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PERSISTENCE OF TRAVELLING
WAVEFRONTS IN A GENERALIZED

BURGERS-HUXLEY EQUATION WITH
LONG-RANGE DIFFUSION∗

Yanggeng Fu

Abstract In this paper, we study the persistence of travelling wavefronts in
a generalized Burgers-Huxley equation with long-range diffusion. When the
influence of long-range diffusion effect is sufficiently small, we prove the persis-
tence of these waves by using geometric singular perturbation theory. When
the influence becomes large, the behavior of these waves can only be investi-
gate numerically. In this case, we find that the solutions lose monotonicity by
using Matlab program bvp4c. Some previous results are extended.
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1. Introduction
Travelling wave solutions are solutions of special type, and can be usually charac-
terized as solutions invariant with respect to translation in space. The existence
of traveling waves appears to be very common in nonlinear equations. From the
physical point of view, travelling waves usually describe transition processes [23].
Transition from one equilibrium to another is a typical case, and the corresponding
wave is called as travelling wavefronts. Since travelling wave solutions may pro-
vide more information for understanding the physical phenomena, its investigation
plays an important role in the study of nonlinear physical phenomena. This is the
reason why there are so many methods for exact travelling wave solutions, such as
bifurcation method [9, 18], Lie symmetry method [19], tanh-function method [17],
trigonometric function expansion [6] and so on.

In [20], the following generalized Burgers-Huxley (gBH) equation

ut + αunux − uxx = βu(1− un)(un − γ), (1.1)

where α, β, n > 0 and 0 < γ < 1, was used to model the interaction between
reaction mechanisms, convection effects and diffusion transports. The solutions of
Eq. (1.1) have been extensively studied, including numerical solutions [1,4,11,13,15]
and exact travelling wave solutions [5, 10,22].
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When n = 1, Eq. (1.1) becomes the Burgers-Huxley (BH) equation

ut + αuux − uxx = βu(1− u)(u− γ). (1.2)

When β = 0, it reduces to the Burgers equation. When α = 0, it reduces to the
Huxley equation, sometimes known as the FitzHugh-Nagumo [8]. In [16], Kyrychko
et al. proved the persistence of travelling wavefronts of the BH equation with a
small fourth-order derivative term

ut + αuux − uxx + δuxxxx = βu(1− u)(u− γ), (1.3)

where 0 < δ ≪ 1. It is worthwhile to note that, Fredholm theory in L2 was used
to prove the heteroclinic connection in the slow manifold. However, the travelling
fronts are continuous and thus aren’t appropriately studied in L2. Moreover, they
didn’t investigate what would happen to the travelling wavefronts when δ becomes
large.

In this paper, we study the gBH equation with long-range diffusion

ut + αunux − uxx +Duxxxx = βu(1− un)(un − γ), (1.4)

where D is a positive parameter characterizing long-range diffusion effect [3]. When
D is sufficiently small, we prove the persistence of the travelling wavefronts by using
geometric singular perturbation theory [14]. In order to prove the heteroclinic
connection in the slow manifold, we use the implicit function theorem. When D
becomes large, we numerically investigate the behavior of the travelling wavefronts
by using Matlab program bvp4c, and find that the solutions lose monotonicity.

2. Dynamical systems reformulation
The travelling wave solutions of Eq. (1.4) are of the form

u(x, t) = U(ξ) with ξ = x− ct, (2.1)

where c is the wave speed. Substituting (2.1) into (1.4), we get

− cU ′ + αUnU ′ − U ′′ +DU ′′′′ = βU(1− Un)(Un − γ). (2.2)

Defining new variables
U ′ = v, v′ = w, w′ = z, (2.3)

we rewrite Eq. (2.2) as

Y =


U

v

w

z

 , Y ′ =


U ′

v′

w′

z′

 =


v

w

z

1
D [βU(1− Un)(Un − γ) + cv − αUnv + w]

=F (Y ).

(2.4)
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Obviously, Y 0 = (0, 0, 0, 0)T and Y 1 = (1, 0, 0, 0)T are two equilibria of system
(2.4). The linearization matrix at Y 0 is

A0 =


0 1 0 0

0 0 1 0

0 0 0 1

−βγ
D

c
D

1
D 0


with the corresponding characteristic equation

λ4 − 1

D
λ2 − c

D
λ+

βγ

D
= 0. (2.5)

Similarly the linearization matrix at Y 1 is

A1 =


0 1 0 0

0 0 1 0

0 0 0 1

βn(γ−1)
D

c−α
D

1
D 0


with the corresponding characteristic equation

λ4 − 1

D
λ2 − c− α

D
λ+

βn(1− γ)

D
= 0. (2.6)

We have the following result regarding the linearization of system (2.4).

Theorem 2.1. In system (2.4), the unstable manifold of Y 0 and the stable manifold
of Y 1 both have dimension two.

Proof. Our proof is based on Argument Principle. Spectrum of linearization at
Y 0 is determined by the roots of Eq. (2.5), which can be written as m0(λ) = 0 with

m0(λ) = λ4 − 1

D
λ2 − c

D
λ+

βγ

D
. (2.7)

We want to show that m0(λ) has only two roots in the right half complex plane.
Since m0(λ) is analytic, the number of roots in the right half complex plane is

1

2π
lim

R→∞
△C0

argm0(λ), (2.8)

where the contour C0 is the boundary, traversed anticlockwise, of the semicircle of
radius R, centered at the origin, contained in Reλ ≥ 0, and △C0argm0(λ) denotes
the total change quantity in the argument of m0(λ) along C0. The formula (2.8)
equals

2 +
1

2π
[△argm0(iR)]R=−∞

R=∞ .

The quantity in the bracket denotes the change in the argument of m0(iR) as R
goes from ∞ to −∞, and thus we compute the number of times the image m0(iR)
winds around the origin. Note that

m0(iR) =

(
R4 +

1

D
R2 +

βγ

D

)
+ i

(
− c

D
R
)
.
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Since R4 + 1
DR2 + βγ

D > 0, the image m0(iR) only lies on the right half complex
plane. For |R| sufficiently large, m0(iR) has the asymptotic behavior

Rem0(iR) ∼ R4, Imm0(iR) ∼ − c

D
R as R → ±∞.

So [△argm0(iR)]R=−∞
R=∞ = 0, and thus the number of roots of Eq. (2.5) in the right

half complex plane is two.
Similarly, for Y 1 we rewrite Eq. (2.6) as m1(λ) = 0 with

m1(λ) = λ4 − 1

D
λ2 − c− α

D
λ+

βn(1− γ)

D
. (2.9)

Now let C1 be the boundary of left half complex plane defined same as C0, then
the number of roots of m1(λ) in the left half complex plane is

2 +
1

2π
[△argm1(iR)]R=∞

R=−∞.

Note that
m1(iR) =

(
R4 +

1

D
R2 +

βn(1− γ)

D

)
+ i

(
α− c

D
R

)
.

Since R4+ 1
DR2+ βn(1−γ)

D > 0, the image m1(iR) only lies on the right half complex
plane. For |R| sufficiently large, m1(iR) has the asymptotic behavior

Rem1(iR) ∼ R4, Imm1(iR) ∼ α− c

D
R as R → ±∞.

So [△argm1(iR)]R=∞
R=−∞ = 0, and thus the number of roots of Eq. (2.6) in the left

half complex plane is two. This completes the proof of Theorem 2.1.
From Theorem 2.1, we know that the stable manifold W s(Y 0) and the unstable

manifold Wu(Y 1) also both have dimension two. This is important for numerical
investigation of the behavior of the travelling wavefronts, which will be discussed in
Section 4. However, Theorem 1 isn’t sufficient to show the intersection of Wu(Y 0)
and W s(Y 1), which is a heteroclinic orbit of system (2.4) amounting to a travelling
wavefront of Eq. (1.4). In order to prove rigorously the existence of this intersection,
we resort to geometric singular perturbation theory.

3. Persistence of travelling wavefronts for sufficiently
small long-range diffusion

In this section, we prove the persistence of travelling wavefronts of Eq. (1.4) for
sufficiently small long-range diffusion.

Let D = ε2 ≪ 1. Redefining (2.3) as

U ′ = v, v′ = w, εw′ = z, (3.1)

we rewrite system (2.4) as
U ′ = v,

v′ = w,

εw′ = z,

εz′ = βU(1− Un)(Un − γ) + cv − αUnv + w,

(3.2)
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which is called the slow system. With η = ξ/ε, the dual fast system associated with
system (3.2) is 

Uη = εv,

vη = εw,

wη = z,

zη = βU(1− Un)(Un − γ) + cv − αUnv + w.

(3.3)

If ε is set to zero in system (3.2), then U and v are governed by{
U ′ = v,

v′ = −βU(1− Un)(Un − γ)− cv + αUnv,
(3.4)

while w and z lie on the set

M0 = {(U, v, w, z) : z = 0, w = −βU(1− Un)(Un − γ)− cv + αUnv} ,

which is a two-dimensional submanifold of R4. Note that system (3.4) is the dy-
namical systems reformulation of Eq. (1.1).

By the definition in [7], the manifold M0 is said to be normally hyperbolic if
the linearization of the fast system, restricted to M0, has exactly dimM0 eigenval-
ues on the imaginary axis, with the remainder of the spectrums hyperbolic. The
linearization of the fast system (3.3) restricted to M0 is

A =


0 0 0 0

0 0 0 0

0 0 0 1

s c− αUn 1 0


with s = γ − (1 + γ)(1 + n)Un + (2n+ 1)U2n. So the matrix A has the eigenvalues
0, 0, 1,−1, and thus M0 is normally hyperbolic. Therefore by Fenichel’s invariant
manifold theory [7], for sufficiently small ε > 0 there exists a two-dimensional
submanifold Mε of R4 which lies within O(ε) of M0 and is diffeomorphic to M0.
Moreover, Mε is invariant under the flow (3.2) and Cr smooth for any r < ∞.

To determine the dynamics on Mε, we write

Mε = {(U, v, w, z) : z = g(U, v, ε), w = h(U, v, ε)−H(U, v)} , (3.5)

where g and h depend smoothly on ε and satisfy g(U, v, 0) = h(U, v, 0) = 0, and
H(U, v) = βU(1 − Un)(Un − γ) + cv − αUnv. Now, we expand g and h in Taylor
series in ε

g(U, v, ε) = g(U, v, 0) + εgε(U, v, 0) +
1

2
ε2gεε(U, v, 0) + · · · ,

h(U, v, ε) = h(U, v, 0) + εhε(U, v, 0) +
1

2
ε2hεε(U, v, 0) + · · · .

Substituting the representations of z and w in Mε from (3.5) into the third and
fourth equations of system (3.2), equating the same order in ε (up to 2 order), we
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have

g(U, v, 0) = h(U, v, 0) = hε(U, v, 0) = gεε(U, v, 0) = 0,

gε(U, v, 0)=[(2n+1)U2n−(1+γ)(1+n)Un+γ]v−(αUn−c)H(U, v)+αnUn−1v,

1

2
hεε(U, v, 0) = vgε(U, v, 0)−

∂gε(U, v, 0)

∂v
H(U, v).

This allows us to rewrite system (3.2) asU ′ = v,

v′ = −H(U, v) +
1

2
ε2hεε(U, v, 0) +O(ε3),

(3.6)

which determines the dynamics on Mε.
When ε = 0, system (3.6) reduces to system (3.4). Now we are in the position

to state and prove the following persistence theorem.

Theorem 3.1. If Eq.(1.1) admits a strictly increasing travelling wavefront u0(x, t)=
U0(ξ) satisfying limξ→−∞ U0(ξ) = 0 and limξ→∞ U0(ξ) = 1, then for sufficiently
small ε > 0 this travelling wavefront persists in Eq. (1.4). In other words, Eq.
(1.4) also admits a strictly increasing travelling wavefront u(x, t) = U(ξ) satisfying
limξ→−∞ U(ξ) = 0 and limξ→∞ U(ξ) = 1.

Proof. Obviously, the trvelling wavefront u0(x, t) corresponds to a heteroclinic
orbit of system (3.4) in (U, v) phase plane. This heteroclinic orbit connects the two
equilibria E− and E+, where E− = (0, 0) and E+ = (1, 0). Let c0 be the wave
speed of the travelling wavefront. For sufficiently small ε, E− and E+ are still two
equilibria of system (3.6). Now we prove that system (3.6) admits a heteroclinic
orbit connecting E− and E+. We rewrite system (3.6) as{

U ′ = v,

v′ = Φ(U, v, c, ε).
(3.7)

Note that
Φ(U, v, c, 0) = −H(U, v).

Since U0(ξ) is strictly increasing, it can be characterized as the graph of some
function

v = f(U, c0).

By the stable manifold theorem, for sufficiently small ε we can also characterize the
unstable manifold of E− as the graph of some function

v = f1(U, c, ε),

where f1(0, c, ε) = 0. Furthermore, by continuous dependence of solutions on pa-
rameters, this manifold must cross the line U = 1/2 somewhere.

Similarly, let v = f2(U, c, ε) be the function for the stable manifold of E+. Then
f2(1, c, ε) = 0, and for sufficiently small ε it must also cross the line U = 1/2
somewhere. Thus

f1(U, c0, 0) = f2(U, c0, 0) = f(U, c0). (3.8)
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To show that Eq. (3.7) admits a heteroclinic orbit, we prove that there exists a
unique value c = c(ε), near c0, such that the manifolds f1 and f2 cross the line
U = 1/2 at a same point. Define

G(c, ε) = f1

(
1

2
, c, ε

)
− f2

(
1

2
, c, ε

)
. (3.9)

Noticing that v = f1(U, c, ε) and v = f2(U, c, ε) both satisfy the equation
dv

dU
=

Φ(U, v, c, ε)

v
, (3.10)

we have
d

dU

(
∂f1(U, c0, 0)

∂c

)
=

∂

∂c

(
df1(U, c, 0)

dU

) ∣∣∣
c=c0

=
∂

∂c

(
Φ(U, f1(U, c, 0), c, 0)

f1(U, c, 0)

) ∣∣∣
c=c0

=
∂

∂c

(
−βU(1−Un)(Un−γ)−cf1(U, c, 0)+αUnf1(U, c, 0)

f1(U, c, 0)

)∣∣∣
c=c0

=
∂

∂c

(
−c+ αUn +

−βU(1− Un)(Un − γ)

f1(U, c, 0)

) ∣∣∣
c=c0

= −1 +
βU(1− Un)(Un − γ)

f2(U, c0)
· ∂f1(U, c0, 0)

∂c
. (3.11)

Let
P (U) =

βU(1− Un)(Un − γ)

f2(U, c0)
.

Since
∂f1(0, c, ε)

∂c
= 0,

we solved Eq. (3.11) and get

∂f1(U, c0, 0)

∂c
= −e

∫ U
1
2

P (ξ)dξ
∫ U

0

e
−

∫ s
1
2
P (ξ)dξ

ds. (3.12)

It follows that
∂f1(

1
2 , c0, 0)

∂c
= −

∫ 1
2

0

e
−

∫ s
1
2
P (ξ)dξ

ds. (3.13)

Similarly, we have
∂f2(

1
2 , c0, 0)

∂c
= −

∫ 1
2

1

e
−

∫ s
1
2
P (ξ)dξ

ds. (3.14)

Therefore
∂G(c0, 0)

∂c
=

∂f1(
1
2 , c0, 0)

∂c
−

∂f2(
1
2 , c0, 0)

∂c
= −

∫ 1

0

e
−

∫ s
1
2
P (ξ)dξ

ds < 0.

By the implicit function theorem, for sufficiently small ε, G(c, ε) = 0 has a unique
root c = c(ε) near c0. This implies that the manifolds f1 and f2 cross the line
U = 1/2 at a same point, that is, system (3.6) admits a heteroclinic orbit connect-
ing E− and E+. So Eq. (1.4) also admits a travelling wavefront u(x, t) = U(ξ)
satisfying limξ→−∞ U(ξ) = 0 and limξ→∞ U(ξ) = 1. Moreover for sufficiently small
ε, the strict monotonicity of U0(ξ) guarantees the strict monotonicity of U(ξ). This
completes the proof of Theorem 2.
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4. Numerical investigation of travelling wavefronts
for large long-range diffusion

In this section, we numerically investigate the behavior of the travelling wavefronts
for large long-range diffusion.
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Figure 1. Heteroclinic orbits for (2.4) shown in ξ − U plane, where n = α = β = 1 and γ = c = 0.5.
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Figure 2. Truncations of the three charts in Figure 1 on the region [−50, 50] × [−0.03, 0.03].

For our purpose, we look for a solution U(ξ) of system (2.4) satisfying the
boundary conditions

U(−∞) = 0, U(∞) = 1. (4.1)

We consider the boundary value problem (BVP) consisting of (2.4) and (4.1) on
a finite interval [L1, L2], with the approximate solution converging to a correct
solution as L1 → −∞ and L2 → ∞ [2, 12]. For this reason, we require the solution
to have no projection on the stable manifold of Y 0 at ξ = L1 and no projection on
the unstable manifold of Y 1 at ξ = L2. From Theorem 1, W s(Y 0) and Wu(Y 1)
both have dimension two, and thus constitute four boundary conditions for system
(2.4). As regards numerical approximate solutions of BVP of ordinary differential
equations, Matlab program bvp4c is an effective solver [21]. bvp4c implements a
collocation method and requires users to supply a guess for the desired solution. In
order to solve our problem, we use the solution [5]

u(x, t) =

[
1

2
+

1

2
tanh

(
n(ρ− α)

4(n+ 1)

[
x− α− ρ+ (α+ ρ)(n+ 1)γ

2(n+ 1)
t+ x0

])] 1
n

as the guess solution. With the help of bvp4c, numerical simulations for some
particular values of parameters are shown in Fig. 1 and Fig. 2, where the RelTol
is 10−3 and AbsTol is 10−6. As shown in Fig. 1 and Fig. 2, when D is small, the
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shape of the perturbed travelling wavefront is close to the unperturbed one; when
D becomes large, the perturbed travelling wavefront loses monotonicity.
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