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SOLITARY WAVES, PERIODIC PEAKONS,
PSEUDO-PEAKONS AND COMPACTONS
GIVEN BY THREE ION-ACOUSTIC WAVE

MODELS IN ELECTRON PLASMAS

Yan Zhou1,2†, Jie Song1 and Tong Han3

Abstract The nonlinear ion-acoustic oscillations models are governed by
three partial differential equation systems. Their travelling wave equations
are three first class singular traveling wave systems depending on different pa-
rameter groups, respectively. By using the method of dynamical system and
the theory of singular traveling wave systems, in this paper, it is shown that
there exist parameter groups such that these singular systems have solitary
wave solutions, pseudo-peakons, periodic peakons and compactons as well as
kink and anti-kink wave solutions. The results of this paper complete the
studies of three papers [5, 13] and [14].
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1. Introduction

Recently, in 2018 and 2019, three dynamical models are considered by three papers
(Rufai and Bharuthram [13], Hatami and Tribeche [5], Sultana and Schlickeiser
[14]), respectively. The authors applied so called Sagdeev potentials to investigate
solitary wave solutions given by these models. However they did not study the
dynamical systems corresponding to the Sagdeev potentials, and did not know the
existence of singular straight lines in the differential systems describing the traveling
waves. In addition, they did not understand the theory of singular traveling wave
system developed by Li and Chen [7] and Li [8]. Therefore, these three papers
can not discuss existence of the pseudo-peakons, periodic peakons, compactons as
well as kink and anti-kink wave solutions. Similar cases appeared in Ghebache
and Tribeche [2, 3] and Das [1]. The three papers [10–12] have obtained some
new complete results by using the method of dynamical system. It is necessary to
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study the dynamical behaviors of the traveling wave solutions of the following three
models.

1. Hatami and Tribeche [5] stated that “One of the most important longitu-
dinal electrostatic waves in plasma is the ion-acoustic wave that can be observed
commonly in space and laboratory plasmas. According to theoretical as well as
experimental results, this wave plays an important role in the turbulence heating,
the laser plasma interaction, the particle acceleration, etc.” Considering a homoge-
neous, collisionless, unmagnetized plasma consisting of ion with finite temperature
and two species of q-nonextensive electrons (cool and hot), the normalized basic
equations, based on the fluid description, for one dimensional propagation of non-
linear ion-acoustic solitary waves in such a plasma are given as follows:

∂Ni
∂τ + ∂(Niui)

∂X = 0,

∂ui
∂τ + ui

∂ui
∂X + σ

Ni
∂Pi
∂X = − ∂φ

∂X ,

∂Pi
∂τ + ui

∂Pi
∂X + 3Pi

∂ui
∂X = 0,

∂2φ
∂X2 = δNc + (1− δ)Nh −Ni,

(1.1)

where Nj=i,c,h =
nj
nj0

, ui = vi
Cs
, Cs =

√
Tc
mi
, σ = Ti

Tc
, φ = eϕ

Tc
, δ = Nc0

Ni0
, τ = tωpi, ωpi =√

4πe2ni0
mi

, X = x
λD
, λD =

√
Tc

4e2πni0
and β = Tc

Th
. The normalized densities of the

q-distributed electrons are given by

Nc = [1 + (qc − 1)φ]
(qc+1))
2(qc−1) , Nh = [1 + β(qh − 1)φ]

(qh+1))

2(qh−1) . (1.2)

In order to derive the Sagdeev’s pseudo potential from system (1.1), we assume
that all the variables depend on a single independent variable ξ = X − V τ , where
V is the velocity of the moving frame. Further, the following appropriate boundary
conditions φ → 0, ui → ui0, Ni → 1, Pi → 1 at |ξ| → ∞ are defined. Thus, system
(1.1) can be reduced. Especially, the forth equation of system (1.1) becomes

d2φ

dξ2
= δNc + (1− δ)Nh,−Ni, (1.3)

where

Ni =
1

2
√

3σ

{√
(M +

√
3σ)2 − 2φ−

√
(M −

√
3σ)2 − 2φ

}
, M = V − ui0

is the Mach number.

Then, Hatami and Tribeche [5] obtained the following two-order differential
equation:

d2φ
dξ2 = δ[1 + (qc − 1)φ]

(qc+1))
2(qc−1) + (1− δ)[1 + β(qh − 1)φ]

(qh+1))

2(qh−1)

− 1
2
√

3σ

{√
(M +

√
3σ)2 − 2φ−

√
(M −

√
3σ)2 − 2φ

}
.

(1.4)
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It is equivalent to the planar dynamical system

dφ
dξ = y,

dy
dξ = δ[1 + (qc − 1)φ]

(qc+1))
2(qc−1) + (1− δ)[1 + β(qh − 1)φ]

(qh+1))

2(qh−1)

− 1
2
√

3σ

{√
(M +

√
3σ)2 − 2φ−

√
(M −

√
3σ)2 − 2φ

}
≡ Q1(φ),

(1.5)

which has the first integral or Hamiltonian:

H1(φ, y) =
1

2
y2 + S1(φ) = h, (1.6)

where

S1(φ)= 2δ
3qc−1

{
1−[1+(qc−1)φ]

3qc−1
2(qc−1)

}
+ 2(1−δ
β(3qh−1)

{
1−[1+β(qh−1)φ]

3qh−1

2(qh−1)

}
− 1

6
√

3σ

{[
(M+

√
3σ)2−2φ

] 3
2−(M +

√
3σ)3−

[
(M−

√
3σ)2−2φ

] 3
2 +(M−

√
3σ)3

}
(1.7)

is called Sagdeev’s pseudo potential. We notice that [5] did not study the dynamics
of system (1.5). By using the numerical method, the authors only considered the
Sagdeev potential (see Sagdeev [15]).

2. Sultana and Schlickeiser [14] considered fully nonlinear heavy ion-acoustic
solitary waves in astrophysical degenerate relativistic quantum plasmas. The heavy
ion-acoustic wave, in which the inertia (the restoring force) is provided by the mass
density of the heavy ion species (the degenerate pressures of the electron and light
ion species), is described by the following one dimensional normalized equations:

∂nh
∂t + ∂(nhuh)

∂x = 0,

∂uh
∂t + uh

∂uh
∂x = −∂φ∂x ,

K1
∂ni

γi

∂x + ni
∂φ
∂x = 0,

K2
∂ne

γe

∂x − ne ∂φ∂x = 0,

∂2φ
∂x2 = (1 + α)ne − αni − nh,

(1.8)

where the number density ns is normalized by its equilibrium value ns0, heavy ion
fluid velocity uh is normalized by the heavy ion sound speed c0 = (zhmec

2/mh)1/2,
the electrostatic potential φ is normalized by mec

2/e. The space x and time t are

normalized by the Debye length λ0 = (mec
2/4πe2zhnh0)

1
2 and the plasma period

ω−1
ph = (4φz2

he
2nh0/mh)−

1
2 of the heavy ion species, respectively. Other parameters

are defined as α = zini0/zhnh0,K1 = Kin
γi−1
i0 /zimec

2 and K2 = Ken
γe−1
e0 /mec

2.
By integrating the third and fourth equations over x, we obtain the number

densities (normalized) of the inertialess degenerate light ion ni and electron ne:

ni =

(
1− γi − 1

γiK1
φ

) 1
γi−1

, ne =

(
1 +

γe − 1

γeK2
φ

) 1
γe−1

, (1.9)
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where γi(γe) represents the relativistic index of the light ion (electron) species, and
γi = 5

3 will be considered for the non-relativistically degenerate light ion species for
our analysis purposes. Now, substituting (1.9) into the fifth equation, we obtain

∂2φ

∂x2
= (1 + α)

(
1 +

γe − 1

γeK2
φ

) 1
γe−1

− α
(

1− γi − 1

γiK1
φ

) 1
γi−1

− nh. (1.10)

Assume that φ depends on a single travelling variable ξ = x −Mt (where M is
Mach number, normalized by the heavy ion sound speed c0). By applying the
steady state condition, and imposing the appropriate boundary conditions (namely,
nh → 1, uh → 0, φ→ 0, and dφ

dξ → 0 at ξ → ±∞), the plasma model equations (1.8)

are reduced to the energy integral(see [14]):

1

2

(
dφ

dξ

)2

+ Ψ(φ) = 0, (1.11)

where the (Sagdeev-type) pseudo-potential (see [15]) is given by

Ψ(φ) = M2

[
1−

(
1− 2φ

M2

) 1
2

]
+ αK1

[
1−

(
1− γi−1

γiK1
φ
) 1
γi−1

]
+(1 + α)K2

[
1−

(
1 + γe−1

γeK2
φ
) 1
γe−1

]
.

(1.12)

Clearly, corresponding to the Hamiltonian function H2(φ, y) = 1
2y

2 + Ψ(φ) = h, we
have the dynamical system:

dφ

dξ
=y,

dy

dξ
=− 1√

1− 2φ
M2

−α
(

1− φ

β1K1

)β1−1

+(1+α)

(
1+

φ

β2K2

)β2−1

≡Q2(φ),

(1.13)
where β1 = γi

γi−1 , β2 = γe
γe−1 .

Sultana and Schlickeiser [14] did not derived system (1.13) and did not study its
dynamics. By using the numerical method, the authors only considered the Sagdeev
potential (1.11).

3. In [13], Rufai and Bharuthram considered a homogeneous, magnetized three-
component, collisionless plasma consisting of electrons (Ne, Te), protons (Np, Tp)
and a cold singly-charged oxygen-ion beam (Ni, Ti = 0) drifting along the magnetic
field direction B0 = B0ẑ with speed v0 , where Nj(Tj) is the density (temperature)
of the j−th species. Satellite observations have recorded the existence of such a
beam. Waves propagate in (x, z)-plane at an angle which changes from θ0 to B0.
Then, the normalized fluid governing equations are given by:

∂ni
∂t + ∂(nivx)

∂x + ∂(nivz)
∂z = 0,

∂vx
∂t + (vx

∂
∂x + vz

∂
∂z )vx = −∂ψ∂x + vy,

∂vy
∂t + (vx

∂
∂x + vz

∂
∂z )vy = −vx,

∂vz
∂t + (vx

∂
∂x + vz

∂
∂z )vz = −∂ψ∂z ,

(1.14)
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where ni is the oxygen ion density, vx, vy and vz are the components of the oxygen
ion velocity along x, y, and z directions respectively, ψ is the waves electrostat-
ic potential. We may use the Boltzmann distribution for the thermal electrons
ne = exp(ψ) and protons np = (1 − p) exp(−αpψ). In the above equations, the
charge neutrality condition at equilibrium is given by Ne0 = Ni0 + Np0. The uses
of normalization are following: densities are normalized by the electron density Ne0
, velocities are normalized by the speed Cs = (Te/mi)

1
2 (where mi is the oxygen

ion mass), distance is normalized by the ion Larmor radius ρi = Cs
Ω , time t is

normalized by the inverse of oxygen-ion gyro-frequency Ω−1(Ω = eB0

mic
), and elec-

trostatic potential φ is normalized by Te
e , where ψ = eφ

Te
. Then, we have p = Ni0

Ne0

and the temperature ratio αp = Te
Tp
. This system is closed with the quasi-neutrality

condition which is valid for low-frequency phenomena, i.e. ni + np = ne. We have

ni(ψ) = exp(ψ)−(1−p) exp(−αpψ), n′i(ψ) = exp(ψ)+(1−p)αp exp(−αpψ). (1.15)

By a localized stationary frame ξ = 1
M (αx + γz −Mt), where M = V

cs
is the

Mach number, under some appropriate boundary conditions for localized solutions,
for example vz = v0, Rufai and Bharuthram [13] obtain the following “energy
integral” of an oscillating particle of unit mass with pseudo-potential S3(ψ):

1

2

(
dψ

dξ

)2

+ S3(ψ) = 0, (1.16)

where

S3(ψ) = −
[
A(ψ) +B(ψ)

C(ψ)

]
, (1.17)

A(ψ) = −M
2M2

d (ni(ψ)− p)2

2n2
i (ψ)

−M2(1− γ2)ψ, C(ψ) =

(
1− M2

dp
2n′i(ψ)

n3
i (ψ)

)2

,

(1.18)

B(ψ) =
M2H0(ψ)

p

(
1− pγ2

ni(ψ)
− γ2H0(ψ)

2M2
dp

)
, Md = M − γv0 (1.19)

and

H0(ψ) = exp(ψ)− 1 +
1− p
αp

(exp(−αpψ)− 1). (1.20)

By examining the pseudo potential S3(ψ), [13] analyzed the conditions under which
the energy integral (1.16) leads to a solitary wave solution. The author did not
consider the following dynamical system:

dψ
dξ = y,

dy
dξ = −S′3(ψ) = Q3(ψ) =

n6
i (ψ)[(A(ψ)+B(ψ))C′(ψ)−C(ψ)(A′(ψ)+B′(ψ))]

(n3
i (ψ)−p2M2

dn
′
i(ψ))4

.
(1.21)

The system (1.21) has Hamiltonian function

1

2
y2 + S3(ψ) = h. (1.22)

We can write that

S3(ψ) = M2(ni(ψ))4

(D(ψ))4

[
− 1

2M
2
d (ni(ψ)− p)2 − (1− γ2)ψ(ni(ψ))2 + 1

p (ni(ψ))2H0(ψ)

− γ2

2M2
dp

2 (H0(ψ))2(ni(ψ))2 − γ2H0(ψ)ni(ψ)
]
,

(1.23)
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where D(ψ) = n3
i (ψ)− p2M2

dn
′
i(ψ).

In order to finish the studies about the traveling wave solutions of system (1.1),
(1.8) and (1.14), in this paper, we use the method of dynamical system to discuss
the dynamical behaviors of systems (1.5), (1.13) and (1.21). We notice that

(i) When 0 < qc < 1, 0 < qh < 1, system (1.5) is the first class singular nonlinear
traveling wave system defined in [7] and [8], which has two singular straight lines
φ = φsc = 1

1−qc and φ = φsh = 1
β(1−qh) .

(ii) When γi > 1 and γe > 1, system (1.13) is the first class singular nonlinear
traveling wave system with the singular straight line φ = 1

2M
2.

(iii) When 0 < p < 1, if the function D(ψ) has a unique zero ψ = ψs, then
system (1.21) is the first class singular nonlinear traveling wave system with the
singular straight line ψ = ψs.

It is very interesting that singular traveling systems have peakon, pseudo-peakon,
periodic peakon and compacton family. Periodic peakon is a classical solution with
two time scales of a singular traveling system. Peakon is a limit solution of a family
of periodic peakons, or a limit solution of a family of pseudo-peakons under two
classes of limit senses (see Li, J., et al. [9]). Compacton family is a solution family
for which all solutions φ(ξ) have finite support set, i.e., the defined region of every
φ(ξ) with respect to ξ is finite and the value region of φ is bounded. Corresponding
to different types of phase orbits, the authors gave a classification for different wave
profiles of φ(ξ) in [6, 7] and [8].

The theory of the singular traveling wave system developed by [7] and [8] is
very useful. We will use this theory to analyze the wave profiles of the solution
functions φ(ξ) and ψ(ξ) of systems (1.5), (1.13) and (1.21). We know the following
relationships between a wave profile of φ(ξ) or ψ(ξ) and a phase orbit of these planar
dynamical systems.

(1) A smooth homoclinic orbit to a saddle point of a traveling wave system gives
rise to a smooth solitary wave solution of a PDE.

(2) A smooth heteroclinic loop connecting two saddle points of a traveling wave
system gives rise to a kink wave solution or an anti-kink wave solution of a PDE.

(3) For a homoclinic orbit, if it has a segment that completely lies in a left (or
right) small strip neighborhood of a singular straight line, then this homoclinic orbit
defines a pseudo-peakon solution of system.

(4) If there exists a curve triangle connecting saddle points and surrounding the
periodic annulus of a center of a traveling wave system, in the neighborhood of a
singular straight line (for which a segment is an edge of the triangle), then as a
limit curve of a family of periodic orbits, this curve triangle gives rise to a peakon
solution of system.

(5) For a family of periodic orbits, if each orbit of the family has a segment which
completely lies in a left (or right) small strip neighborhood of a singular straight
line, then these periodic orbits determine a family of periodic peakon solutions of
system.

(6) For a family of open orbits, when |y| → ∞, if these orbits tend to a singular
straight line, then this open orbit family gives rise to a family of compactons.

(7) For a family of periodic orbits, if each periodic orbit of the family transversely
intersects a singular straight line, then this periodic orbit family gives rise to a family
of compactons.

With respect to the existence of solitary wave solutions, we have the following
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conclusion which is a theoretical and general result depending on the three param-
eter groups of three systems.

Theorem 1.1. (i) The origin O(0, 0) of system (1.5) is a saddle point if and only
if

M >

√
3σ +

2

δ(1 + qc) + (1− δ)β(1 + qh)
.

Under this condition, if there exists a homoclinoc orbit of system (1.5) to the origin
O(0, 0), then it gives rise to a solitary wave solution or a pseudo-peakon solution of
system (1.1).

(ii) The origin O(0, 0) of system (1.13) is a saddle point if and only if

M >
1√

α
K1

(
1− 1

β1

)
+ 1+α

K2

(
1− 1

β2

) .
Under this condition, if there exists a homoclinoc orbit of system (1.13) to the origin
O(0, 0), then it gives rise to a solitary wave solution or a pseudo-peakon solution of
system (1.8).

(iii) Assume that 0 < p < 1. The origin O(0, 0) of system (1.21) is a saddle
point if and only if

Mcusp ≡ γ
(
v0 +

√
p

1 + αp(1− p)

)
< M <

(
γv0 +

√
p

1 + αp(1− p)

)
≡Minf .

Under this condition, if there exists a homoclinoc orbit of system (1.21) to the origin
O(0, 0), then it gives rise to a smooth solitary wave solution of system (1.14).

The proof of this theorem is showed in the following section 2, 3 and 4.
This paper is organized as follows. In section 2, 3 and 4, we investigate the

bifurcations of phase portraits of system (1.5), (1.13) and (1.21), and discuss the
existence of solitary wave solutions, pseudo-peakons, periodic peakons and com-
pactons as well as kink and anti-kink wave solutions of these systems.

2. Bifurcations of phase portraits and dynamical
behaviors of solutions of traveling wave system
(1.5)

In this section, we consider possible bifurcations of phase portraits of system (1.5).
To investigate the equilibrium points Ej(φj , 0) of system (1.5), we need to discuss
the zeros φj of the function Q1(φ). Clearly, Q1(0) = 0, thus the origin O(0, 0) is
an equilibrium point of system (1.5). Because Q1(φ) depends on the six-parameter
group (β, δ, σ, qc, qh,M), so it is very difficult to find other equilibrium points of
system (1.5) depending on the changes of parameters. We assume that the param-
eters qc and qh are rational numbers and 1

3 < qc < 1, 1
3 < qh < 1. In this case,

the exponents βc = qc+1
2(qc−1) , βh = qh+1

2(qh−1) are negative number. Function Q1(φ) is

defined in the interval (−∞, φd), where φd = min(φsc, φsh, φm), φm = 1
2 (M −

√
3σ).

For a given parameter group, we can use numerical method to find the zeros of
Q1(φ) in (−∞, φd).
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Let M(φj , 0) be the coefficient matrix of the linearized system of system (1.5)
at an equilibrium point Ej(φj , 0) and J(φj , 0) = detM(φj , 0). We have J(φj , 0) =
−Q′1(φj), when M >

√
3σ,

J(0, 0) = −1

2
δ(1 + qc)−

1

2
(1− δ)β(1 + qh) +

1

M2 − 3σ
.

By the theory of planar dynamical system (see [8]), for an equilibrium point of
a planar Hamiltonian system, if J < 0 (> 0), then the equilibrium point is a saddle
point (a center point); if J = 0 and the Poincaré index of the equilibrium point is 0,

then this equilibrium point is a cusp. WhenM =
√

3σ + 2
δ(1+qc)+(1−δ)β(1+qh) ≡Mb,

or β = 2−(M2−3σ)(1+qc)δ)
(M2−3σ)(1−δ)(1+qh) ≡ βb, we get J(0, 0) = 0, so that the origin O(0, 0) is a

cusp. When M > Mb (M < Mb), the origin is a saddle point (a center).
Write that hj = H1(φj , 0), where (φj , 0) is an equilibrium point of system (1.5)

with −∞ < φ < φd, h0 = H(0, 0) = 0.

For the fixed parameter values: β = 0.1, δ = 0.25, qc = 0.5, qh = 0.75, σ =
0.2, by varying the parameter M , we can obtain the different graphs of function
Q1(φ). Some graphs are shown in Fig.1 (a)-(d). In these cases, system (1.5) has 4
equilibrium points. From these graphs we know that when φ→ φm, Q1(φ)→ −∞.

(a) M = 2.130053 (b) M = 2.1305 (c) M = Mb (d) M = 2.15

Figure 1. The graphs of function Q1(φ) as M is varied. Parameter values: β = 0.1, δ = 0.25, qc =
0.5, qh = 0.75, σ = 0.2;Mb = 2.133217589.

Using the above results, we have the following bifurcations of phase portraits of
traveling wave system (1.5):

For the fixed parameter values: δ = 0.18, qc = 0.16, qh = 0.75,M = 2.15, σ =
0.12, by changing the parameter β, we have the following bifurcations of phase
portraits of traveling wave system (1.5):

We see from Fig.2 (c)-(j) that in the left strip neighborhood of the straight line
φ = φm, there exists a family of segments of the periodic orbits of system (1.5),
which is very close to the straight line φ = φm. Along these segments of periodic
orbits, the motions of phase points are fast. In fact, by using the first equation,
for a periodic orbit in the left strip neighborhood of the straight line φ = φm, we
obtain its period

T =

∮
dφ

y(φ)
=

∫ φ+

φ0

dφ

y(φ)
+

∫ φ0

φ−

dφ

y(φ)
+

∫ φ−

φ+

dφ

y(φ)
= T1 + T2 +O(ε), (2.1)

where (φ0, 0) is the left intersection point of the periodic orbit and the φ−axis,
(φ+, y+) and (φ+, y−) are the upper point and lower point of the segment of the
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(a) M = 1.2 (b) 1.3 ≤M < 2.13 (c) M = 2.13

(d) M = 2.130053 (e) 2.130053<M<Mb (f) M = Mb

(g) Mb<M<2.152176 (h) M = 2.152176 (i) 2.152176<M<2.1562

(j) M = 2.1562 (k) 2.1562<M<2.19 (l) M > 2.19

Figure 2. The bifurcations of phase portraits of system (1.5) as M is varied. Parameter values:
β = 0.1, δ = 0.25, qc = 0.5, qh = 0.75, σ = 0.2;Mb = 2.133217589.
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(a) β = βb (b) βk < β < βb (c) β = βk (d) 0 < β < βk

Figure 3. The bifurcations of phase portraits of system (1.5) as β is varied. Parameter values:
δ = 0.18, qc = 0.16, qh = 0.75,M = 2.15, σ = 0.12; βb = 0.1814691367, βk = 0.17199909

periodic orbit near the straight line φ = φm, respectively. Because the φ−coordinate
is almost constant in the segment φ+φ−, dφ ≈ 0, so that the third integral in the
right hand of (2.1) is O(ε).

By the above discussion, we have the following conclusion:

Proposition 2.1. In the left or right strip neighborhood of a straight line φ = φm,
if there exists a family of segments of the periodic orbits of a traveling system, which
is very close to the straight line φ = φm, then this family of periodic orbits give rise
to a periodic peakon family. As a limit orbit of the periodic peakon family, the
homoclinic orbit to an equilibrium point gives rise to a pseudo-peakon solution.

By using the above result, we have the following theorem:

Theorem 2.1. There exists a parameter group (β, δ, σ, qc, qh) of system (1.5), such
that when the parameter M is varied, system (1.5) has the bifurcations of phase por-
traits shown in Fig.2 (a)-(l). Thus, system (1.1) has smooth solitary wave solutions,
periodic wave solutions, periodic peakons, pseudo-peakons, compacton families, as
well as kink and anti-kink wave solutions.

For example, considering the orbits in Fig.2 (g), we have

(i) Corresponding to the two homoclinic orbits of system (1.5) defined byH1(φ, y) =
0, there exist a smooth solitary wave solution (see Fig.4 (b)) and a pseudo-peakon
solution (see Fig.4 (a)) of system (1.1).

(ii) Corresponding to the homoclinic orbit of system (1.5) defined by H1(φ, y) =
h1, there exists a pseudo-peakon solution (see Fig.4 (c)) of system (1.1).

(iii) Corresponding to the family of periodic orbits of system (1.5) defined by
H1(φ, y) = h, h ∈ (0, h1), there exists a family of periodic peakon solutions (see
Fig.4 (d)) of system (1.1).

(iv) Corresponding to the family of periodic orbits of system (1.5) defined by
H1(φ, y) = h, h ∈ (h2, 0), there exists a family of smooth periodic solutions (see
Fig.4 (f)) of system (1.1).

(v) Corresponding to the family of periodic orbits of system (1.5) defined by
H1(φ, y) = h, h ∈ (0, h3), there exists a family of periodic peakon solutions (see
Fig.4 (e)) of system (1.1).

We know from Fig.3 that when β is varied, the following conclusion holds:

Theorem 2.2. There exists a parameter group (M, δ, σ, qc, qh) of system (1.5),
such that when the parameter β is varied, system (1.1) has smooth solitary wave
solutions, periodic wave solutions, compacton families, as well as kink and anti-kink
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(a) Pseudo-peakon (b) Solitary wave (c) Pseudo-peakon

(d) Periodic peakon (e) Periodic peakon (f) Smooth periodic wave

Figure 4. The wave profiles of system (1.5) corresponding to the orbits in Fig.2 (g)

wave solutions.

3. Bifurcations of phase portraits and dynamical
behaviors of solutions of traveling wave system
(1.13)

Now, We consider possible bifurcations of phase portraits of system (1.13). To
investigate the equilibrium points Ej(φj , 0) of system (1.13), we need to discuss
the zeros φj of the function Q2(φ). Clearly, Q2(0) = 0, thus the origin O(0, 0)
is an equilibrium point of system (1.13). Because Q2(φ) depends on the six-
parameter group (α, β1, β2,K1,K2,M), so it is very difficult to find other equi-
librium points of system (1.13) depending on the changes of parameters. We as-
sume that the parameters γ1 and γ2 are rational numbers such that the exponents
β1 > 1 and β2 > 1. Function Q2(φ) is defined in the interval (−β2K2, φd), where
φd = min

(
β1K1,

1
2M

2
)
,K1 > 0,K2 > 0. For a given parameter group, we can use

numerical method to find all zeros of Q2(φ) in (−β2K2, φd).

Let M(φj , 0) be the coefficient matrix of the linearized system of system (1.13)
at an equilibrium point Ej(φj , 0) and J(φj , 0) = detM(φj , 0). We have J(φj , 0) =
−Q′2(φj). Especially,

J(0, 0) =
1

M2
− α

K1

(
1− 1

β1

)
− 1 + α

K2

(
1− 1

β2

)
.
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When M = 1√
α
K1

(
1− 1

β1

)
+ 1+α
K2

(
1− 1

β2

) ≡ Mb, the origin O(0, 0) is a cusp. When

M > Mb (M < Mb), the origin is a saddle point (a center).

Write that h0 = H2(0, 0) = 0, h1 = H2(φ1, 0) where (φ1, 0) is an equilibrium
point of system (1.13) with −β2K2 < φ1 < φd.

For a fixed parameter group (α, β1, β2,K1,K2) = (1.1, 5
2 , 4, 2, 3), by varying the

parameter M , we have the following bifurcations of the phase portraits of system
(1.13):

(a) M = 0.12 (b) 0.12 < M < 0.4995 (c) M = 0.4995

(d) 0.4995 < M < 1.1 (e) M = Mb (f) Mb < M < 2.1

(g) M = 2.1 (h) 2.1 < M < 3.5 (i) M = 3.5

Figure 5. The bifurcations of phase portraits of system (1.13) as M is varied. Parameter values:

α = 1.1, γi = 5/3, γe = 4/3, K1 = 2, K2 = 3; β1 = 5
2 , β2 = 4;Mb = 1.081476141

By the above discussion, we have the following conclusion for system (1.13):

Theorem 3.1. There exists a parameter group (α, β1, β2K1,K2) of system (1.13),
such that when the parameter M is varied, system (1.13) has the bifurcations of
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phase portraits shown in Fig.5 (a)-(i). Thus, system (1.8) has smooth solitary wave
solutions, periodic wave solutions, periodic peakons, pseudo-peakons and compacton
families.

For example, considering the orbits in Fig.5, we have
(i) Corresponding to the two homoclinic orbits of system (1.13) defined by

H2(φ, y) = h1 and H2(φ, y) = 0 in Fig.5 (d) and Fig.5 (f), respectively, there
exist two smooth solitary wave solutions of system (1.8) (see Fig.6 (a)).

(ii) Corresponding to the two families of periodic orbits of system (1.13) defined
by H2(φ, y) = h, h ∈ (h2, 0) in Fig.5 (d) and Fig.5 (f), there exist two families of
smooth periodic solutions of system (1.8) (see Fig.6 (b)).

(iii) Corresponding to the two homoclinic orbits of system (1.13) defined by
H2(φ, y) = h1 and H2(φ, y) = 0 in Fig.5 (c) and Fig.5 (g), respectively, there exists
a pseudo-peakon solution of system (1.8) (see Fig.6 (c)).

(iv) Corresponding to the two families of periodic orbits of system (1.13) defined
by H2(φ, y) = h, h ∈ (0, h1) in Fig.5 (c) and Fig.5 (g), there exist two families of
periodic peakon solutions of system (1.8)(see Fig.6 (d)).

(v) Corresponding to the family of orbits of system (1.5) defined by H2(φ, y) =
h, h ∈ (0, h3), intersecting transversely the straight line φ = φd, there exists a family
of compacton solutions of system (1.8) (see Fig.6 (e)).

(a) (b) (c) (d) (e)

Figure 6. The different wave profiles of system (1.13)

4. Bifurcations of phase portraits and dynamical
behaviors of solutions of traveling wave system
(1.21)

In this section, we consider possible bifurcations of phase portraits of system (1.21).
To investigate the equilibrium points Ej(ψj , 0) of system (1.21), we need to discuss
the zeros ψj of the function Q3(ψ). Clearly, Q3(0) = 0, thus the origin O(0, 0) is an
equilibrium point of system (1.21). The functionQ3(ψ) depending on five-parameter
group (αp, γ, v0, p,M) is very complicated. It is very difficult to find all equilibrium
points of system (1.21) depending on the changes of parameters. We notice that
when 0 < p < 1 and αp > 0, function ni(ψ) has an unique negative zero ψ = ψmul.
Therefore, the function Q3(ψ) has a multiple zero ψ = ψmul, i.e., Em(ψmul, 0) is a
high-order equilibrium point of system (1.21). For a given parameter group, we can
use numerical method to find the zeros of Q3(ψ) in ψ−axis.

Let M(ψj , 0) be the coefficient matrix of the linearized system of system (1.21)
at an equilibrium point Ej(ψj , 0) and J(ψj , 0) = detM(ψj , 0). We have J(ψj , 0) =
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−Q′3(ψj) = S′′3 (ψj). Specially,

J(0, 0) = S′′3 (0) =
M2(M2

d −M2
0 )

M2
d (M2

d −M2
1 )
, M2

1 =
p

1 + αp(1− p)
, M2

0 = γ2M2
1 .

It implies that when M0 < Md < M1, i.e.,

Mcusp ≡ γ
(
v0 +

√
p

1 + αp(1− p)

)
< M <

(
γv0 +

√
p

1 + αp(1− p)

)
≡Minf ,

J(0, 0) < 0, the origin O(0, 0) is a saddle point. When Md = M0, i.e., M =
Mcusp, J(0, 0) = 0, the origin O(0, 0) is a cusp. When Md = M1, i.e., M = Minf ,
for the function D(ψ) = n3

i (ψ) − p2M2
dn
′
i(ψ), we have D(0) = 0, i.e., ψs = 0 and

limψ→0Q3(ψ) = −∞. We do not consider this case.

Write that hj = H3(ψj , 0), where (ψj , 0) is an equilibrium point of system (1.21).
Especially, we see from (1.22) and (1.23) that h0 = H3(0, 0) = H3(ψmul, 0) = 0 =
hmul.

For the fixed parameter group (αp, γ, p, v0) = (0.1, 0.7071, 0.75, 0.2) given by [13],
by varying the parameter M , we have the following graphs of function Q3(ψ):

(a) 0 < M < 0.675 (b) M = 0.675 (c) 0.675 < M < Mcusp

(d) M = Mcusp (e) Mcusp < M < Minf (f) M > Minf

Figure 7. The graphs of function Q3(ψ) of system (1.21) as M is varied

We know that

(1) When 0 < M < 0.675, system (1.21) has four equilibrium points E1(ψ1, 0),
E2(ψ2, 0), E3(ψmul, 0) and O(0, 0) with ψ1 < ψ2 < ψmul < ψs < 0 < ψ4.

(2) When 0.675 < M < Mcusp, system (1.21) have six equilibrium points
E1(ψ1, 0), E2(ψ2, 0), E3(ψmul, 0), E4(ψ4, 0), E5(ψ5, 0) and O(0, 0) with ψ1 < ψ2 <
ψmul < ψ4 < ψs < ψ5 < 0.
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(3) When Mcusp < M < Minf , system (1.21) have six equilibrium points
E1(ψ1, 0), E2(ψ2, 0), E3(ψmul, 0), E4(ψ4, 0), O(0, 0) and E5(ψ5, 0) with ψ1 < ψ2 <
ψmul < ψ4 < ψs < 0 < ψ5.

(4) When M > Minf , system (1.21) have six equilibrium points E1(ψ1, 0),
E2(ψ2, 0), E3(ψmul, 0), E4(ψ4, 0), O(0, 0) and E5(ψ5, 0) with ψ1 < ψ2 < ψmul <
ψ4 < 0 < ψs < ψ5.

Under the above parameter condition, by varying the parameter M , we have the
following bifurcations of phase portraits of traveling wave system (1.21)(the figures
(a1)− (f1) in Fig.8 are large figures, the figures (a2)− (f2) are the figures near the
singular line ψ = ψs and the origin O(0, 0)):

To sum up, from the above discussion, we have the following conclusion:

Theorem 4.1. Assume that 0 < p < 1. There exists a parameter group (αp, γ, v0, p)
of system (1.21), such that when the parameter M is varied, system (1.21) has the
bifurcations of phase portraits shown in Fig.8 (a)-(f). Therefore, these phase orbits
can give rise to smooth solitary wave solutions, periodic wave solutions, periodic
peakons, pseudo-peakons and compacton families of system (1.14).

Specially, for any M ∈ (0,∞),M 6= Minf , corresponding to the homoclinic
orbit defined by H3(ψ, y) = h1, there exists a smooth solitary wave solution with
lager amplitude. Corresponding the the periodic orbit family defined by H3(ψ, y) =
h, h ∈ (h2, h1), enclosing the equilibrium point E1(ψ1, 0), there exists a family of
smooth periodic wave solutions of system (1.14).

For two examples, we consider two phase portraits Fig.8 (a) and Fig.8 (f), and
have the following two conclusions:

Theorem 4.2. Assume that 0 < p < 1. In this case, system (1.21) has the phase
portrait Fig.8 (a) and h1 < h0 = 0 = hmul < h2 <∞, then we have

(1) Corresponding to the family of periodic orbits defined by H3(ψ, y) = h, h ∈
(h1, h2), enclosing the equilibrium point E1(ψ1, 0), system (1.14) has a family of
smooth periodic wave solutions (see Fig.9 (a)).

(2) Corresponding to the two homoclinic orbits to equilibrium point E2(ψ2, 0) de-
fined by H3(ψ, y) = h2, enclosing the equilibrium points E1(ψ1, 0) and Emul(ψmul, 0),
respectively, system (1.14) has a smooth solitay wave solution (see Fig.9 (b)) and a
pseudo-peakon solution (see Fig.9 (c)).

(3) Corresponding to the periodic orbit family defined by H3(ψ, y) = h, h ∈
(hmul, h2), enclosing equilibrium point Emul(ψmul, 0), system (1.14) has a family of
periodic peakon solutions (see Fig.9 (e)).

(4) Corresponding to the family of periodic orbits defined by H3(ψ, y) = h, h ∈
(h2, hm1), enclosing three equilibrium points E1(ψ1, 0), E2(ψ2, 0) and Emul(ψmul, 0),
system (1.14) has a family of large periodic peakon solutions (see Fig.9 (f)), where
hm1 > h2 is a large number.

(5) Corresponding to the family of periodic orbits defined by H3(ψ, y) = h, h ∈
(0, hm2), enclosing the equilibrium point O(0, 0), system (1.14) has a family of pe-
riodic peakon solutions (see Fig.9 (g)), where hm2 > 0 is a large number.

(6) Corresponding to the two families of open orbits defined by H3(ψ, y) = h, h ∈
(hm1,∞) and h ∈ (hm2,∞), respectively, transversely intersecting the singular s-
traight line ψ = ψs, system (1.14) has two families of compacton solutions (see
Fig.9 (d), (h)).
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(a1) 0 < M < 0.675 (b1) M = 0.675 (c1) 0.675 < M < Mcusp

(a2) 0 < M < 0.675 (b2) M = 0.675 (c2) 0.675 < M < Mcusp

(d1) M = Mcusp (e1) Mcusp < M < Minf (f1) M > Minf

(d2) M = Mcus (e2) Mcus < M < Minf (f2) M > Minf

Figure 8. The bifurcations of phase portraits of system (1.21) as M is varied. Parameter values:

αp=0.1, γ=cos π4 , p=0.75, v0 =0.2. In this case, Mcusp=0.7462797351, Minf =0.9968202790.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. The wave profiles of system (1.14) corresponding to the orbits in Fig.8 (a)

Theorem 4.3. Assume that 0 < p < 1 and system (1.21) has the phase portrait
Fig.8 (f). In this case, there exists six equilibrium points. We have h1 < h0 = 0 =
hmul < h4 < h5 < h2 <∞. Then,

(1) Corresponding to the periodic orbit family defined by H3(ψ, y) = h, h ∈
(h1, h2), enclosing the equilibrium point E1(ψ1, 0), system (1.14) has a family of
smooth periodic wave solutions (see Fig.10 (a)).

(2) Corresponding to the two lager homoclinic orbit loops to the equilibrium point
(E2(ψ2, 0) defined by H3(ψ, y) = h2, enclosing the equilibrium points (E1(ψ1, 0) and
three equilibrium points Emul(ψmul, 0), E4(ψ4, 0), O(0, 0), respectively, system (1.14)
has a smooth solitay wave solution (see Fig.10 (b)) and a pseudo-peakon solution
(see Fig.10 (c)).

(3) Corresponding to the periodic orbit family defined by H3(ψ, y) = h, h ∈
(h2, hm1), enclosing five equilibrium points E1(ψ1, 0), E2(ψ2, 0), Emul(ψmul, 0), O(0, 0)
and E4(ψ4, 0), system (1.14) has a family of large periodic peakon solutions (see
Fig.10 (d)), where hm1 > h2 is a large number.

(4) Corresponding to the two homoclinic orbits to the equilibrium point (E4(ψ4, 0)
defined by H3(ψ, y) = h4,, enclosing the equilibrium points Emul(ψmul, 0) and the
origin O(0, 0), respectively, system (1.14) has a smooth solitary wave solution (see
Fig.10 (f)) and a pseudo-peakon solutions (see Fig.10 (g)).

(5) Corresponding to the periodic orbit family defined by H3(ψ, y) = h, h ∈
(h4, h2), enclosing three equilibrium points Emul(ψmul, 0), E4(ψ4, 0) and O(0, 0),
system (1.14) has a family of periodic peakon solutions (see Fig.10 (e)), where
hm1 > h2 is a large number.

(6) Corresponding to the periodic orbit family defined by H3(ψ, y) = h, h ∈
(h5, hm2), enclosing the equilibrium point O(0, 0), system (1.14) has a family of
periodic peakon solutions (see Fig.10 (h)), where hm2 > 0 is a large number.

(7) Corresponding to two open orbit families defined by H3(ψ, y) = h, h ∈
(hm1,∞) and h ∈ (hm2,∞), respectively, transversely intersecting the singular s-
traight line ψ = ψs, system (1.14) has two families of compacton solutions.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. The wave profiles of system (1.14) corresponding to the orbits in Fig.8 (f)

Similarly, considering other phase portraits in Fig.8, we can give corresponding
results about the existence of various traveling wave solutions.
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