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STABILITY ANALYSIS OF HIGHLY
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STOCHASTIC DIFFERENTIAL EQUATIONS*
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Abstract Stability criteria for stochastic differential delay equations (SD-
DEs) have been studied intensively for the past few decades. However, most
of these criteria can only be applied to delay equations where their coefficients
are either linear or nonlinear but bounded by linear functions. Recently, the
stability of highly nonlinear hybrid stochastic differential equations with a
single delay is investigated in [Fei, Hu, Mao and Shen, Automatica, 2017],
whose work, in this paper, is extended to highly nonlinear hybrid stochastic
differential equations with variable multiple delays. In other words, this paper
establishes the stability criteria of highly nonlinear hybrid variable multiple-
delay stochastic differential equations. We also discuss an example to illustrate
our results.

Keywords Variable multiple-delay stochastic differential equation, nonlin-
ear growth condition, asymptotic stability, Markovian switching, Lyapunov
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1. Introduction

In many practical systems, such as science, industry, economics and finance etc.,
we will encounter the systems with time delay. Differential delay equations (DDEs)
have been employed to model such time-delay systems. Since the time-delay often
causes the instability of systems, stability of DDEs has been explored intensively
for more than 50 years. Generally, the stability criteria are classified into the delay-
independent and delay-dependent stability criteria. When the size of delays of
the systems is incorporated into the delay-dependent stability criteria, the delay-
dependent systems are generally less conservative than the delay-independent ones
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which work for any size of delays. There exists a very rich literature in this topics
(see, e.g., [3,11-13,16,17,21, 36]).

Since 1980’s, stochastic differential delay equations were investigated in order to
model practical systems which are subject to external noises (see, e.g., [27]). Since
then, the study of the stability on SDDESs has been one of the most important topics
(see, e.g., [5,10,15,19,20,24]).

In 1990’s, hybrid SDDEs (called also SDDEs with Markovian switching) were
developed to model real-world systems since they may experience abrupt changes in
their parameters and structures in addition to uncertainties and time lags. One of
the important issues in the research of hybrid SDDEs is the analysis of stability of
control systems. Moreover the delay-dependent stability criteria have been erected
by many authors (see, e.g., [2,4,22,23,25,26,28,33-35]). To our best knowledge,
the existing delay-dependent stability criteria are mainly created for the hybrid
SDDESs where their coefficients are either linear or nonlinear but bounded by linear
functions. Based on highly nonlinear hybrid SDDEs (see, e.g., [6-9,14,15,30-32]), [7]
has recently established the delay-dependent stability criterion where they solve the
stability of a single delay system. However, many real systems has multiple time-
delay states (see, e.g., [1,18,29]). Therefore we further develop the stability criteria
of highly nonlinear hybrid SDDEs with variable multiple delays.

Specifically, we first discuss the following SDDE with two delays d1 (t), 62(¢) with
01(t) < 7 (see Example 4.1)

da(t) = (—1023(t) — z(t — 61(¢)))dt + 122(t — 62(2))dB(t), if r(t) =1, 1)
(—423(t) + Szt — 61(t)))dt + 322 (t — 02(t))dB(t), if r(t) =2,
on t > 0 with initial data
{z(u) =2+ sin(u) : —7 < u <0} € C([-7,0;;R), r(0) =iy € S. (1.2)

Here B(t) is a scalar Brownian motion, r(¢) is a Markovian chain with space S =
{1,2} and its generator I" given by

r= . (1.3)

The above system (1.1) will switch from one mode to the other according to
the probability law of the Markovian chain. If 6;(¢) < 7 = 0.01, the computer
simulation shows it is asymptotically stable (see Figure 4.1 ). If the time-delay is
large, say 01(t) < 7 = 2, the computer simulation shows that the hybrid multiple-
delays stochastic differential equation(SDE) (1.1) is unstable (see Figure 4.2 ). In
other words, whether the hybrid multiple-delay SDE is stable or not depends on
how small or large the time-delay is. On the other hand, both drift and diffusion
coefficients of the hybrid SDE with multiple delays affect the stability of systems
due to highly nonlinear. However, there is no delay dependent criterion which can
be applied to the SDE with multiple delays to derive a sufficient bound on the time-
delay 7 such that the SDDE is stable, although the stability criteria of the highly
nonlinear hybrid SDE with single delay have been created in [7]. This paper first
established delay dependent criteria for highly nonlinear hybrid SDEs with variable
multiple delays.

In comparison with [7], the key contributions in this paper are highlighted below:
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e This paper takes the variable multiple delays into account to develop a new
theory on the robust stability and boundedness for highly nonlinear hybrid
SDDEs.

e The new theory established in this paper is applicable to hybrid SDDEs with
different delays in drift and diffusion coefficient of SDDEs with multiple delays
(see (2.1)). Especially, we found that the sizes of delays in drift coefficient
only affect the stability of the system, but the sizes of delays in the diffusion
coefficient do NOT. This result has a significant importance.

e A significant amount of new mathematics has been developed to deal with
the difficulties due to different delays in drift and diffusion coeflicient of SD-
DEs with multiple delays and those without the linear growth condition. For
example, a more complicated Lyapunov function will be designed in order to
deal with the effects of the different delays. A lot of effort has also been put
into showing the bounds of the sizes of delays.

To develop our new theory, we will introduce some necessary notation in Section
2. We will discuss in Section 3 the delay-dependent asymptotic stability of SDEs
with variable multiple delays, and give main results on robust boundedness and
stability. We will present an example in Section 4 to illustrate our theory. We will
finally conclude our paper in Section 5.

2. Notation and Assumptions

Throughout this paper, unless otherwise specified, we use the following notation. If
A is a vector or matrix, its transpose is denoted by AT. If 2 € R?, then |z| is its
Euclidean norm. For a matrix A, we let |A| = \/trace(AT A) be its trace norm and
|Al] = max{|Az| : |x| = 1} be the operator norm. Let R4 = [0,00). For 7 > 0,
denote by C([—7,0]; R?) the family of continuous functions 7 from [—7,0] — R?
with the norm ||n]] = sup_,<,<o [n(w)]. If A is a subset of €2, denote by I, its
indicator function. Let (Q, F,{F:}+>0,P) be a complete probability space with a
filtration {F;}+>0 satisfying the usual conditions. Let B(t) = (By(t), -+, Bm(t))"
be an m-dimensional Brownian motion defined on the probability space. Let r(t),
t > 0, be a right-continuous Markov chain on the probability space taking values in
a finite state space S = {1,2,--- , N} with generator I" = (;;) nxn given by

P{r(t+A) = jlr(t) = i} = {1+7,,A+O(A) if i =

where A > 0. Here 7;; > 0 is the transition rate from 4 to j if ¢ # j while
Yii = — ;i %Vij- We assume that the Markov chain r(-) is independent of the
Brownian motion B(-). Let 7;,0; € [0,1),j = 1,--- ,n, be constants with 7 =:
max;, 7;. The delays d;(-) are differential functions from R4 — [0, 7], such that
5;(t) == do;(t)/dt < §; for all t <0, and 7; > &;(t). For Borel measurable functions

fiRIMFD S Ry - RY and g¢: R+ xS x Ry — R>™,
we consider a d-dimensional hybrid SDE with n-delays

da(t) =f(x(t), 2(t = 01(1)), - 2t = 0n, (1)), 7(t), t)dt
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+g(@(t),z(t = Ony41(t)), - 2t = dn(t)), (1), 1)dB(1) (2.1)
on t > 0 with initial data
{z(t): =7 <t <0} =ne C([-7,0;RY), r(0) =iy €S. (2.2)

The classical conditions for the existence and uniqueness of the global solution
are the local Lipschitz condition and the linear growth condition (see, e.g., [24]).
In this paper, we need only the local Lipschitz condition. However, we will con-
sider highly nonlinear hybrid SDEs with multiple delays which, in general, do not
satisfy the linear growth condition in this paper. Therefore, we impose the polyno-
mial growth condition, instead of the linear growth condition. Let us state these
conditions as an assumption for our aim.

Assumption 2.1. Assume that for any h > 0, there exists a positive constant Kj,
such that

|f($7y17"' 7yn17i7t)_f(:f7g17"' ugnpivt)l
\ |g(xayn1+17"’ aynaivt) _g((zagnﬂrlv"' agnvivt”

<Kn(le =2+ ly; — 9;)

Jj=1

for all ,y1, s Yn> T, Y1, > Y € RE with |2V |y1| V- V]yn| V-V |Z| V|G| V-V
|gn| < h and all (i,t) € S x R4. Assume moreover that there exist three constants
K >0,q¢ >1and g5 > 1 such that

1
|f(x7yla e ayn17i7t)| S K(l + |x|q1 + Z |yj|q1)’
j=1
n
|g(17,yn1+1, T 7yn?i7t)| < K(l + |‘Z‘|q2 + Z |yj‘q2) (23)
j=ni1+1

for all z,yy1,--- ,yn € R, (i,1) €S x Ry

If ¢ = g2 = 1, then condition (2.3) is the familiar linear growth condition.
However, we emphasise once again that we are here interested in highly nonlinear
multiple-delay SDEs which have either ¢; > 1 or ¢o > 1. We will refer condition
(2.3) as the polynomial growth condition. It is known that Assumption 2.1 only
guarantees that the SDDE (2.1) with the initial data (2.2) has a unique maximal
solution, which may explode to infinity at a finite time. To avoid such a possible ex-
plosion, we need to impose an additional condition in terms of Lyapunov functions.
For this purpose, we need more notation.

Let C?1(R? xS x Ry ;R ) denote the family of non-negative functions U (z, i,t)
defined on (z,i,t) € RY x S x Ry which are continuously twice differentiable in x

and once in ¢. For such a function U(z,1,t), let Uy = %—[tj, = (%’ e %), and

Upe = (%)dm. Let C(R? x [~7,00); R;) denote the family of all continuous

functions from R? x [—7,0) to R;. We can now state another assumption.



Stability of hybrid multiple-delay SDDEs 1057

Assumption 2.2. Assume that there exists a pair of functions U € C%1(R9 x S x
Ry;Ry) and G € C(RY x [—7,00); R4), as well as positive numbers c1, 2, 3 ; and
q > 2(q1 V g2), such that

Z % <co, |x|? < U(x,i,t) < G(z,t)

j=1 g

for V(z,4,t) € R4 x S x Ry,
and

LU(%ZUI»' c 7y’n7iat) = Ut(x7i7t) + Uz(%i,t)f(ﬂ%yly e 7y’n17iut)

1 N . .

+ Etrace[gT(xayn1+lv te ayml,t)Um(I,’ht)g(%ymH, Tty 7ynalvt)]
N

+Z’YZJU(‘T7]3t)
j=1

<c1 — Gz, t) + Z CB,jG(yjat - 5j(t))

j=1
for all 2,91, -+ ,yn € R, (i,1) €S x Ry
Similar to the discussion in [14], we have the following claim.

Lemma 2.1. Under Assumptions 2.1 and 2.2, the variable multiple-delay SDE
(2.1) with the initial data (2.2) has the unique global solution x(t) on t > —7 and
the solution has the property that

B sip; Elz(t)]? < oc.
3. Delay-Dependent Asymptotic Stability of SDEs
with Variable Multiple Delays

In Lemma 2.1, we used the method of Lyapunov functions to study the existence and
uniqueness of the solution of the highly nonlinear hybrid SDE (2.1). In this section,
we will use the method of Lyapunov functionals to investigate the delay-dependent
asymptotic stability. We define two segments Z; := {z(t + s) : =27 < s < 0} and
7= {r(t+s): =27 < s <0} for t > 0. For Z; and 7 to be well defined for
0 <t <27, we set 2(s) = n(—7) for s € [-27,—7) and r(s) = rg for s € [-27,0).
We construct the Lyapunov functional as follows

V(Z¢, 7, t) = U(x(t),r(t),t)
n 0 t
+y_6; / @), a0 = 81 0), - @ (o = 6, (1), 7(0), 0) 2
j=1 —Tj t+s

+19(@(v), 2(v = On, 41(v)), - 2(V = 60 (0)), 7(v), v)|? | duds

for t > 0, where U € C*!'(R% x S x Ry ;R ) such that

lim [ inf U(z,t,i)] = oo,
|z]| =00 (t,i)€ER4 XS
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and 0;,j5 = 1,--- ,n are positive numbers to be determined later while we set

f('rnylv"' ayn17i7s) :f(xvyla"' 7yn17i70)a
g(xvyn1+17"' 7yn7i78) :g(xvyn1+17"' 7yn7i30)

for all 2,91, ,yn € RY, (i,5) € S x [~27,0). Applying the generalized It6 formula
(see, e.g., [26, Theorem 1.45 on page 48]) to U(x(t),r(t),t), we get

dU(x<t)’r(t)’t):(Ut(m(t)7T(t)>t)+Uw (x(t),r(t),t)f(m(t)7x(t—61(t))7~ ’ ~7$(t—6n1(t)),7“(ﬁ),t)
+ gtracelg” (2(1),2(t — 6u, 1(1)), -+ 2l — 6a(6), 7(0) 1

x Um( (@), r(); 1)g(x(t), (t = 0ny41(2)), - - 2t = 0n (1)), (1), )]

+ Z%(m ), t) ) dt + dM(2),

for t > 0, where M(t) (see, e.g., [26, Theorem 1.45 on page 48]) is a continuous
local martingale with M (0) = 0. Rearranging terms gives

dU (z(t),r(t),t) :(Um(x(t), r(@), O)Lf (x(t), 2(t = 61(2)), -+ &t — 0py (1)), 7(2), )
= f(z(t),z(t), -, z(t), (1), 1)]
LU (2(t), 2t — 801 (1)), -+, 2(t — 8a(2)), (1), t)) +AM(t),
where the function £U : R? x R? x S x R, — R is defined by
LU Y1 s Ysint) = Up(@ i, 8) + Up(,i, ) f(, 2+, ,i,t)

N
1 . . . .
+ §trace[gT(x, Yni4+15" 5 Yns t)UII(xa Z, t)g(xv Yni+ly "5 Yns t)] J'_Z’YUU(:EVJ’ t)'
j=1
(3.1)
Moreover, the fundamental theory of calculus shows, for j =1, -+ n,

L /H Tl (@), z(v =61 (v), - 2(v = 6, (v)),7(v), )P
190 (0), 20— By 10D+ (0 = 6 (0)), (), )] dods)
= (7 [l F@(0). 20— (). 2l — b, (@), (0. )
lg(t), 2(t = Sy 41(0)), -+ a(t = 0a(0)), (), )]

/t . {Tﬂf ,a(v—01(v), (v — 6, (v),7(v), V) [?
lg(2(0), 2(0 = by 41 (), 20 = 62(0)), 7(0), 0)[| dv ) dt.

Lemma 3.1. With the notation above, V (T4, 7,t) is an Ité process on t > 0 with
its Ito differential

AV (%4, 7y, t) = LV (T, Tt, t)dt + dM (t),
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where M (t) is a continuous local martingale with M (0) = 0 and

LV (F4, 7, t) =Uy (2(t), (), D[ (x(t), (t —

(o)

£ 30 [Tl 0,0t = 81(8)), -+t = 80, (1), (D) D

+lg(@(t), (t — dn, 1 (1), -+ 2t — 6 (t)), T(t),t)lﬂ

=300 [ [lreat =), a5 @) )0

+lg(2(v), (v = 0n,41(v)), -+ 2(0 = dn(v)), r(v)vv)lz} dv.

To study the delay-dependent asymptotic stability of the SDDE (2.1), we need
to impose several new assumptions.

Assumption 3.1. Assume that there are functions U € C*1(R? x S x Ry ;Ry),
Up € C(RY x [-7,00); R4), and positive numbers a,a; (j = 1,---,n) and Sy
(k=1,2,3) such that

Qi
_ 3.2
Zl_aj <a (32)
and

LUz, 91, s Yny iy t) + Bi|Us(z,4,1)|?
+62‘f(33a1117"' ay’rblvi7t)|2 +B3|g(xayn1+17"' aZ/mi,t)‘Q

< —alUi(z,t) + Y a;Ui(y;, t — 6;(t)), (3.3)
=1
for all 2,91, -+ ,yn € R, (i,1) €S x Ry

Assumption 3.2. Assume that there exists positive numbers w;,j = 1, -+ ,ng
such that

n1
|f($,$,"- ,.’L‘,i,t) - f(-%',yl;"' ’ynni’t)' < ZIUJ|.’L' _y]|
j=1
for all z,y; -+ ,yn, € R%, (i,t) €S x [-27,00).
Theorem 3.3. Let Assumptions 2.1, 2.2, 3.1 and 3.2 hold. Assume also that

ni ni
ny Z ’U)?Tf S 2B1ﬂ2 and niy ZU)JZTJ' § 26153. (34)
j=1

=1

Then for any given initial data (2.2), the solution of the SDDE (2.1) has the prop-
erties that

/ T BUL(e(t), £)dt < oo (3.5)
0
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and
sup EU(z(t),r(t),t) < oo.
0<t<o0

Proof. Fix the initial data n € C([—7,0]; R?) and ry € S arbitrarily. Let ko > 0 be
a sufficiently large integer such that ||n|| := sup_,<.<o [7(s)| < ko. For each integer
k > ko, define the stopping time

o = inf{t > 0: |z(¢)| > k},

where throughout this paper we set inf ) = oo (as usual {) denotes the empty set).
It is easy to see that oy is increasing as kK — oo and limg_,o, 0 = 00 a.s. By the
generalized It6 formula we obtain from Lemma 3.1 that

tAok
EV(Zino,, Ttro, t A ok) = V(Zo, 7o,0) + IE/ LV (Z4,7s,8)ds (3.6)
0

for any ¢ > 0 and k > ko. Let 6; = nlwf/(Qﬁl). By Assumption 3.2, it is easy to
see that

U (2(t), 7(2), O)[f (2(2), 2(t = 61(£)), -+, &(t = On, (£)), 7(£), 1)
- f(x(t)v .T(t), e ,Q?(t),?"(t),t)}

ni w2
<B|Us((t), r(), )7 +n1 Y —|a(t) — x(t — 6;(t))*. (3.7)
215,
By condition (3.4), we also have
ZngjQ é ﬁg and ZejTj S 63.
Jj=1 j=1
It then follows from Lemma 3.1 that
LV (24, Ts,5) LU (x(s), 2(5—061(5)), -+ 2(t—=06n(5)),7(5), )+ B1|Us (x(5), 7(s), 5)*

+ ol f(x(s), 2(s = 0u(s)), -+, 2t = b0y (5)),7(s), 8) I
+ Bslg(x(s), 2(s = dny11(5)), -+, 2(t = Gu(s)),7(5), 5)

2

tmd T — (s = ()

§—Tj

ni U}2 s
~ni3 g [ [P0 m 00 o= ) )0

19(2(0), 20 = by 41(0)), -, 20 = 62(0)), 7(v), 0) 2] dv.

By Assumption 3.1, we then have

LV (@4:70,5) < = ali(a(s), ) + 3 aUs(a(s = 8(s)), s = 85(5))

ni w2
+n Y ﬁ\x(S) — (s — 6;(s))?
j=1 "1
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niy U}2 s
R 5. [P0, oo, @)@

+lg(@(v), 20 = Gny 11 (0)), -+ 2(0 = 8,(0)), 7(v), v) 2] dv.

Substituting this into (3.6) implies

EV (Ziroy, Fine,t A ok) < V(Zo,70,0) + Hy + Y (Hj — HY), (3.8)
j=1
where
tAok
leE/ [—aUl ZalUl (s = d( )),s—él(s))]ds
0
) 2 tAo
=" / () — (s — 6;(s))[2ds,
45,
. njw tAoCk
# = [ [ i st Bl 60,00

+lg(2(v), x(v - 5n1+1(v))7 e a(v =0 (v), T(v),v)lﬂ dvds.

Noting that, for [ =1, - | n,

IN

/t/\ak 1 (tNok) l(x(v)av)d
5,(0) 1-4

tAo U
< / e

/OAU’C Ui(z(s —0;(s)),s — 0;(s))ds

we have

n

n —

where @ = a — > ay/(1 — 0;) > 0 by Assumption 3.1. Substituting this into (3.8)
=1

yields

tACk n1 . .
&E/ Ur(z(s),s)ds < Cy + Z(H% - H3), (3.9)
0 =

where C1 is a constant defined by

0
e
Cy =V (Zo,70,0) + Z 1 *151 / Ui(n(s), s)ds.
=1 T

Applying the classical Fatou lemma and let £ — oo in (3.9) to obtain

IE/O Ui(x(s),s)ds < Cy + i(ﬁ% — H)), (3.10)

j=1
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where
72::711;?]E/ |z(s) —x(s — 9, ))| ds,
B = e [ [ [t 86 ato b))

+lg(z(v), (v*5n1+1( )5 ,x(v*5n(v))’r(v),v)lz]dvd8- (3.11)

By the well-known Fubini theorem, we have

2
i nlw

2T 4B

For t € [0, 7;], we have

/ E|z(s) — ;U(s—5j(s))|2ds.

2

niw Tj
Hj < Qﬁlj/ (Ela(s)[* + Elz(s — §;(s))[*)ds
2
niw:T; ( )
su E|z(v
T B —Tjgg)gfj = )|)
niw?r;
< M( sup E|x(v)|2)
61 —7<v<T
For ¢t > 7;, we have
_ o nwiTy njw? [t
i < ( sup ]E|x(v)|2) + 0 [ Ela(s) — a(s — 6;(s))Pds.  (3.12)
B \r<u<r 461 Js,

Noting that
— (s — 6,(s))
<\/ F(@(w), 20— 61(0)), - 120 — b (v)), 7(0), V)

[ gl@hao = dua @) oo = 80 r(0). B,
we have

Elz(s) — x(s — 6]-(5))|2
szE/_ 51 £ (@), 20 = 61(0)), - 50 — Gy (1)), 7(0), )|

J

+ |g(£l?(1}),l‘(1} - 5n1+1(v))a e ,$('U - 5n(v))7r(v)av)|2]dv'

Notice also that
t
. Blete) (s~ 6P

<2E/T]/S O T O R ) RTORES
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+ |g(££(1)),£€(1} - 5n1+1(v))7 T ,1’(1) - 5n(v))a T(’U),U)|2]d1)d8.
Thus from (3.11) and (3.12) we get

_ n1w247" (

i < /3“ sup ]E|x(u)\2)+Hg. (3.13)
1

—r<v<T
Substituting (3.13) into (3.10) yields
t
dIE/ Ui(z(s),s)ds < Cy +2B3 sup Elz(v)]* := Cs.
0 —1<v<T

Letting t — oo gives

o 02
E/ Ui(z(s), s)ds < —. (3.14)
0 (0%
Now we see from (3.8) that
ny
]EU(x(t Aow),r(t A ay),t A ak) <C+ Y (H) - H). (3.15)
j=1
Letting k£ — oo we get
EU (x(t),r(t),t) < Cy < 00,
which shows
sup EU(z(t),r(t),t) < oc. (3.16)
0<t<oc0o
Thus the proof is complete. O

Corollary 3.1. Let the conditions of Theorem 3.3 hold. If there moreover exists a
pair of positive constants ¢ and p such that

cz|P <Ui(x,t), V(zx,t) € R? x Ry,
then for any given initial data (2.2), the solution of the multiple-delay SDE (2.1)
satisfies

/OOIE\:c(t)Pdt < . (3.17)
0

That is, the multiple-delay SDE (2.1) is Ho-stable in LP.

This corollary follows from Theorem 3.3 obviously. However, it does not follow
from (3.17) that lim;_, o E|z(t)|? = 0.

Theorem 3.4. Let the conditions of Corollary 3.1 hold. If, moreover,
p=22 and (p+q—-1)V(p+2¢-2)<g,
then the solution of the multiple-delay SDE (2.1) satisfies
; p_
tlgrolo Elz(t)|P =0

for any initial data (2.2). That is, the variable multiple-delay SDE (2.1) is asymp-
totically stable in LP.
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Proof. Fix the initial data (2.2) arbitrarily. For any 0 < ¢; < to < oo, by the It6
formula, we get

Elz(t2)[” — Elz(t:)[”

:E/ 2 (p|$(t)‘1’*2x(t)—rf(x(t), z(t —8.(1)), -, x(t — 6, (1), 7(t), 1)

+ glw(t)\p‘zlg(x(t), ot = Ony1(1), s 2t = 8u (), (1), 1)

p(p—2)

T

()P~ (2 () "g(x(t), 2t — Sy 1 (1), -+ a(t — 5n(t))ﬂ“(t)7t)l2)dt,
which implies
|Elz(t2) [P — Ela(t:)|?|

SE/ 2 (p\x(ﬂlp’llf(x(t),x(t—51(t)),--- La(t— 6, (), 7(2),1)]

t1

P22l a(), 2t — by (0. 2t — 8 (0). (0. ) )t

SE/ 2 (pK ()P~ [1 + o ()] + > lelt = 3;(0)"]

t1

L (n=m+ 2)p(p = 1)K?

2 (O 2[1+ 202+ Y |x(t—5j(t))\2q2])dt.

j=ni1+1
By inequalities,
lz(t) [P~ a(t — §; ()] < () Pr ot 4 |z (t — 5j(t))|p+q1—1’
lz()[P~Y < 1+ Ja(t)9,
we can obtain
|Ela(to) P —Elz(t1)[?| < Cs(tz — ta),
where

Cs =pK(1+4+2(n1+1) sup Elz(¢)]|?)

—7<t<o0o

+ 5 =n1+2)p(p - DE*1+2(n—n1 +1) sup  Elz(t)|?) < co.

—7<t<oco

N =

Thus we have E|z(t)|? is uniformly continuous in ¢ on R4. By (3.17), there is a
sequence {¢;}7°, in R such that E|z(¢;)|” — 0, which easily show the claim. Thus
the proof is complete. O

4. An Example for Muptiple-delay SDEs

Let us now discuss an example to illustrate our theory.
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Example 4.1. Let us consider the SDDE with two delays (1.1), we consider two
case: 01(t) < 7 =0.01 and 6;(t) < 7 =2for all t > 0. Let §; = do = 0.1 and
d2(t) = 2 (in fact, the stability of system is independent on the size of d2(¢)). In
case 7 = 0.01, let the initial data z(u) = 2 + sin(u) for u € [-0.01,0], r(0) = 2, the
sample paths of the Markovian chain and the solution of the multiple delay SDE are
shown in Figure 1, which indicates that the multiple delay SDE is asymptotically
stable. In the case 7 = 2, let the initial data x(u) = 2 + sin(u) for v € [-2,0],
r(0) = 2, the sample paths of the Markovian chain and the solution of the multiple-
delay SDE are plotted in Figure 2, which indicates that the multiple-delay SDE is
asymptotically unstable. From the example we can see SDDE (1.1) is stable or not
depends on how long or short the time-delay is.

= 3
1.8 B
1.6 B
1.4 g
1.2+ g

1t :
o 2 a 6 8 10
SE ]
1 i

=

ok i

1 .
o 2 a 6 8 10

Figure 1. The computer simulation of the sample paths of the Markovian chain and the SDDE (1.1)
with 7 = 0.01 using the Euler-Maruyama method with step size 1073,

= 3
1.8 g
1.6 g
1.4 g
1.2 B

1k : E

o 2 a 6 8 10
>F ]
1k i

=
ok i
_1 .
o 2 a 6 8 10

Figure 2. The computer simulation of the sample paths of the Markovian chain and the SDDE (1.1)
with 7 = 2 using the Euler-Maruyama method with step size 1072.

We can see coefficients defined by (1.1) satisfy Assumption 2.1 with ¢; = 3 and
q2 = 2. Define U(z,i,t) = |z|® for (x,i,t) € R x S x Ry. It is easy to show that
LU($a917927i7t) = 6:c5f(x, y17i7t) =+ 15$4|g(13,y27i7t)‘2
for (x,y1,y2,i,t) € R® x S x Ry. We have

_ 15 1
LU(‘r7y17y27 lvt) = 6$5(—y1 - 101’3) + Exél(zyS)Q



1066 C. Fei, W. Fei, X. Mao, M. Shen and L. Yan

15 6 15 ) s

< 56 1 6 _ 1o
< b5x +y1+128y2 (60 128)x

and
LU (z,y1,y2,2,t) = 6335(%% —4a2%) + %QJA(?J%)Q
< 2.525 +0.5y% — 22.1252% + 1.87545.
Thus, we can obtain

LU (z,y1,y2,1,t) < 52® + 98 — 22.1252% + 1.875¢5
<e =101+ 2%+ 1+ %) +2(1+45),
where

c1 = sup{8 + 5% — 12.1252%} < o0
z€eR

and G(z,t) = 1+ a8 co = 10,c31 = 1,c39 = 2. Therefore, Assumption 2.2 is
satisfied. From Lemma 2.1, solution of the SDDE (1.1) has the that

sup Elz(t)|® < oo.
—7<t<0

To verify Assumption 3.1, we define

_ 22+t ifi=1,
U(z,i,t) = (4.1)
222 4 3z, if i = 2,

which shows

) 2o + 423, ifi=1,
Uy (x,i,t) =
4 + 1223, if i =2,

for (z,i,t) € R x S x Ry. By the equation (3.1), we have
LU (z,9,1,1) = (2x+4x3)(fx710m3)+3i2(y§)2(2+12x2)7(1:2+:174)+(29:2+39:4)
< —x? —222% — 39.87525 + %Gyé +0.2595
and
LU (2,2,2,t) = (4x+12x3)(%x74:173)+é(y%)2(4+3612)+8(x2+9:4)78(2x2+3x4)
< —6a% — 26z — 46.52° + %yé + 3y5.
Moreover

e 422 + 162* + 162%, ifi=1,
‘Um(xvl’t)‘ = (4.2)
1622 4 962t + 14425, if i = 2.
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i ) = | — g1 — 10232 < 297 + 20025, if i = 1, (3)
s Y1y by - .
|iy1 — 423 < L1y? 4+ 3225, ifi=2.
312, i i =1,

H3l?, ifi=2.

|g(x792517t)‘2 (44)

Setting B1 = 0.05, B2 = 0.1, B3 = 4, using (4.2)-(4.4), we obtain that

£U(x7yl7y2ai7t) + ﬁl‘Uz<x7l7t)‘2 + BQ‘f(xayl7y27iat)|2 + ﬁ3|g(x7yl7y2ai7t)|2
—0.82% — 21.22* — 19.0752°% + 0.2y + Zy3 + 39S, ifi=1,
—5.202 — 21.12* — 36.12% + 0.05y% + 1.5y5 + 3¢5, if i = 2.

This implies

[,U(.’ﬂ,yz,l',t) + 51|Uz(xviat)|2 + 52|f(1'7y1; Z‘71")|2 + 53|g(xa y2viat)‘2
—0.822 — 21.12% — 19.07525 + 0.2y + 1.5y* + 33°

<
< —6(0.12% + 32* + 32°%) + 2(0.1y7 + 3y; + 3y%) + 0.1y3 + 3y5 + 3y5.

Letting Uy (x,t) = 0.12% + 32 +32%, a = 6, a1 = 2,0 = 1,, we get condition (3.2).
Noting that n; = 1,n = 2 and w; = 1, then condition (3.4) becomes

7 <0.1.

By Theorem 3.3, we can therefore conclude that the solution of the SDDE (1.1)

1.8 B
1.6 1
1.4 A
1.2 A

1.5+ —
= 41| i

=

0.5 A

t

Figure 3. The computer simulation of the sample paths of the Markovian chain and the SDDE (1.1)
with 7 = 0.1 using the Euler—Maruyama method with step size 1073.

has the properties that
/ (z2(t) + x*(t) + 25(¢))dt < 00 a.s. and
0

/OO E(2?(t) + 2*(t) + 2°(t))dt < .
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Moreover, as |z(t)[P < 22(t) + 2*(t) + 25(t) for any p € [2, 6], we have

/ E|a(t)[Pdt < oo.

0

Recalling g1 = 3, g2 = 2 and ¢ = 6, we see that for p = 4, all conditions of Theorem
3.4 are satisfied and hence we have

lim E|z(t)|* = 0.
t—o00

We perform a computer simulation with the time-delay 7 = 0.1 for all ¢ > 0 and
the initial data xz(u) = 2 + sin(u) for v € [—0.1,0] and r(0) = 2. The sample paths
of the Markovian chain and the solution of the SDDE (1.1) are plotted in Figure 3.
The simulation supports our theoretical results.

5. Conclusion

In real world applications, the stability and boundedness of stochastic differential
delay equations are interesting topics. In this paper, we established the criteria of
stability and boundedness of the solutions to SDDEs with variable multiple delays.
To this end, we investigated the highly nonlinear hybrid multiple-delay SDEs. In
fact, the stability of SDDEs have been studied for many years, most of the results
in this topic require that the coefficients of equations are linear or nonlinear but
bounded by linear functions. Recently, without the linear growth condition, Fei
et al. [7] was the first to establish the delay-dependent stability criteria for highly
nonlinear SDDEs by the method of Lyapunov function with a single time delay. In
this paper, we obtained the results of hybrid highly nonlinear SDE with variable
multiple delays. An illustrative example was given for our theory.

Acknowledgements. The authors are grateful to the anonymous referees for their
useful suggestions which improve the contents of this article.
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