we will find some a priori error estimates on the numerical errors vn−vhk
n

and θn − θhkn . We have the following.

Theorem 3.1. Under the assumptions of Theorem 2.1, if we denote by (u,v, θ, ν)
the solution to Problem V P and by (uhk,vhk, θhk, νhk) the solution to Problem
V Phk, then we have the following a priori error estimates, for all wh = {wh

j }Nj=0 ⊂
V h and rh = {rhj }Nj=0 ⊂ Eh,

max
0≤n≤N

{
∥vn − vhk

n ∥2H + ∥∇(un − uhk
n )∥2Q + ∥div (un − uhk

n )∥2Y

+∥θn − θhkn ∥2Y + ∥∇(θn − θhkn )∥2H + ∥∇(νn − νhkn )∥2H
}

≤ Ck

N∑
j=1

(
∥v̇j − δvj∥2H + ∥vj −wh

j ∥2V + ∥u̇j − δuj∥2V
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+∥θ̇j − δθj∥2E + ∥∇(ν̇j − δνj)∥2H + ∥θj − rhj ∥2E
)

+C max
0≤n≤N

∥vn −wh
n∥2H + C max

0≤n≤N
∥θn − rhn∥2Y

+
C

k

N−1∑
j=1

∥θj − rhj − (θj+1 − rhj+1)∥2Y

+
C

k

N−1∑
j=1

∥vj −wh
j − (vj+1 −wh

j+1)∥2H + C
(
∥v0 − v0h∥2H

+∥u0 − u0h∥2V + ∥θ0 − θ0h∥2E + ∥∇(ν0 − ν0h)∥2H
)
, (3.7)

where C > 0 is a positive constant which is independent of the discretization para-
meters h and k, but depending on the continuous solution, and δvj = (vj−vj−1)/k,
δuj = (uj − uj−1)/k, δθj = (θj − θj−1)/k and δνj = (νj − νj−1)/k.

Proof. First, we obtain some estimates for the velocity field. Then, we subtract
variational equation (2.4) at time t = tn for a test function w = wh ∈ V h ⊂ V and
discrete variational equation (3.4) to obtain, for all wh ∈ V h,

ρ(v̇n − δvhk
n ,wh)H + (λ+ µ)(div (un − uhk

n ),divwh)Y

+µ(∇(un − uhk
n ),∇wh)Q − β(∇(θn − θhkn ),wh)H = 0,

and so, we have, for all wh ∈ V h,

ρ(v̇n − δvhk
n ,vn − vhk

n )H + (λ+ µ)(div (un − uhk
n ),div (vn − vhk

n ))Y

+µ(∇(un − uhk
n ),∇(vn − vhk

n ))Q − β(∇(θn − θhkn ), (vn − vhk
n ))H

= ρ(v̇n − δvhk
n ,vn −wh)H + (λ+ µ)(div (un − uhk

n ),div (vn −wh))Y

+µ(∇(un − uhk
n ),∇(vn −wh))Q − β(∇(θn − θhkn ),vn −wh)H = 0.

Taking into account that

(v̇n − δvhk
n ,vn − vhk

n )H ≥(v̇n − δvn,vn − vhk
n )H

+
1

2k

{
∥vn − vhk

n ∥2H − ∥vn−1 − vhk
n−1∥2H

}
,

(div (un−uhk
n ),div (vn−vhk

n ))Y ≥(div (un − uhk
n ),div (u̇n − δun))Y

+
1

2k

{
∥div (un−uhk

n )∥2Y −∥div (un−1−uhk
n−1)∥2Y

}
,

(∇(un − uhk
n ),∇(vn − vhk

n ))Q ≥(∇(un − uhk
n ),∇(u̇n − δun))Q

+
1

2k

{
∥∇(un−uhk

n )∥2Q−∥∇(un−1−uhk
n−1)∥2Q

}
,

−β(∇(θn − θhkn ),vn −wh)H =β(θn − θhkn ,div (vn −wh))Y ,

using again Cauchy-Schwarz inequality and Young’s inequality it follows that, for
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all wh ∈ V h,

∗ρ

2k

{
∥vn − vhk

n ∥2H − ∥vn−1 − vhk
n−1∥2H

}
− β(∇(ξn − ξhkn ),vn − vhk

n )H

+
λ+ µ

2k

{
∥div (un − uhk

n )∥2Y − ∥div (un−1 − uhk
n−1)∥2Y

}
+

µ

2k

{
∥∇(un − uhk

n )∥2Q − ∥∇(un−1 − uhk
n−1)∥2Q

}
≤ C

(
∥v̇n − δvn∥2H + ∥vn −wh∥2V + ∥∇(un − uhk

n )∥2Q + ∥u̇n − δun∥2V
+∥div (un − uhk

n )∥2Y + ∥θn − θhkn ∥2Y + ∥vn − vhk
n ∥2H

+(δvn − δvhk
n ,vn −wh)H

)
.

Now, we obtain the error estimates on the temperature. Then, we subtract
variational equation (2.5) at time t = tn for a test function r = rh ∈ Eh ⊂ E and
discrete variational equation (3.5) to obtain, for all rh ∈ Eh,

c(θ̇n − δθhkn , rh)Y +
τ2

2
k∗(∇(δθn − δθhkn ),∇rh)H

+(k1 + τk∗)(∇(θn − θhkn ),∇rh)H

+k∗(∇(νn − νhkn ),∇rh)H = β(div (vn − vhk
n ), rh)Y ,

and so we have, for all rh ∈ Eh,

c(θ̇n − δθhkn , θn − θhkn )Y + k∗(∇(νn − νhkn ),∇(θn − θhkn ))H

+
τ2

2
k∗(∇(δθn − δθhkn ),∇(θn − θhkn ))H

+ (k1 + τk∗)(∇(θn − θhkn ),∇(θn − θhkn ))H

− β(div (vn − vhk
n ), θn − θhkn )Y

=c(θ̇n − δθhkn , θn − rh)Y + k∗(∇(νn − νhkn ),∇(θn − rh))H

+
τ2

2
k∗(∇(δθn − δθhkn ),∇(θn − rh))H

+ (k1 + τk∗)(∇(θn − θhkn ),∇(θn − rh))H

− β(div (vn − vhk
n ), θn − rh)Y .

Keeping in mind that

(θ̇n − δθhkn , θn − θhkn )Y ≥(θ̇n − δθn, θn − θhkn )Y

+
1

2k

{
∥θn − θhkn ∥2Y − ∥θn−1 − θhkn−1∥2Y

}
,

(∇(θ̇n − δθhkn ),∇(θn − θhkn ))H ≥(∇(θ̇n − δθn),∇(θn − θhkn ))H

+
1

2k

{
∥∇(θn − θhkn )∥2H − ∥∇(θn−1 − θhkn−1)∥2H

}
,

(∇(νn − νhkn ),∇(θn − θhkn ))H ≥(∇(νn − νhkn ),∇(ν̇n − δνn))H

+
1

2k

{
∥∇(νn − νhkn )∥2H − ∥∇(νn−1 − νhkn−1)∥2H

}
,

−β(div (vn − vhk
n ), θn − θhkn )Y =β(vn − vhk

n ,∇(θn − θhkn ))H ,
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using several times Cauchy-Schwarz and Young inequalities we find that, for all
rh ∈ Eh,

1

2k

{
∥θn − θhkn ∥2Y − ∥θn−1 − θhkn−1∥2Y

}
+ β(vn − vhk

n ,∇(θn − θhkn ))H

+
1

2k

{
∥∇(θn − θhkn )∥2H − ∥∇(θn−1 − θhkn−1)∥2H

}
+

1

2k

{
∥∇(νn − νhkn )∥2H − ∥∇(νn−1 − νhkn−1)∥2H

}
≤ C

(
∥θ̇n − δθn∥2E + ∥θn − rh∥2E + ∥θn − θhkn ∥2Y

+∥∇(θn − θhkn )∥2H + ∥∇(ν̇n − δνn)∥2H + ∥vn − vhk
n ∥2H

+(δθn − δθhkn , θn − rh)Y + ∥∇(νn − νhkn )∥2H
)
.

Combining now these estimates we find that
ρ

2k

{
∥vn − vhk

n ∥2H − ∥vn−1 − vhk
n−1∥2H

}
+

µ

2k

{
∥∇(un − uhk

n )∥2Q − ∥∇(un−1 − uhk
n−1)∥2Q

}
+
λ+ µ

2k

{
∥div (un − uhk

n )∥2Y − ∥div (un−1 − uhk
n−1)∥2Y

}
+

1

2k

{
∥θn − θhkn ∥2Y − ∥θn−1 − θhkn−1∥2Y

}
+

1

2k

{
∥∇(θn − θhkn )∥2H − ∥∇(θn−1 − θhkn−1)∥2H

}
+

1

2k

{
∥∇(νn − νhkn )∥2H − ∥∇(νn−1 − νhkn−1)∥2H

}
≤ C

(
∥v̇n − δvn∥2H + ∥vn −wh∥2V + ∥∇(un − uhk

n )∥2Q
+∥u̇n − δun∥2V + ∥div (un − uhk

n )∥2Y + ∥vn − vhk
n ∥2H

+∥θ̇n − δθn∥2E + ∥θn − rh∥2E + (δvn − δvhk
n ,vn −wh)H

+(δθn − δθhkn , θn − rh)Y + ∥θn − θhkn ∥2Y + ∥∇(θn − θhkn )∥2H
+∥∇(ν̇n − δνn)∥2H + ∥∇(νn − νhkn )∥2H

)
.

Multiplying the previous estimates by k and summing up the resulting equation,
using the estimates on the temperature fields given above we have

∥vn − vhk
n ∥2H + ∥∇(un − uhk

n )∥2Q + ∥div (un − uhk
n )∥2Y

+∥θn − θhkn ∥2Y + ∥∇(θn − θhkn )∥2H + ∥∇(νn − νhkn )∥2H

≤ Ck

n∑
j=1

(
∥v̇j − δvj∥2H + ∥vj −wh

j ∥2V + ∥∇(uj − uhk
j )∥2Q

+∥u̇j − δuj∥2V + ∥div (uj − uhk
j )∥2Y + ∥vj − vhk

j ∥2H
+∥θ̇j − δθj∥2E + ∥θj − rhj ∥2E + (δvj − δvhk

j ,vj −wh
j )H

+(δθj − δθhkj , θj − rhj )Y + ∥θj − θhkj ∥2Y + ∥∇(ν̇j − δνj)∥2H
+∥∇(θj − θhkj )∥2H + ∥∇(νj − νhkj )∥2H

)
+ C

(
∥v0 − v0h∥2H

+∥u0 − u0h∥2V + ∥θ0 − θ0h∥2E + ∥∇(ν0 − ν0h)∥2H
)
.
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Finally, taking into account that

k

n∑
j=1

(δθj − δθhkj , θj − rhj )Y = (θn − θhkn , θn − rhn)Y + (θ0h − θ0, θ1 − rh1 )Y

+

n−1∑
j=1

(θj − θhkj , θj − rhj − (θj+1 − rhj+1))Y ,

k

n∑
j=1

(δvj − δvhk
j ,vj −wh

j )H = (vn − vhk
n ,vn −wh

n)H + (v0h − v0,v1 −wh
1 )H

+

n−1∑
j=1

(vj − vhk
j ,vj −wh

j − (vj+1 −wh
j+1))H ,

using the above estimates and a discrete version of Gronwall’s inequality (see [1])
we conclude the proof.

Remark 3.1. We note that error estimates (3.7) are the basis to get the con-
vergence order of the approximations given by Problem VPhk. Therefore, as an
example, under the following additional regularity condition:

u ∈ C1([0, T ]; [H2(Ω)]d) ∩H3(0, T ;H) ∩H2(0, T ;V ),

ν ∈ C1([0, T ];H2(Ω)) ∩H3(0, T ;Y ),

using the classical results on the approximation by finite elements and the regulari-
ties of the initial conditions (see, for instance, [4]), it follows that the approximations
obtained by Problem VPhk are linearly convergent.

4. Numerical results
In this final section, we describe the numerical scheme implemented in the well-
known finite element code FreeFem++ for solving Problem VPhk (see [9] for details),
and we show a numerical example to demonstrate the accuracy of the approxima-
tions and the decay of the discrete energy.

4.1. Numerical scheme
Given the solution uhk

n−1,v
hk
n−1, θ

hk
n−1 and νhkn−1 at time tn−1, the velocity and the

temperature are obtained by solving the following discrete nonsymmetric linear
system, for all wh ∈ V h and rh ∈ Eh,

ρ(vhk
n ,wh)H + k2(λ+ µ)(divvhk

n ,divwh)Y

+k2µ(∇vhk
n ,∇wh)Q − kβ(∇θhkn ,wh)H

= ρ(vhk
n−1,w

h)H − k(λ+ µ)(divuhk
n−1,divwh)Y

−kµ(∇uhk
n−1,∇wh)Q + k(Hn,w

h)H ,

c(θhkn , rh)Y +
τ2

2
k∗(∇θhkn ,∇rh)H + k2k∗(∇θhkn ,∇rh)H

+k(k1 + τk∗)(∇θhkn ,∇rh)H − β(divvhk
n , rh)Y
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= c(θhkn−1, r
h)Y +

τ2

2
k∗(∇θhkn−1,∇rh)H − kk∗(∇νhkn−1,∇rh)H

+k(Pn, r
h)Y ,

where the discrete displacements and the discrete thermal displacement are then
recovered from the relations

uhk
n = kvhk

n + uhk
n−1, νhkn = kθhkn + νhkn−1.

Here, for the sake of generality we added body forces H and a heat supply P .

4.2. Numerical example: convergence and energy decay
We will consider the following academic problem:
Problem Pex. Find the displacements u : [0, 1] × [0, 1] × [0, 1] → R2 and the
temperature θ : [0, 1]× [0, 1]× [0, 1] → R such that

üi − ui,jj − 2uj,ji − θ,i = Hi in [0, 1]× [0, 1]× [0, 1],

θ̇ − 1

2
θ̇,ii − 2θ,ii − ν,ii − βu̇i,i = P in [0, 1]× [0, 1]× [0, 1],

ui(x, y, t) = θ(x, y, t) = 0 for i = 1, 2

and (x, y, t) ∈ ∂([0, 1]× [0, 1])× [0, 1],

ui(x, y, 0) = (xy(1− x)(1− y), xy(1− x)(1− y))

for (x, y) ∈ [0, 1]× [0, 1],

u̇i(x, y, 0) = (xy(1− x)(1− y), xy(1− x)(1− y))

for (x, y) ∈ [0, 1]× [0, 1],

θ(x, y, 0) = xy(1− x)(1− y) for (x, y) ∈ [0, 1]× [0, 1],

ν(x, y, 0) = xy(1− x)(1− y) for (x, y) ∈ [0, 1]× [0, 1],

where the body forces H and the heat supply P are given by

H(x, y, t) = et(x2y2 − x2y − 2x2 − 3xy2 − 5xy + 6x− 5y2 + 9y − 2,

x2y2 − 3x2y − 5x2 − xy2 − 5xy + 9x− 2y2 + 6y − 2),

P (x, y, t) = et
(
x2y2 − 3x2y − 2x2 − 3xy2 + 5xy + 2x− 2y2 + 2y

)
.

We note that Problem Pex corresponds to Problem P with the following data:

Ω = (0, 1)× (0, 1), T = 1, ρ = 1, µ = λ = 1, β = 1,

τ = 1, c = k∗ = k1 = 1,

and the initial conditions, for (x, y) ∈ (0, 1)× (0, 1),

u0(x, y) = v0(x, y) = (xy(1− x)(1− y), xy(1− x)(1− y)) ,

θ0(x, y) = ν0(x, y) = xy(1− x)(1− y).
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Table 1. Numerical errors (×10) for some nd and k.
nd ↓ k → 0.02 0.01 0.005 0.001

16 0.125254 0.088769 0.076804 0.082744
32 0.080294 0.045405 0.028722 0.019348
64 0.070355 0.035439 0.018915 0.006389
128 0.070268 0.033910 0.016746 0.003876
256 0.070462 0.034058 0.016683 0.003329

The exact solution to Problem Pex is the following one, for (x, y, t) ∈ [0, 1] ×
[0, 1]× [0, 1] and i = 1, 2,

ui(x, y, t) = θ(x, y, t) = xy(1− x)(1− y)et.

Our aim here is to show the numerical convergence of the finite element scheme.
Therefore, several uniform partitions for the time interval and the domain, dividing
Ω = [0, 1]× [0, 1] into 2(nd)2 triangles, have been performed. Note that the number
of degrees of freedom is 3(nd+ 1)2.

In Table 1 the numerical errors given by

max
0≤n≤N

{
∥vn − vhk

n ∥2H + ∥∇(un − uhk
n )∥2Q + ∥div (un − uhk

n )∥2Y

+∥θn − θhkn ∥2Y + ∥∇(θn − θhkn )∥2H + ∥∇(νn − νhkn )∥2H
}
,

and obtained for some discretization parameters nd and k, are shown, and the
convergence of the numerical scheme clearly observed. The evolution of the error
with respect to the parameter h+ k is plotted in Figure 1.
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Figure 1. Asymptotic behaviour of the numerical scheme.

If we assume now that there are not volume forces, and we use the final time
T = 100 s, and the same data and initial conditions than in the previous simulations,
taking the discretization parameters h = 0.01 and k = 0.001, the evolution in time
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of the discrete energy Ehk
n , defined by (see [22])

Ehk
n = ρ∥vhk

n ∥2H + µ∥∇uhk
n ∥2Q + (λ+ µ)∥divuhk

n ∥2Y + c∥θhkn ∥2Y

+
τ2

2
k∗∥∇θhkn ∥2H + k∗∥∇νhkn ∥2H

is plotted in Figure 2 in both natural and semi-log scales. We observe that an
exponential energy decay has been achieved. Anyway, we note that in [22] it has
been proved that such behaviour is not found in the continuous case.
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Figure 2. Discrete energy evolution in natural and semi-log scales.
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