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SOLITARY WAVE SOLUTIONS TO THE
TZITZEICA TYPE EQUATIONS OBTAINED
BY A NEW EFFICIENT APPROACH

Behzad Ghanbari'f, Mustafa Inc? and Lavdie Rada®

Abstract The properties of Tzitzéica equations in nonlinear optics have re-
ceived a great attention of many recent studies. In this work, the so-called
generalized exponential rational function method (GERFM) has been applied
for finding the analytical solution of two nonlinear partial differential equation-
s type of equations, namely Tzitzéica-Dodd-Bullough and Tzitzéica equation.
The proposed method provides a wide range of closed-form travelling solutions
leading to a very effective and simply-applied method by means of a symbolic
computation system. The method not only provides a general form of solu-
tions with some free parameters but also shows potential application to other
types of nonlinear partial differential equations.
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1. Introduction

A great number of real life phenomena rising in different fields such as high-energy
physics, optics, quantum mechanics, chemical physics, biology, fluid mechanics,
electricity, propagation of shallow water waves and so on, can be described by
partial differential equations [1-42]. In order to understand these phenomena, it
is important to seek the exact solutions of their fundamental equations. Most of
these equations are nonlinear and, in general, are often very complicated to solve
explicitly. Therefore, the powerful and efficient methods to find exact solutions of
nonlinear equations has a lot of interest. Numerous approaches and techniques such
as Exp-function method [10], extended Tanh-coth method [2], the unified method
(UM) [22-25], the generalized unified method (GUM) [26-30,41], the extended Sinh-
Gordon equation expansion method [5,6,42], etc. has been used. Those techniques
are based on the physical properties of the traveling wave solutions which can be
expressed in terms of the trigonometrical functions. In this paper, we present an
analytic solution for such nonlinear equations using the well-known exponential
rational function method. Then, in order to make obvious the effectiveness and
usefulness of the method, we apply it to find solitary wave solutions of the Tzitzéica-
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Dodd-Bullough equation
Uyt — € " — e 2 =0, (1.1)

and Tzitzéica equation
Ut — Ugy — ¥ + €724 =0, (1.2)

where u = wu(x,t) is the displacement of the point = at time ¢. The Tzitzéica
equation [32,33] and other related Tzitzéica type equations play an important role
in in nonlinear optics. For a better understanding of those equations the reader can
be referred to the [1,8,9,15-17,37] and references therein.

The outline of this paper is organized as follows: In Section 2, we give the de-
scription of the proposed method. Then the application of GERFM to the Tzitzéica-
Dodd-Bullough equation and the Tzitzéica equation are presented in Section 3. In
order to see the physical features and mechanism for some of the obtained result-
s, we provide Section 4 and illustrated some features with suitable choices of the
parameters. Finally, some conclusive remarks are included in Section 5.

2. Description of the GERFM

Following previous works on similar application in [7,21], we introduce the key steps
of GERF method as follows:

Step (i) We suppose that given nonlinear partial differential equation for u(x,t) to
be in the form

N (U, gy gy Uy - - ) = 0, (2.1)
in order to blackuce a nonlinear partial differential equation can be blackuced
to an ODE

N(u, o' u” a0 .) =0, (2.2)

by the transformation & = kx + It is the wave variable, where k and [ are
constants to be determined later.

Step (ii) Consider
B1€ B28
e —+ ase
@) = —Fr e (2.3)
azerss 4+ qeP4
where aq,as,...,a4 and aq,qs,...,a4 are real or complex numbers such
that the travelling wave solution of Eq.2.1 can be expressed as follows:

u(€) = Ao+ > Ap®(E)" + > Bp®(§) " (2.4)

n=1 n=1

Unknown coefficients A (0 < n < N) and B(1 <n < N) are constants to be
determined, such that solution 2.4 satisfies the nonlinear ordinary differential
equation 2.2. Note that, the positive integer N can be determined by applying
the homogeneous balance method between the highest order derivatives and
nonlinear terms appearing in Eq. 2.2.

Step (iii) Inserting (2.4) into Eq. (2.2) with known value of m obtained in Step
(ii). Collecting the coeflicients of the resulting polynomials in terms of Y; =
eBi& for i =1, 2,3,4, then setting the coefficients to zero, we can get a set
of equations for Ag, Ag, Bp(n = 1,2,...,N),k,l with the aid of symbolic
computation in Maple.
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Step (iv) Solving the algebraic equations in Step (iii), then substituting the solu-
tions in (2.4).

3. Application of GERFM

In this section, we apply the method to obtain travelling wave solutions of the
Tzitzéica-Dodd-Bullough equation(1.1) and Tzitzéica equation (1.2).

3.1. Tzitzéica-Dodd-Bullough equation

Taking advantage of the transformation as v = e’* or u =?Inwv, we can rewrite
equation (1.1) as follows

— VU — Uy — 00 — 0t = 0. (3.1)

let us consider the wave transformation £ = kx +It, where k, [ # 0 to be determined
later. The travelling wave variable v = v(§) permits us to convert the Eq.(3.1) to
the following ordinary differential equation:

kl (v —v0") —v® —v* = 0. (3.2)

According to Step ii of the method, considering the homogeneous balance method
between the vv” and v* in (3.2), we obtain N = 1. So from 2.4, the soliton wave
solution of the equation will be as

w(€) = Ag+ A1 2(&) + B12(§) . (3.3)

Substituting (3.3) into Eq.(3.2) and following step iii of the GERFM, we derive a
set of algebraic equations for k,1, Ag, A1, By and «y, 5; for i = 1,2, 3,4. Solving the
above algebraic equations obtained of (1.2), we have the following sets of coefficients
for the non-trivial solutions of (1.2) as given below:

Family 1: « =12,1,1,1] and 8 = [1,0, 1, 0], which gives

2ef 41
(0] = — 3.4
© =" (3.4)
Case 1.1: )
l:_EaAOZZLAl :OaBl :_2a
and
(&) = ,;
VST T e

therefore new exact solutions of the Tzitzéica equation is obtained as

1
Ul (m,t) = hl <]W) .

Case 1.2: )
l:_%7A0:_27A1 :0731:27
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and .
2e
v (5) - 9 e§ + 17
therefore we get
2 kx— %
uz (z,t) = In 767t .
2eFT— % +1
Case 1.3: | = —%,Ao =-2,A,=1,B; =0,
1
1@ ="
therefore we get
1
ug(z,t) =In| ——+ | .
3 (@1) ( 14ekm=% )
Case 1.4: = —1,4g=1,A; = —1,B, =0,
3
e
v@="rre
therefore we get
kz— L
e 13
ug () =In | ———— | .
(25
Family 2: a =[1+14,1—14,1,1] and 8 = [¢, —i,, ¢, —i], which gives
—sin (€§) + cos (§)
P (&) = . 3.5
€= (35)
Case 2.1: | = ﬁ,Ao = —% F %,Al =0,B; = +i

_ +2isin(§)cos (&) — 2 cos? () + 1+
N 4 cos? () — 2 ’

v (§)

therefore we get

1) =1
us,6 (1) n< 4 cos? (kx+ﬁ)f2

Case 2.2: kl = —} Ag=—-1,4, =3, B, =1,

1
v(€)=- 2cos (§) (sin (§) — cos (€))’

therefore we get

+23 Sin(kx + ﬁ) cos (ksc—&-ﬁ)—Z cos? (k:;zc—|— ﬁ)—i—l + z)

o= e ) s 1) -sn- 2).
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Case2.3: =4, Ag=—5+ 4, A =F4, B =0

_ Fisin (&) — cos (€)
v(&) = 2 cos (€) ’

therefore we get

s ) —cos (kx+ £
us,g(m,t)—ln< isin (ko + ) —cos (kz + 4k)>.

2 cos (km + ﬁ)
Family 3: a =[1—14,1+4,1,1] and 8 = [i, —i, 4, —i], which gives

B () = cos (iz):(gn (5)

Case 3.1: [ = £, Ag=—1F L, A =0,B; = =i,

4k’
~ F2isin(§)cos (§) —2 cos® (&) + 1+
vle) = 4 cos? (§) — 2 ’

(3.6)

therefore we get

. R o , R ‘
w1011 (7, ) =In <:F2z sm(kx+4k) cos(kx+4k) 2 cos (kx+4k)+1 + z) .

4 cos? (kx—l— ﬁ) -2
Case 32: [=—% Ag=-1,A, =%, B =1

S
1
v(€)= 2 cos (€) (cos (§) + sin (€))’

therefore we get

RPN (A | SR (SATRH A )

Family 4: o =[-3,2,1,1] and g = [1,0, 1,0], which gives

—2— 3¢
¢(f)*ﬁ (3.7)
Case 4.1: | = —%,Ao =2,A4,=0,B; =6,
—2
v(&)_ 2+3€£7

therefore we get

—2

Case 4.2: | = —%,AO =-3,4,=0,B, = —6,

_ —3et
24368’

—3ekr— %
wa et = <2+3> |

v (&)

therefore we get
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Case 4.3: | = A():*].,Al:*%,Bl:*

__L
25k
et

VO = - T r 10

therefore we get

( t) 1 ek"L_ 25k
us (x,t) =In [ — .
! 152k o= 3% 4+ 25 k@ 2 4 10

Family 5: a = [-2,-1,1,1] and 8 =[1,0, 1,0], which gives

—1—2¢f
# (&) = e (3.8)
Case 5.1: | =—g-,Ag=—1,A1 = 3, By = 2,
et

v = g o 13

therefore we get

. 1 ek z— o5
el ) = I | e g % 43 )
Family 6: o = [-2—14,—2+4,1,1] and 8 = [i, —4, ¢, —i], which gives
sin (€) — 2 cos (£)

2= cos (&) : (3.9)
Case 6.1: | = 4, Ag=—L1+i A, =0,B, = +34,
v (€) = F5icos (§)sin (§) — 5 cos® (§) +1F2i

10 cos? (£) — 2 ’

therefore we get

. 3 RAW) by 5 N . N
u17,18(33,t)1n<:F52005(kx+4k)bm(kx+4k) 5cos? (kr+5)+1F z>'

100052(lm+ﬁ)—2
Case 6.2: | = _Wlk,Ao =-1,4, = _%;Bl - _%7
1

YO = e @) G (6 — 2 s (0)

therefore we get

t t . t
urg(x,t)=—1In <4 cos (k‘m - 16]4:) <2 cos (kaﬁ— 16]{:) —sin (ka:— 16kz)>> .

Family 7: a=1,2,1,1] and g = [1,0, 1,0], which gives

_2—|—eE

¢(§)—m~

(3.10)
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Case 7.1: [ = —%,Ao =1,A,=0,B; = -2,

therefore we get

therefore we get

2
ug1 (:E,t) = ln <2_’_e]€l‘—i> .

Case 7.3: | = — -, Ag = —1,A; =

_ 2
— 5k’ B, =%,

1

37
e£

(3+3ef)(2+¢f)’

v(§) =—

therefore we get

ek r—

ok
(3+Sekm’ﬁ) 2 4 ehe—

U22 (Z‘, t) =In

w‘ﬁ

)
Family 8: o =12,3,1,1] and 8 = [1,0, 1, 0], which gives

_ 3+2¢f

2&) =T (3.11)
Case 8.1: | = —1,Ag=2,4; =0,B; = —6,
2e8
VO =355

therefore we get

2ek @ %
uog (x,t) =In|[ — ——— | .
o2 )

Case 8.2: | = —1,4g=—-3,4; =0,B; =6,

3

U(f):_3+2e§7

therefore we get

3
H=ln(-—2 ).
Uy (x,t) n( 3+2e’“f—i,)
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Case 8.3: | = AO:f]—vAl:%?Bl:ga
et

 10e% +256f + 15

__L
25k

v (&) =
therefore we get
kz— st

e 25k
10e?k 7= 3% 4 25¢ek*— 25 4+ 15

ugs (x,t) = In (—

Family 9: a =[2—-14,2+14,1,1] and 8 = [i, —i, 4, —i], which gives
sin (€) + 2 cos (€)

BT

(3.12)

therefore we get

t . t t
uge(z,t)=—1n <cos (k:r— 16k> <4 sin (kx - 16k> +8cos (kx - 16k>>> .

Family 10: = [1 —4,—1—14¢,—1,1] and 8 = [i, —i, ¢, —i], which gives
— sin (€) + cos (€)
sin (£) '
Case 10.1: | = -, Ag = —5 £ 4,41 =0, By = +i,
~ +2dcos (§)sin (&) — 2 cos® (&) + 1+
N 4 cos? (§) — 2 ’

® (&) =

(3.13)

v (§)

therefore we get

) tgi RATE 2 ) A
s s(z,1) = 1In <j:2z cos(kz+ )sin(kz+ ) —2 cos? (ka+ %) +1 + z) |

4 cos? (k:z+ ﬁ) -2

Case 10.2: | = —ﬁ,AO = —1,A1 = —%,Bl =-1

3

v(f) = 2sin (5) (sin §) — COs (5))7

therefore we get

o= ta{osin (ke ) (s () o))

Case 10.3: | =}, Ag=—3 £ 4,41 =+, B =0,
+icos (§) — sin (§)
v (&) 2sin (€) ’

therefore we get

. Y N
Uso51 (x7t>:ln<:|:zcos(kx+ 4k) Sln(kx—i— 4k)>.

2sin(k;a:—|— ﬁ)
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Family 11: o =[-2—14,2 —4,—1,1] and 8 = [i, —i, i, —i], which gives

B () == (6211(25)8 = (3.14)
Case 11.1: | = 4—1k,AO = _% Ti A =0,B, = i%z}
o(6) = E37C08(O)5in () =5 cos’ (§) +4F 2i

10 cos? (&) — 8 ’

therefore we get

us2 33(x,t)=In <i5i cos(kx+ﬁ)sin(kx+i) —5cos” (kar ﬁ) t4¥2 Z) )

10 cos? (k’x—!— ﬁ) -8

Case 11.2: | = — 74 Ag=-1,4, =% B, = 2,

1

v(§) = 4sin (&) (cos (&) + 2 sin (€))’

therefore we get

. t t . t
uzq(z,t)=—1In (4 sin (km - 16k> (cos (k‘x - 16]@) +2sin (ka: - 16k>>) :

Family 12: a =[-1—14,1 —4,—1,1] and 8 = [i, —i, i, —i], which gives

_cos(§) +sin(§)
Q@)= —o o (3.15)
Case 12.1: | =—4-, Ag=—-1,41 = 1,B; =1,
v () :

~ 2sin (&) (cos (£) + sin (£))’

therefore we get

uss(2,1) = — In (2 sin <kx— 42) (cos (kx— 42) +sin (k:a:— 42))) .

Family 13: a =1[2—-14,2—14,—1,1] and 8 = [i, —4, 4, —i], which gives

o(6) =& (5;; é;m ©) (3.16)

AO = 717A1 = 7%731 = -3

4

Case 13.1: [ = fﬁ,
1

~ 4sin (€) (cos (€) — 2 sin (€))

v(§) =

therefore we get

. t . t t
uge(x,t)=—1In (sm (k:c - 16k;> (8 sin (kx - 16k) —4cos <k‘x 16k:))> .
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Family 14: a = [i, —i,1,1] and 8 = [i, —i, i, —i], which gives
® (&)= —(S;I; (('?) (3.17)

Case 14.1: | = 14r, Ag = -1, A1 = +4 B = ¥4,

_ —2cos (&) sin (§) £ 2icos® () Fi
v(&) = 4 cos (€) sin (€) ’

therefore we get

—2cos(kx+ 1) sin(kx+ 1k5) & 2i cos® (ka+ 1) F i
ugr,3s(z,t)=In )
4 cos(kx—i— 16k) 51n(km+ 16k)
Family 15: a =[1,-1,1,1] and 8 = [1,—1, 1, —1], which gives

_ sinh (§)
(&)= cosh (£)°

(3.18)

Case 15.1: | = —47, Ag = —3, A1 =£5,B; =0,
— cosh (&) £ sinh (&)

o= 2 cosh (§) ’
therefore we get
—cosh (kz — ) £sinh (kz — &
ot )
1k

Case 15.2: | = — g4, Ag=—3, Ay =41, B1 ==+

+2cosh?(£) — 2sinh 2(€) cosh(€) F 1
4sinh?(€) cosh? ()

v(§) =
therefore we get

2
g1 42(z,t) =In A2cosh (kxfﬁ)z 2smht2(k éek)COSh(kI*ﬁ) 1)
4sinh® (kx — & )cosh® (kz — 157 )

3.2. Tzitzéica equation

Now, we apply the method to obtain travelling wave solutions of the Tzitzéica
equation (1.2). Under the given transformation v = e’** or u =?Inv, it can
be blackuced as follows

VO — Vg — V7 + 02 —0® 41 =0. (3.19)

Let us consider the wave transformation & = kx + It, where k,I # 0 to be
determined later. The travelling wave variable v = v(£) permits us to convert
the Eq.(3.19) to the following ordinary differential equation:

(P = k) (v* =) —v® +1=0. (3.20)
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The solution of Eq.(3.20) can be written in the form of Eq.(2.4). Balancing
the vv” and v? gives m = 2. According to method and from (2.4), the soliton
wave solution of the equation will be as

w(€) = Ag + A1 ®(&) + A20%(€) + B1®(§) ™ + Ba®(§) 2. (3.21)

By substituting solution (3.21), into Eq. (3.20), and following the step as
described in Section 2, we will derive a nonlinear algebraic system whose
solution gives:

Family 10: « =[1 —¢,—1—1i,—1,1] and 8 = [i, —1,¢, —i], which gives

—sin (€) + cos (€)

T (3.22)

® (&) =

Case 10.1:

3
zzi,/kLZ,AO:—z,Al =0,As =0,B; = —6, By = —6,

2 cos (§)sin (&) + 2
2 cos (§)sin (§) — 17

and

v (&) =

therefore we get

2 cos kxj:t ka%) (kxj:t k2 — )+2
:ct
3
1

2 cos kxj:t k2 ) (kx:l:t k2 — ) 1
Case 10.2:

/ 3. 3
[=41/ k2 i3\/;i+8,A0:ii\/§+1,A1=A2:O,Blngz3i31’\/3,
d

(sin (§) cos (&) + 1) (Fiv3 — 1)
2 sin (¢) cos (§) — 1 ’

]]

v(§) =

therefore we get

<sin(k m:tty/k2+§:t3\/§i) cos (k zitw/k2+gi3\/§i)+1) (Fiv3-1)
ug,3(z,t) =In .
2 sin(kzita/k2+%i3\/§i) cos(kxity/kzwtgi?)\/gi)fl

Case 10.3:
3 3
==+ kQ—Z,Ao:—ZAl —3,A; = —g5 ,B1 =By =0,
and ) )
2 cos +1
v(§) = _%7
2sin” (§)

therefore we get

2 cos (k:xit\/k;Q— 7) +1
- 2sin? (k;a::l:t\/kz— i)

ug (x,t) =1n
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Case 10.4:
3 3 3 3
z:i,/kugzpéz‘\/ifxo:lzm/ﬁ,m=§¢§z‘\/§,
3 3.
Ay == F 2iV3,B; = B, =0,
474
and

(2 cos? (€) +1) (Fiv3+1)
4sin? (€) ’

v(§) =

therefore we get

<2cos2 (km +t\/k2+3 F 3iV3) +1)(:Fi\/§+1)
us6(z,t)=In
4sin® (kx +t\/k2+3 F ga/ﬁ)

Family 11: a =[-2—14,2 —4,—1,1] and 8 = [i, —i, i, —i], which gives

cos (§) + 2 sin (f)

BT

(3.23)

Case 11.1:
3 3 75
l = :‘:\/E,AO = —157141 = O,AQ = O,Bl = 30732 = _?,

50 cos* (£) + 60 cos (€) sin (£) — 35 cos? (&) — 28
B 2 (5 cos? (€) — 4)°

and

v (§)

9

therefore we get

wr (2,1) = In ( 50 cos* (£) + 60 cos (£) sin (£) —235 cos? (€) — 28) ’
25 cos? (6) )
where
E=ka+t tm.
Case 11.2:

3 3i 13 13
zzi,/kugigﬁ,Ao:iTﬁ/ﬁJrZ,Al:Azzo,

75 75
By = F15iV3 — 15, B, = iTZ\/éJF T

and

(£iv/3—1)(50 cos*(£) —35 cos®(£) +60 sin () cos(£) —28)
4 (5 cos?(€)—4)?

(€)=

)
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therefore we get

ug.o(z, ) =In ((:I:i\/g— 1)(50 cos(€) —35 cos?(€) +60 sin(&)cos(€) — 28)) ‘
o 4 (5 cos€)—4)*

3 3i
S:kxit\/lﬁ—&-gi%\/?:.

Family 12: a =[-1—14,1 —14,1,—1] and 8 = [i, —i, i, —i], which gives

where

~cos (§) +sin(§)
Case 12.1:
/ 3
=+ k2—17A0:—27A1:A2:0731:6,B2:_67
and

2 sin (€) cos (§) — 2
2 sin (¢) cos (§) + 17

v (&) =

therefore we get

sm(kzxit k2 — )os(kxit k2 — )—2

uyo (z,t) =1n

Iz
Iz

sm(k‘x:tt k2 — )os(kxit k% — )—1—1

Case 12.2:
/ 3 3. .
=+ k2+§i§1\/§,A0:ﬁ:1\/§+1,A1:A2:O,
B = —3F3iV3,By = 3+ 303,
and
v () = (sin (€) cos (€) — 1) (=1 FiV/3)
B 2 sin (&) cos (€) + 1 ’

therefore we get

N1 (sin(katty/R2+ 3T V3) cos (hatty/k2+ T2 T1V3) ~1) (~1FiV3)
u11,12(2, ) = In 2 sin(kaotty/k?+3+3iV3) cos(kx:tt\/k2+%:t%i\/§)+1 '

Family 13: a =[2—14,—-2 —4,—1,1] and 8 = [i, —i, i, —i], which gives

N (gii; é)sm ) (3.25)

Case 13.1:

3 13 75
l= i\/Eai‘lo = —?7141 =0,42=0,B; = —30,B; = DR
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and

_ 50 cos* (€) — 60 sin (€) cos (&) — 35 cos? (£) — 28

v 2(5 cos? () — 4)°

9

therefore we get

uis (2,) = In < 50 cos* (&) — 60 sin (£) cos (£) — 35 cos? (€) — 28) ’

2(5 cos? (£) — 4)*

3
—kztty k22
3 T 1
3 3 13i 13
l:i,/kugigiﬁ,AOZiTZ\@+Z,A1:Azzo,

75 75
By = +15iV3 + 15, By = j:TZ\/ng T

where

Case 13.2:

and

(14 iv/3) (=50 cos*(€)+60 cos(€) sin (£)+35 cos? (£) +28)

vie)= 4 (5cos?(€)—4)

)

therefore we get

14i/3) (=50 cos® (€)460 cos(&) sin(€)+35 cos? (£)+28
U14,15 (x,t) =1In (( )( 4(5 cos2(£)—4)2 )> ‘

g:kxit,/kugigz\@.

Family 14: a = [i, —i,1,1] and 8 = [i, —i, 4, —i], which gives

where

sin (€)
[0 = — . 2
= (3.26)
Case 14.1:
3 3
lzi\/k’z - Z,Ao =—-,A41=0,A= —5731 =By =0,
and
2 cos? (§) — 3

therefore we get

2 cos? (kxit,/sz—%) -3

2 cos? (kmit k2 — %)

uie (z,t) =1n
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Case 14.2:

3 3 i 1 3 3
l=4\ K2+ =+ 2ivV3,Ag=+-V3+ -, Ay =+"iV/3+ =
+3 8zf,o 4f+4,2 4zxf+4,

Ay =DB; =By =0,

and
(—1 F z\/g) (c052 &) — %)
2cos? (&) ’

(-1FiV3) ((3052 (kx +¢ k2—|—% + gz\/§> —3)
2 cos? (kx +i\ k243 + gz\/§>
Case 14.3:

3 1 3 3
l=+/k2 - — A=A =0,A0=—-,B=0,By = —
16’ 0 4a 1 y 412 87 1 , D2 87

—8 cos* (¢) + 8 cos? (&) — 3
8 cos? (€) sin? (€) ’

v(§) =

therefore we get

U17718(l’, t) =In

and

v(§) =

therefore we get

—8cos? (kxit\/@) +8cos? (kx:l:tﬂ) 3
8 cos? (lm:it\/@)sin2 (kx:ttﬂ)

u19($7 t) =In

Case 14.4:
3 3 .
l:i\/k;2+32132\/5,140:1@/8\/5—1/8,141231:07
3 3
Ay = By =+ =2
2= 16“/§+16’
and

v () = (8 cos* (€) — 8cos? (&) +3) (1 £1iv3)
16 cos? (&) sin? (€) ’

therefore we get

ug0,21 (2,t) =In ( (8 cos* (€) — 8cos? (€) + 3) (1 n u/ﬁ)) |

16 cos2 (£) sin? (€)
where
3 31
—kr £t /k2 4+ — + V3.
§=ke t\/k ML
Family 15: a =[1,-1,1,1] and 8 = [1,—1, 1, —1], which gives
sinh (£)

P (&) = (3.27)

cosh (£)°
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1 3
l:i\/k2+%A0:f§,A1:O,A2: 5:B1=B2=0

_ 2cosh®(¢) -3
~ 2cosh? (¢)

woon (4.1) = In 2 cosh? (kx + t\/@> -3
2 cosh? (kw + t\/@)

Case 15.1:

and

v (§)

)

therefore we get

Case 15.2:
/ 3 31 1 1
l k ] 8\/57 0 :F4\/§+4a 1 ’
3 3
Ay ==4+=iV3—,Bi =By, =0
4 4
and

(2 cosh? (¢) — 3) (xiv3 — 1)
4 cosh? (€)

<2 cosh? (km + tm) - 3)(j:i\/§1)

4cosh2(kxit kQ—% + 3’\/5)

3 1 3
— 4 K2+ Ag=—= A=Ay =B, =0,By = >
==+ +4,o 51 2 1=0,B 5

2 cosh? (£) 4 1
2 cosh? (€)

2 cosh? (kxit\/kQ—#%) +1
2 cosh? (kx:l:tw/k2—|— %)

3 1 3 3
=%k +—,4=-,4=0,A3=-,B=0,By = =
+16’ 0 45 1 s 412 87 1 y D2 ]

8 cosh® (€) — 8 cosh? (€) + 3
B 8sinh? (¢) cosh? (€)

v(§) =

therefore we get

’U,22$23 (1‘, t) = ln

Case 15.3:

and

v () =

)

therefore we get

U24 (x, t) =1In

Case 15.4:

and

v (§)

)
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therefore we get

; ! 8 cosh? (k:r:tt\/k2+1—36>78 cosh? (k xit\/k2+%)+3
uzs(2, 1) = In 8 sinb? (katt\/k2+ 55 ) cosh? (katty/k2+ 35 ) '

Family 16: a =[-1,0,1,1] and 8 = [0,0, 1,0], which gives

o (&) = —H%. (3.28)
Case 16.1:
l=+Vk2+3,Ay=1,A = Ay =6,B, = By =0,
and e?f —4ef +1
v (&) = W

therefore we get

e2k:b:tt\/k2+3 . 4ek rttvk2+3 41

uge (x,t) = In 3
(1 1ok witx/k2+3>

Case 16.2:
3 3 1 1
=44 k2 - +2iV3 Ag=—=+ =iV3
\ 2 2“[’ 0= 79 2“f’
Ay = Ay = —3+3iV3,B, = By =0,
and

(—4e® +e*6 +1) (£iv3—1)
2(1 + ef)?

v(§) = ;
therefore we get

2_3,.3; 2_343,;./¢
74Cka::tt k 2i2z\/§+c2kzit k 2i2“/§+1>(:|:i\/§71)

2
2(1+ekmit1/k2—%j:%i\/§)

UQ7(.T, t) =In

Remark 3.1. We have checked the entire set of the new solutions obtained in
sections 3 and 4 with Maple, and found that all the obtained solutions satisfied
corresponding partial differential equation.

4. Physical interpretation

In this section, we present some three dimensional figures of the modulus of some
of the obtained solutions presented in the immediate section. The construction
of the figures is carried out by taking suitable values of the parameters in order
to see the mechanism of the original Egs. (1) and (2). The physical features of
the solutions ugg 21(x,t), wao.a1(x,t), usga0(z,t), uso(x,t), use(z,t), uig(x,t) are
shown in Figures 1-6, respectively. One can see that, wugg21(x,t) and usg 40(z,?)
are singular solutions, w40 41(z,t) is a kink type solution, ug g(x,t) and ui9(z,t) are
periodic wave solutions and us ¢(x,t) is a periodic wave solution.
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w21 1) g1 42 i)

e e e
e e o
o o
T o T e e
e e e T e e
i, i e e e ey
D o e e

Figure 1. 3D plot of solution u x,t) with
A E 1.7. P 2021(2,) Figure 2. 3D plot of u40,41(z,t) with k = 1.7.

uzg, 40 (1) ugg ot

Figure 3. 3D plot of ugg, 40(z, t) with k = 0.5. Figure 4. 3D plot of ug,g(x,t) with k = 0.5.

g g eyt) wuyg (i)

Figure 5. 3D plot of us ¢(x,t) with k = 1. Figure 6. 3D plot of uig(z,t) with k = 1.
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5. Final Remarks

In this paper, we introduced a so-called generalized exponential rational function
method (GERFM) for acquiring exact solutions of the nonlinear partial differential
equations. It has been observed that GERFM provided a wide range of closed-form
travelling solutions of two nonlinear evolution equations namely Tzitzéica-Dodd-
Bullough and Tzitzéica equation. The most important feature of the new method
is that it is very effective and simple. The main merits of the proposed method
is that it generates more general solutions with some free parameters and can be
applied to other types of nonlinear partial differential equations. Physical features
for some of the obtained results are presented in Figures 1-6.
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