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Abstract The aim of this paper is to analyze the asymptotic stability of
Runge-Kutta (RK) methods for neutral systems with distributed delays. With
an adaptation of the argument principle, some sufficient criteria for weak delay-
dependent stability of numerical solutions are proposed. Several numerical
examples are performed to confirm the effectiveness of our theoretical results.
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1. Introduction

Neutral delay-integro-differential equations (NDIDEs) have widely arisen in many
scientific and technological fields, such as economics, biology, medicine, physics, en-
gineering, control theory and so on (see, e.g., [8,15,17]). In the last several decades,
the stability analysis of numerical methods for delay integro-differential equations
(DIDEs) and neutral delay differential equations (NDDEs) has been investigated
intensively by lots of researchers and a large number of results have been acquired
(see, e.g., [1,2,11,16,18,22]). However, only a few results have been obtained as for
the case of NDIDEs. Moreover, most of the results having no relationship with de-
lays are referred to as delay-independent stability, others containing information on
delays are called delay-dependent. As declared in [2, 9, 14, 21, 25], delay-dependent
stability of numerical methods for delay differential systems is difficult to handle.
One of the reasons is that the region of delay-independent stability is only a subset
of the delay-dependent stability, and the latter gives a more complete description of
the asymptotic behavior of numerical methods. Furthermore, it is proved in [2, 20]
that no A-stable natural RK methods for a system of delay differential equations
(DDEs) is D-stable. That is, almost all the standard RK methods are not available
in the sense of the D-stability. It indicates that the definition of D-stability is too
rigid.

To avoid the shortage of D-stability of the RK methods for DDEs, more recently,
Hu and Mitsui [13] introduced a new definition of delay-dependent stability for
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numerical methods called weak delay-dependent stability. In particular, the weak
delay-dependent stability only requires the difference system yielded by a numerical
method is asymptotically stable with a certain integer m giving in the step-size
h = τ/m. Based on this novel definition, some new sufficient conditions of delay-
dependent stability of RK and linear mutistep (LM) methods for DDEs with neutral
type are derived, respectively.

Stimulated by the work of [13] , in this paper, we deal with the weak delay-
dependent stability of Pouzet-type Runge-Kutta (PRK) methods for the neutral
systems with distributed delays described by

ẋ(t) = Lx(t) +Mx(t− τ) +Nẋ(t− τ)

+

∫ 0

−τ
K(s)x(t+ s)ds+

∫ 0

−τ
R(s)ẋ(t+ s)ds, t > 0,

x(t) = ϕ(t), − τ ≤ t ≤ 0

(1.1)

with the condition

‖N‖+

∫ 0

−τ
‖R(s)‖ds ≤ α < 1, (1.2)

where x(t) ∈ Rd, parameter matrices L,M,N,K(s), R(s) ∈ Rd×d and the constant
delay τ > 0. Here ϕ is a given C1-function, the elements kij(s) of the matrix K(s)
and the elements rij(s) of the matrix R(s) are continuous on [−τ, 0], respectively.
Some sufficient criteria of weak delay-dependent stability for PRK methods will be
obtained.

Notice that ẋ(t) appears in the integral term on the right hand side of (1.1),
which contains information of the solution on the interval [t − τ, t]. It is worth
pointing that Hu [12] derived asymptotic stability criteria, which are necessary and
sufficient for analytical solutions of the neutral systems. Brunner [5] investigated
the attainable order of local superconvergence of continuous Volterra-Runge-Kutta
methods for the initial value problem of a class of neutral Volterra delay integro-
differential equations. Then, Enright and Hu [7] studied convergence of explicit and
implicit continuous-Runge-Kutta methods. Zhang and Qin [24] further introduced
a type of mixed RK by combining the underlying RK methods and the compound
quadrature rules for a class of nonlinear functional-integro-differential equations and
derived a global stability criterion. Nevertheless, few investigation has been devoted
to the delay-dependent stability of the corresponding numerical discretization for
the neutral system (1.1).

The organization of the present paper is as follows. Several definitions and
lemmas are reviewed in Section 2, which are crucial in the derivation of the sta-
bility results given in Section 3. In Section 3, some new sufficient criteria of weak
delay-dependent stability for PRK methods are formulated. Numerical examples in
Section 4 are provided to validate the effectiveness of the theoretical results, and
some conclusions are presented.

2. Preliminaries

In this section, we recall several definitions and lemmas, which are available to prove
the main results of the paper.
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Throughout this paper, Id stands for identity matrix with d-dimensions, ‖F‖ is
2-norm of the matrix F . λi(F ) denotes the ith eigenvalue of F . Res and Ims mean
the real part and the imaginary part of a complex s. Furthermore, the open left
half-plane {s : Res < 0} is denoted by C− and the right half-plane {s : Res ≥ 0}
by C+. The symbols ⊗ and ◦ stand for the Kronecker product and the Hadamard
product, respectively.

The following well-known argument principle plays a major part in this paper.

Lemma 2.1 ( [3]). Suppose that

(i) a function P (s) is meromorphic in the domain interior to a positively oriented
simple closed contour l;

(ii) P (s) is analytic and nonzero on l;

(iii) counting multiplicities, Z is the number of zeros and Y is the number of poles
of P (s) inside l.

Then
1

2π
∆l argP (s) = Z − Y,

where ∆l argP (s) means the change of the argument of P (s) along l.

Definition 2.1 ( [10]). For two matrices A and B with same dimension, the
Hadamard product is a matrix of the same dimension as the operands, with el-
ements given by

(A ◦B)i,j = (A)i,j(B)i,j .

Definition 2.2 ( [10]). If A is an m× n matrix and B is a p× q matrix, then the
Kronecker procuct A⊗B is the mp× nq matrix:

A⊗B =


a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
...

...

am1B am2B . . . amnB

 .

It is known that the asymptotic stability of the system (1.1) is decided directly
by the location of the roots of its characteristic equation

P (λ) = det[λI − L−Me−τλ −
∫ 0

−τ
K(s)esλds− λNe−τλ − λ

∫ 0

−τ
R(s)esλds] = 0.

(2.1)
The system (1.1) satisfying (1.2) is asymptotically stable if the characteristic equa-
tion (2.1) has no roots in the right half-plane C+ [15].

On the contrary, if there exist characteristic roots satisfying Reλ ≥ 0, then they
are located in a bounded semi-circular region. It is stated in the following Lemma,
which is a special case of the conclusion in the literature [12].

Lemma 2.2 ( [12]). Suppose that condition (1.2) holds. Let λ be an unstable
characteristic root of equation (2.1), then

|λ| ≤ γ :=
β

1− α
,
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where β = ‖L‖ + ‖M‖ + τ‖K̃‖. Furthermore, K̃ is a nonnegative constant matrix

assumed to satisfy |K(s)| ≤ K̃, i.e., kij(s) and k̃ij, which are the entries of matrix

K(s), K̃, such that |kij(s)| ≤ k̃ij for all s ∈ [−τ, 0], i, j = 1, 2, . . . , d.

Remark 2.1. By Lemma 2.2, we obtain that there exists a bounded semi-circular
region in the right half complex plane C+ which includes all the unstable charac-
teristic roots of (2.1). We denote this semi-circular region as

D = {λ : |λ| ≤ γ and Reλ ≥ 0}

and the boundary of D as Γ.

Remark 2.2. In fact, in the practical computation in Section 4, we can choose
α = ‖N‖ + τ‖R̃‖, where the matrix R̃ has the similar meaning with K̃ in Lemma
2.2.

We proceed to utilize the asymptotic stability criteria established by Hu [12] for
further work.

Lemma 2.3 ( [12]). The system (1.1) satisfying (1.2) is asymptotically stable if
and only if

P (s) 6= 0, s ∈ Γ

and
4Γ argP (s) = 0,

where 4Γ argP (s) denotes the change of the argument of P (s) along the closed
semi-circumference Γ, and Γ is defined in Remark 2.1.

3. Delay-dependent stability of Runge-Kutta meth-
ods

In this section, we are concerned with the delay-dependent stability of PRK methods
(cf. Brunner, van der Houwen [4]). By means of the argument principle, sufficient
conditions of the delay-dependent stability for the system (1.1) satisfying (1.2) are
obtained.

Considering the initial value problem of ordinary differential equations (ODEs)

ẏ(t) = f(t, y(t)), f : I ×Rn → Rn (I = [t0, T ]), (3.1)

an s-stage Runge-Kutta method for ODEs (3.1) is defined (e.g., [19]) by

yn+1 = yn + h

s∑
i=1

biki (3.2a)

with

ki = f(tn + cih, yn + h

s∑
j=1

aijkj) (i = 1, 2, . . . , s). (3.2b)

We shall always assume that the following condition (the row-sum condition)
holds:

ci =

s∑
j=1

aij(i = 1, 2, . . . , s),
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where aij , bi, ci(1 ≤ i, j ≤ s) are referred to as the parameters of an s-stage RK
method (3.2) and ci are supposed to satisfy 0 ≤ ci ≤ 1. Let tn = nh, n ∈ Z, denote
step points with a stepsize h = τ/m (m ∈ N).

Now we extend the PRK methods to the system (1.1), which is first introduced
by Zhang [23] to discuss numerical stability of a class of nonlinear functional integro-
differential equations. For simplicity, we try to find a solution of (1.1) on the interval
0 ≤ t ≤ τN for some integer N . And we acquire the following numerical scheme:
for 1 ≤ i ≤ s,

Xn,i−NXn−m,i−Zn,i = xn−Nxn−m− zn + h

s∑
j=1

aij(LXn,j +MXn−m,j +Gn,j),

(3.3)

Zn,i = h

s∑
j=1

aijR(tn + cjh− (tn + cih))Xn,j

+h

m∑
k=1

s∑
j=1

bjR(tn−k + cjh− (tn + cih))Xn−k,j

−h
s∑
j=1

aijR(tn−m + cjh− (tn + cih))Xn−m,j , (3.4)

Gn,i = h

s∑
j=1

aijK(tn + cjh− (tn + cih))Xn,j

+h

m∑
k=1

s∑
j=1

bjK(tn−k + cjh− (tn + cih))Xn−k,j

−h
s∑
j=1

aijK(tn−m + cjh− (tn + cih))Xn−m,j , (3.5)

xn+1−Nxn+1−m− zn+1 = xn−Nxn−m− zn + h

s∑
i=1

bi(LXn,i +MXn−m,i +Gn,i),

(3.6)
and

zn+1 = h

m∑
k=1

s∑
j=1

bjR(tn+1−k + cjh− tn+1)Xn+1−k,j , n = 0, 1, . . . ,mN − 1, (3.7)

where xn, zn, Xn,i, Zn,i are approximations to x(tn), z(tn), x(tn + cih), z(tn + cih),
respectively, and z(t) denotes the memory term

z(t) :=

∫ t

t−τ
R(s− t)x(s)ds.

Among the numerical scheme (3.3)–(3.7), the integral approximations zn, Zn,i and
Gn,i are generated by Pouzet quadrature rules. We describe them in detail: each
Zn,i gives an approximate value of the integral∫ tn+cih

tn+cih−τ
R(s− (tn + cih))x(s)ds =

∫ tn+cih

tn

R(s− (tn + cih))x(s)ds
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+

∫ tn

tn−m

R(s− (tn + cih))x(s)ds−
∫ tn−m+cih

tn−m

R(s− (tn + cih))x(s)ds.

Similarly, Gn,i gives an approximate value of the integral∫ tn+cih

tn+cih−τ
K(s− (tn + cih))x(s)ds =

∫ tn+cih

tn

K(s− (tn + cih))x(s)ds

+

∫ tn

tn−m

K(s− (tn + cih))x(s)ds−
∫ tn−m+cih

tn−m

K(s− (tn + cih))x(s)ds.

In order to simplify the notation and presentation, let

Rj−i−k := R(tn−k + cjh− (tn + cih)),

Kj−i−k := K(tn−k + cjh− (tn + cih)),

and

rj−k := R(tn+1−k + cjh− tn+1).

Therefore Zn,i and Gn,i are presented with a simple form:

Zn,i = h

s∑
j=1

aijRj−iXn,j + h

m∑
k=1

s∑
j=1

bjRj−i−kXn−k,j − h
s∑
j=1

aijRj−i−mXn−m,j ,

(3.8)

Gn,i = h

s∑
j=1

aijKj−iXn,j + h

m∑
k=1

s∑
j=1

bjKj−i−kXn−k,j − h
s∑
j=1

aijKj−i−mXn−m,j .

(3.9)

Moreover, an initial condition is supposed to satisfy

Xn,i = ϕ(tn + cih), −m ≤ n ≤ −1, x0 = ϕ(t0).

Now, we present the definition of weak delay-dependent stability of numerical
methods for the system (1.1), which was first introduced by Hu and Mitsui [13].

Definition 3.1 ( [13]). Suppose that the system (1.1) is asymptotically stable for
given matrices L,M,N,K(s), R(s) and a fixed delay τ . A numerical method is
called weakly delay-dependently stable for the system (1.1) if there exists a positive
integer m such that the the numerical solution xn with step-size h = τ/m satisfies

lim
n→∞

xn = 0

for any initial function.

Next we investigate the stability of the numerical solution of PRK methods in
the context of the weak delay-dependent stability.

Lemma 3.1. The characteristic polynomial of the PRK method (3.3)–(3.7) is given
by

PPRK(λ) = det Φ(λ), (3.10)
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where Φ(λ) represents the matrix:

{


Isd − h(A⊗ L) −Isd −h(A⊗ Id) 0 0

−h(A⊗ Id) ◦R0 Isd 0 0 0

−h(A⊗ Id) ◦K0 0 Isd 0 0

−h(bT ⊗ L) 0 −h(bT ⊗ Id) Id −Id
(bT ⊗ Id) ◦ R̃(1) 0 0 0 Id


λm+1

+



0 0 0 −e⊗ Id e⊗ Id
−h(bT ⊗ e⊗ Id) ◦R1 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦K1 0 0 0 0

0 0 0 −Id Id

(bT ⊗ Id) ◦ R̃(2) 0 0 0 0


λm

+



0 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦R2 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦K2 0 0 0 0

0 0 0 0 0

(bT ⊗ Id) ◦ R̃(3) 0 0 0 0


λm−1 + . . .

+



0 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦Rm−1 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦Km−1 0 0 0 0

0 0 0 0 0

(bT ⊗ Id) ◦ R̃(m) 0 0 0 0


λ2

+



−h(A⊗M)− Is ⊗N 0 0 0 0

h[A⊗ Id) ◦Rm − (bT ⊗ e⊗ Id) ◦Rm] 0 0 0 0

h[A⊗ Id) ◦Km − (bT ⊗ e⊗ Id) ◦Km] 0 0 0 0

−h(bT ⊗M) 0 0 −N 0

0 0 0 0 0


λ

+



0 0 0 e⊗N 0

0 0 0 0 0

0 0 0 0 0

0 0 0 N 0

0 0 0 0 0


}
,
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where the s-dimensional vectors e = (1, 1, . . . , 1)T ,b = (b1, b2, . . . , bs)
T , s-dimensional

matrix A is denoted by A := (aij), Id Ki, Ri and R̃ respectively stand for d-
dimensional, (ds)-dimensional ,(ds)-dimensional and d×ds matrices for i = 1, 2, . . . ,m,

Ki =


K1−1−i K2−1−i . . . Ks−1−i

K1−2−i K2−2−i . . . Ks−2−i
...

...
. . .

...

K1−s−i K2−s−i . . . Ks−s−i

 ,

Ri =


R1−1−i R2−1−i . . . Rs−1−i

R1−2−i R2−2−i . . . Rs−2−i
...

...
. . .

...

R1−s−i R2−s−i . . . Rs−s−i

 ,

Id =


1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

 ,

R̃(i) = (r1−i, r2−i, . . . , rs−i).

Proof. By means of the Kronecker product and the Hadamard product, the dif-
ference system (3.3)–(3.7) can be equivalently rewritten as:



Isd − h(A⊗ L) −Isd −h(A⊗ Id) 0 0

−h(A⊗ Id) ◦R0 Isd 0 0 0

−h(A⊗ Id) ◦K0 0 Isd 0 0

−h(bT ⊗ L) 0 −h(bT ⊗ Id) Id −Id
(bT ⊗ Id) ◦ R̃(1) 0 0 0 Id





Xn

Zn

Gn

xn+1

zn+1



+



0 0 0 −e⊗ Id e⊗ Id
−h(bT ⊗ e⊗ Id) ◦R1 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦K1 0 0 0 0

0 0 0 −Id Id

(bT ⊗ Id) ◦ R̃(2) 0 0 0 0





Xn−1

Zn−1

Gn−1

xn

zn


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+



0 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦R2 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦K2 0 0 0 0

0 0 0 0 0

(bT ⊗ Id) ◦ R̃(3) 0 0 0 0





Xn−2

Zn−2

Gn−2

xn−1

zn−1



+ . . .+



0 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦Rm−1 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦Km−1 0 0 0 0

0 0 0 0 0

(bT ⊗ Id) ◦ R̃(m) 0 0 0 0





Xn−m+1

Zn−m+1

Gn−m+1

xn−m+2

zn−m+2



+



−h(A⊗M)− Is ⊗N 0 0 0 0

h[A⊗ Id) ◦Rm − (bT ⊗ e⊗ Id) ◦Rm] 0 0 0 0

h[A⊗ Id) ◦Km − (bT ⊗ e⊗ Id) ◦Km] 0 0 0 0

−h(bT ⊗M) 0 0 −N 0

0 0 0 0 0





Xn−m

Zn−m

Gn−m

xn−m+1

zn−m+1



+



0 0 0 e⊗N 0

0 0 0 0 0

0 0 0 0 0

0 0 0 N 0

0 0 0 0 0





Xn−m−1

Zn−m−1

Gn−m−1

xn−m

zn−m


= 0, (3.11)

where the (ds)-dimensional vectors Xn, Zn, Gn stand for

Xn = [XT
n,1, X

T
n,2, . . . , X

T
n,s]

T ,

Zn = [ZTn,1, Z
T
n,2, . . . , Z

T
n,s]

T ,

Gn = [GTn,1, G
T
n,2, . . . , G

T
n,s]

T .

Therefore, the dimension of the vector



Xn

Zn

Gn

xn+1

zn+1


becomes d(3s+ 2).
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Using the Z-transform to (3.11) and introducing as Z





Xn−m−1

Zn−m−1

Gn−m−1

xn−m

zn−m




= V (λ),

we acquire

{


Isd − h(A⊗ L) −Isd −h(A⊗ Id) 0 0

−h(A⊗ Id) ◦R0 Isd 0 0 0

−h(A⊗ Id) ◦K0 0 Isd 0 0

−h(bT ⊗ L) 0 −h(bT ⊗ Id) Id −Id
(bT ⊗ Id) ◦ R̃(1) 0 0 0 Id


λm+1

+



0 0 0 −e⊗ Id e⊗ Id
−h(bT ⊗ e⊗ Id) ◦R1 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦K1 0 0 0 0

0 0 0 −Id Id

(bT ⊗ Id) ◦ R̃(2) 0 0 0 0


λm

+



0 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦R2 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦K2 0 0 0 0

0 0 0 0 0

(bT ⊗ Id) ◦ R̃(3) 0 0 0 0


λm−1 + . . .

+



0 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦Rm−1 0 0 0 0

−h(bT ⊗ e⊗ Id) ◦Km−1 0 0 0 0

0 0 0 0 0

(bT ⊗ Id) ◦ R̃(m) 0 0 0 0


λ2

+



−h(A⊗M)− Is ⊗N 0 0 0 0

h[A⊗ Id) ◦Rm − (bT ⊗ e⊗ Id) ◦Rm] 0 0 0 0

h[A⊗ Id) ◦Km − (bT ⊗ e⊗ Id) ◦Km] 0 0 0 0

−h(bT ⊗M) 0 0 −N 0

0 0 0 0 0


λ
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+



0 0 0 e⊗N 0

0 0 0 0 0

0 0 0 0 0

0 0 0 N 0

0 0 0 0 0


}
V (λ) = 0.

Whence, we get the characteristic polynomial (3.10) of the difference system
(3.3)–(3.7). This completes the proof.

For an explicit PRK method, i.e. aij = 0 for i ≤ j, we have the following result.

Theorem 3.1. For an s-stage explicit PRK method with the step-size h = τ/m,
where m is a positive integer. If
(H1) the system (1.1) satisfying (1.2) is asymptotically stable for known matrices
L,M,N,K(s), R(s) and a fixed delay τ (that is, the conditions of Lemma 2.3 hold);
(H2) the characteristic polynomial PPRK(λ) never vanishes on the unit circle µ =
{λ : |λ| = 1} and its change of argument admits

1

2π
∆µ argPPRK(λ) = d(m+ 1)(3s+ 2). (3.12)

Then the PRK method for the system (1.1) satisfying (1.2) is weakly delay-dependently
stable.

Proof. It is well known that the difference system (3.11) is asymptotically stable
if and only if all the characteristic roots of PPRK(λ) = 0 satisfy |λ| < 1. Note that
the coefficient matrix of the term λm+1 in Φ(λ) is

Isd − h(A⊗ L) −Isd −h(A⊗ Id) 0 0

−h(A⊗ Id) ◦R0 Isd 0 0 0

−h(A⊗ Id) ◦K0 0 Isd 0 0

−h(bT ⊗ L) 0 −h(bT ⊗ Id) Id −Id
(bT ⊗ Id) ◦ R̃(1) 0 0 0 Id


.

In order to investigate the singularity of the coefficient matrix of the term λm+1

in Φ(λ), we perform the elementary row transformation. Then, the coefficient ma-
trix of the term λm+1 is converted to a lower triangular matrix:

Isd Isd h(A⊗ Id) 0 0

0 Isd 0 0 0

0 0 Isd 0 0

0 0 0 Id Id

0 0 0 0 Id





Isd − h(A⊗ L) −Isd −h(A⊗ Id) 0 0

−h(A⊗ Id) ◦R0 Isd 0 0 0

−h(A⊗ Id) ◦K0 0 Isd 0 0

−h(bT ⊗ L) 0 −h(bT ⊗ Id) Id −Id
(bT ⊗ Id) ◦ R̃(1) 0 0 0 Id





Delay-dependent stability of Runge-Kutta methods. . . 1043

=



Q 0 0 0 0

−h(A⊗ Id) ◦R0 Isd 0 0 0

−h(A⊗ Id) ◦K0 0 Isd 0 0

−h(bT ⊗ L) + (bT ⊗ Id) ◦ R̃(1) 0 −h(bT ⊗ Id) Id 0

(bT ⊗ Id) ◦ R̃(1) 0 0 0 Id


, (3.13)

where the matrix Q is expressed as Isd−h(A⊗L)−h(A⊗Id)◦R0−h2(A⊗Id)[(A⊗
Id) ◦K0].

Since the PRK method is explicit, i.e., A is a lower triangular matrix where all
diagonal elements are zero, then A ⊗ L, (A ⊗ Id) ◦ R0, A ⊗ Id, (A ⊗ Id) ◦ K0 are
all lower triangular matrices in which all diagonal elements are zero. It follows that
h(A ⊗ L) + h(A ⊗ Id) ◦ R0 + h2(A ⊗ Id)[(A ⊗ Id) ◦ K0] is also a lower triangular
matrix whose diagonal elements are zero, which implies that all the eigenvalues of
matrix h(A⊗ L) + h(A⊗ Id) ◦R0 + h2(A⊗ Id)[(A⊗ Id) ◦K0] vanish. As a result,
the matrix Q is nonsingular. Thus the lower triangular matrix

Q 0 0 0 0

−h(A⊗ Id) ◦R0 Isd 0 0 0

−h(A⊗ Id) ◦K0 0 Isd 0 0

−h(bT ⊗ L) + (bT ⊗ Id) ◦ R̃(1) 0 −h(bT ⊗ Id) Id 0

(bT ⊗ Id) ◦ R̃(1) 0 0 0 Id


is nonsingular.

It is obvious that the coefficient matrix of the term λm+1 in Φ(λ) has the same
singularity with the right side of equality (3.13). Therefore the coefficient matrix of
the term λm+1 in Φ(λ) is also nonsingular. Counting multiplicities, we know that
PPRK(λ) = det Φ(λ) = 0 has d(m+1)(3s+2) roots in total. By condition (H2) and
the argument principle again, we get that all roots of PPRK(λ) = 0 are located in
the open unit circular region µ = {λ : |λ| = 1}. Hence, the PRK method (3.3)–(3.7)
is weakly delay-dependently stable. This completes the proof.

As for an s-stage implicit PRK for the system (1.1) satisfying (1.2), it is not
difficult to derive an analogous result.

Theorem 3.2. For an implicit PRK method of s-stage with the step-size h = τ/m,
where m is a positive integer. Assume that
(H3) the conditions in Theorem 3.1 hold;
(H4) the eigenvalue λi of matrix h(A⊗L)+h(A⊗Id)◦R0 +h2(A⊗Id)[(A⊗Id)◦K0]
never equal to unity for all i(1 ≤ i ≤ sd).
Then the PRK method for the system (1.1) satisfying (1.2) is weakly delay-dependently
stable.

Proof. Along the line of the proof of Theorem 3.1, the coefficient matrix of the
term λm+1 in Φ(λ) can be converted to a lower triangular matrix with the ele-
mentary row transformation as (3.13). It follows from the condition (H4) that the
matrix Q is nonsingular. Therefore, the coefficient matrix of the term λm in Φ(λ) is
also nonsingular due to the property of the row elementary transformation. Hence,
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the degree of the polynomial PPRK(λ) = det Φ(λ) becomes d(m+ 1)(3s+ 2). Then
similar to the proof of the Theorem 3.1, the PRK method for the system (1.1) satis-
fying condition (1.2) is weakly delay-dependently stable. This completes the proof.

Remark 3.1. When a semi-implicit PRK method, in which aij = 0, as i < j and
aij 6= 0 for i = j, Theorem 3.2 is applied to the system (1.1) satisfying (1.2). Since
matrix A is lower triangular, then h(A⊗L)+h(A⊗Id)◦R0+h2(A⊗Id)[(A⊗Id)◦K0]
is a block lower triangular matrix whose diagonal elements are haiiL+haiiIdR(0)+
h2a2

iiIdK(0), hence for asymptotically stable system (1.1) satisfying (1.2) a semi-
implicit PRK method is weakly delay-dependently stable, if there is no eigenvalues
of matrices haiiL+ haiiIdR(0) + h2a2

iiIdK(0) equal to unity for i = 1, 2, . . . , s.

Remark 3.2. When N and R(s) are null matrices, the system (1.1) becomes a
delay differential system. Cong et al. [6] have derived sufficient conditions for the
delay-dependent stability of this case . Hence Theorem 3.1 and Theorem 3.2 are
extensions of the results in [6].

This section ends with an algorithm to examine the conditions of Theorem 3.1
and Theorem 3.2.

Algorithm 3.3. The stability of numerical solutions:

Step 1. Choosing a sufficiently large positive integer n, we distribute n node points
λl (l = 0, 1, . . . , n − 1) on the unit circle µ of λ-plane satisfying argλl = (2π)l/n.
For each λl, we estimate the characteristic polynomial of the difference system by
calculating

PPRK(λl) = det Φ(λl), l = 0, 1, . . . , n− 1.

Also we decompose P (λl) into its real and imaginary parts.

Step 2. For each λl (l = 0, 1, . . . , n − 1), we examine whether PPRK(λl) = 0
by evaluating its magnitude with the preassigned small positive tolerance ε1. If
|PPRK(λl)| ≤ ε1 fulfills, then λl ∈ µ is a root of PPRK(λ) = 0. As a result, the
PRK scheme for the system (1.1) is not asymptotically stable and stop the algo-
rithm. Otherwise we go to the next step.

Step 3. Check whether 1
2π∆µ argP (λl)=d(m+1)(3s+2) by examining | 1

2π∆µargP (λl)
−d(m + 1)(3s + 2)| ≤ ε2 for each λl (l = 0, 1, . . . , n − 1) with the preassigned tol-
erance ε2. If it holds, then the PRK method for the system (1.1) is weakly delay-
dependently stable. Or else, it is not weakly delay-dependently stable.

4. Numerical examples

This section gives two examples to confirm the effectiveness of the stability criteria
acquired in Section 3. All the experiments were implemented in MATLAB. We
adopt the underlying PRK scheme based on the following classical fourth-order RK
method for ODEs (3.1):

k1 = f(tn, yn),
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k2 = f(tn +
h

2
, yn +

h

2
k1),

k3 = f(tn +
h

2
, yn +

h

2
k2),

k4 = f(tn+1, yn + hk3),

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4).

Example 4.1. We take a two-dimensional neutral system with distributed delays,
where the parameter matrices are given by

L =

−2 3

−4 −2.8

 , M =

−0.03 −3

2 −0.01

 , N =

0.05 0

0 −0.01

 ,
K(s) =

 sin 2s 0

−1 − cos s

 , R(s) =

0.1 sin s 0

0 0.1 cos s

 ,
where s ∈ [−τ, 0].

The case of τ = 1. According to Lemma 2.2 and Remark 2.2, if we choose

R̃ =

 0.1 0

0 0.1

 ,

then

‖N‖+

∫ 0

−τ
‖R(s)‖ds ≤ ‖N‖+

∫ 0

−τ
‖R̃‖ds = 0.15 = α < 1,

i.e., condition (1.2) holds. Furthermore, we can select

K̃ =

 1 0

1 1

 .

By direct computation, we have

‖L‖ = 4.8841, ‖M‖ = 3.0002, ‖N‖ = 0.0500, ‖K̃‖ = 1.6180.

And β = ‖L‖+ ‖M‖+ τ‖K̃‖ = 9.5023. By Lemma 2.2, the radius of the unstable
region is given by

γ :=
β

1− α
= 11.1792.

Our computation gives that 4Γ argP (λ) = 0, which indicates that the system is
asymptotically stable with the given parameter matrices by Lemma 2.3.

Now we apply Algorithm 3.3 to investigate the weak delay-dependent stability
of the numerical solutions generated by the PRK method.

First, let the initial vector function be

x(t) =

 sin(t/2) + t

cos t

 , t ∈ [−τ, 0].
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Taking m = 2, we acquire that

1

2π
∆µ argPPRK(λ) = 81.9989 6= 84 = d(m+ 1)(3s+ 2).

Thus the conditions of Theorem 3.1 does not hold. Whence, the PRK method is
not stable and the numerical solution is divergent, which is simulated in Fig. 1(a).
Nevertheless, if we choose m = 5 and m = 10, according to Algorithm 3.3 again,
we get that

1

2π
∆µ argPPRK(λ) = 167.9977 ≈ 168 = d(m+ 1)(3s+ 2)

and
1

2π
∆µ argPPRK(λ) = 307.9958 ≈ 308 = d(m+ 1)(3s+ 2)

respectively. So Theorem 3.1 asserts that the numerical solutions are stable, which
are depicted in Fig. 1(b) and Fig. 1(c). The same case is that for m = 100 and the
corresponding behavior of numerical solution is presented in Fig. 1(d).
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(a) Numerical solution with m = 2
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(b) Numerical solution with m = 5
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(c) Numerical solution with m = 10
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(d) Numerical solution with m = 100

Figure 1. Numerical solution when τ = 1 in Example 4.1
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The case of τ = 1.2, we obtain

‖N‖+

∫ 0

−τ
‖R(s)‖ds ≤ ‖N‖+

∫ 0

−τ
‖R̃‖ds = 0.17 = α < 1,

i.e., condition (1.2) fulfills. And β = ‖L‖ + ‖M‖ + τ‖K̃‖ = 9.8259. Lemma 2.3
is employed to check the stability of the system. It reveals that the system is not
asymptotically stable as our evaluation ∆Γ argP (λ) = 2 along the curve Γ. Thus
the conditions of Theorem 3.1 are not satisfied. As a consequence, the weak delay-
dependent stability is not guaranteed. Moreover, our numerical experiments for
m = 5 and m = 100 indicates that the numerical solutions are divergent, which are
presented in Fig. 2. Furthermore, several other numerical experiments for m > 5
have been implemented, and the same results are found, i.e., the numerical solutions
of which are still divergent.
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(a) Numerical solution with m = 5
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(b) Numerical solution with m = 100

Figure 2. Numerical solution are unstable when τ = 1.2 in Example 4.1

Example 4.2. Consider the following four-dimensional neutral system with dis-
tributed delays, where the parameter matrices are

L =


0 0.8 −0.9 0

−3.35 −2.6 2 −2

−3.6 0 −1.68 0

−2.66 0 0 −5.89

 , M =


−0.9 2 1.8 −1

3 2.9 −1.65 0

1 2 −0.88 1

2 2.85 1 −3

 ,

N =


0.03 −0.02 0.06 −0.09

−0.032 0.009 −0.014 −0.0025

−0.3 0.009 0.018 0.1

−0.1 0.22 0.06 0.1

 ,
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K(s) =


2 cos s −3 −1.5 1

0 0.8 4 2

0 0 0.6 0.5 sin s

0 0 0 2.3

 , R(s) =


0.001 −0.2 sin s 0 0

−0.04 0.025 0 0.1

0 0.12 0.13 0

0.004 0 0 0.06

 .
Here s ∈ [−τ, 0].

Now, we perform a similar process as Example 4.1. The case of τ = 0.23. If we
take

R̃ =


0.001 0.2 0 0

0.04 0.025 0 0.1

0 0.12 0.13 0

0.004 0 0 0.06

 ,

then

‖N‖+

∫ 0

−τ
‖R(s)‖ds ≤ ‖N‖+

∫ 0

−τ
‖R̃‖ds = 0.4215 = α < 1,

that is, condition (1.2) is satisfied. We choose

K̃ =


2 3 1.5 1

0 0.8 4 2

0 0 0.6 0.5

0 0 0 2.3


to satisfy the conditions of Lemma 2.2 and Remark 2.2. By simple calculation, we
get

‖L‖ = 7.7340, ‖M‖ = 6.1897, ‖N‖ = 0.3648, ‖K̃‖ = 5.5271,

and β = ‖L‖+‖M‖+τ‖K̃‖ = 15.2502. So by Lemma 2.2, the radius of the unstable
region is given by

γ :=
β

1− α
= 26.4760.

Following our computation, we get that 4Γ argP (λ) = 0. According to Lemma 2.3,
the system with the known parameter matrices is asymptotically stable.

Now we use Algorithm 3.3 again to examine whether the PRK method for the
system is delay-dependently stable or not.

We first set the initial condition

x(t) =


sin t

exp(t)− 2

2 sin t

2t+ cos t

 , t ∈ [−τ, 0].

Next, we take m = 2 and get that

1

2π
∆µ argPPRK(λ) = 167.9977 ≈ 168 = d(m+ 1)(3s+ 2).
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Thus, using Theorem 3.1, the numerical solution is stable as depicted in Fig. 3(a).
When we take m = 5,m = 10 and m = 80, the conditions 1

2π∆µ argPPRK(λ) =
d(m+ 1)(3s+ 2) also hold, then the system with given parameters matrices is still
weakly delay-dependently stable and the numerical solutions are shown in Fig. 3(b),
Fig. 3(c) and Fig. 3(d).
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(a) Numerical solution with m = 2
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(b) Numerical solution with m = 5
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(c) Numerical solution with m = 10
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(d) Numerical solution with m = 80

Figure 3. Numerical solutions are asymptotically stable when τ = 0.23 in Example 4.2

The case of τ = 0.5, we have that

‖N‖+

∫ 0

−τ
‖R(s)‖ds ≤ ‖N‖+

∫ 0

−τ
‖R̃‖ds = 0.4880 = α < 1,

that is, condition (1.2) holds. In this case, β = ‖L‖ + ‖M‖ + τ‖K̃‖ = 16.6872,
and ∆Γ argP (λ) = 2. So the system with the known parameter matrices is not
asymptotically stable by Lemma 2.3. Then the assumptions of Theorem 3.1 do
not hold. Therefore, it is not sure whether the numerical solution is stable or not.
Actually, if we choose m = 2, 20, 60, 100, the numerical solutions are unstable, which
are depicted in Fig. 4. And many other numerical experiments for m > 100 have
been implemented, whose numerical solutions are still divergent.



1050 S. Wu & Y. Cong

0 20 40 60 80 100 120
−3

−2

−1

0

1

2

3
x 10

9

t

x
(t

)

 

 
x1
x2
x3
x4

(a) Numerical solution with m = 2
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(b) Numerical solution with m = 20
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(c) Numerical solution with m = 60
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(d) Numerical solution with m = 100

Figure 4. Numerical solutions are not stable when τ = 0.5 in Example 4.2

5. Conclusion

The present work analyzes the delay-dependent stability of the PRK methods for
the neutral systems with distributed delays. We obtain that the PRK methods can
preserve weak delay-dependent stability under some conditions. Whereas the stabil-
ity criteria presented here are sufficient but not necessary. Numerical experiments
show that the theoretical results are effective.

LM methods are widely used to solve the DDEs. Thus, the weak delay-dependent
stability of LM methods for the system (1.1) attracts our attention and the relevant
work will be accomplished later.
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