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TURING-HOPF BIFURCATION IN THE
REACTION-DIFFUSION SYSTEM WITH

DELAY AND APPLICATION TO A DIFFUSIVE
PREDATOR-PREY MODEL∗

Yongli Song1,†, Heping Jiang2 and Yuan Yuan3

Abstract The interactions of diffusion-driven Turing instability and delay-
induced Hopf bifurcation always give rise to rich spatiotemporal dynamics. In
this paper, we first derive the algorithm for the normal forms associated with
the Turing-Hopf bifurcation in the reaction-diffusion system with delay, which
can be used to investigate the spatiotemporal dynamical classification near
the Turing-Hopf bifurcation point in the parameter plane. Then, we consider
a diffusive predator-prey model with weak Allee effect and delay. Through
investigating the dynamics of the corresponding normal form of Turing-Hopf
bifurcation induced by diffusion and delay, the spatiotemporal dynamics near
this bifurcation point can be divided into six categories. Especially, stable
spatially homogeneous/inhomogeneous periodic solutions and steady states,
coexistence of two stable spatially inhomogeneous periodic solutions, coexis-
tence of two stable spaially inhomogeneous steady states and the transition
from one kind of spatiotemporal patterns to another are found.

Keywords Diffusion, delay, Turing-Hopf bifurcation, normal form, predator-
prey model.
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1. Introduction

Since Alan Turing proposed a reaction-diffusion (RD) system to explain how diffu-
sion motivates the spatial patterns in the morphological phenomena [38], diffusion-
driven instability (known as Turing instability) has been widely studied and the
reaction-diffusion model acts gradually as a framework for understanding biological
pattern formation [21, 39]. Numerical analysis and simulations have shown that a
surprising variety of irregular spatiotemporal patterns can occcur even for a simple
reaction-diffusion model [26].
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On the unbounded domain, the travelling wave solutions of the RD system have
been widely investigated [40,46]. On the bounded domain, the effect of the bound-
ary condition on the dynamcis of the RD system is discussed in the framework of
bifurcation theory [14,23]. There are many works dealling with the Hopf bifurcaion
and Turing bifurcation in a wide variety of fields like the biological and ecological
systems [22,27–29,31,37,41,49], biochemical system [6,7,18]. Interactions between
different bifiurcations can result in particularly complex patterns. The complex
spatiotemporal patterns due to interaction between Turing and Hopf bifurcations
( known as Turing-Hopf bifurcation) have been studied in [19, 20, 32, 48]. In [34],
the authors derived the algorithm of calculating the norm form associated with the
Turing-Hopf bifurcation for a general RD system and found that stable spatially
inhomogeneous periodic solutions emerge because of the interaction between Tur-
ing and Hopf bifurcations, which are periodic in both space and time. These stable
spatially inhomogeneous periodic solutions are different from the classic Turing pat-
terns [38], which are periodic in space but stationary in time. Interaction between
Turing bifurcations (known as spatial resonances or Turing-Turing bifurcation or
Bogdanov-Takens bifurcation) have been discussed in [19, 45, 47]. For more works
on bifurcation theory of RD system, see the excellent monographs by Haragus and
Iooss [14] and Mei [23].

In addition, there are many reasons of introducing time delay into the real bi-
ological or biochemical systems such as the maturation delay and digestion delay
in the population system, time delay due to the process of transcription and trans-
lation in physiology and the delay during the chemical reaction. The system with
delay means that the evolution of system depends on not only the present but also
the historical information. In terms of various modeling mechanisms, discrete delay,
distributed delay, nonlocal delay and spatiotemporal delay are often involved in the
literatures. For the Neumann boundary condition, the influence of delay on the sta-
bility of the positive homogeneous steady state and delay-induced Hopf bifurcation
have been investigated in [9, 16, 24, 36, 50]. The main result of these studies show
that delay can induce the stable spatially homogeneous periodic solution and the
first critical value is the same to that in the corresponding local system (the system
without diffusion). For the Direchlet boundary condition, the stability of the pos-
itive spatially inhomogeneous steady state and delay-induced Hopf bifurcation are
investigated in [1,3,11,12,15,30,35]. The stability and direction of Hopf bifurcation
can be determined by calculating the corresponding normal forms. In [8], Faria
developed the normal form theory for partial functional differential equations near
equilibrium points and studied the qualitative behavior of solutions when a Hopf b-
ifurcation occurs. The Bogdanov-Takens bifurcations in the reaction-diffusion with
delay have been studied in [2, 42].

However, there are few works on Turing-Hopf bifurcation in the RD system
with delay. Hadeler and Ruan [13] have studied the joint effects of diffusion and
delay and pointed out that it would be very interesting to study the Turing-Hopf
bifurcation in the delayed diffusive predator-prey model. In [33], Song and Jiang
derived the algorithm of the normal form for the zero-Hopf bifurcation for a general
system with delay but without diffusion. Motivated by the works in [8, 13, 33, 34],
in this paper, we investigate the dynamics aroused by the interaction between the
diffusion-driven Turing instability and delay-induced Hopf bifurcation. The reseach
is based on the calculation of normal form for Turing-Hopf bifurcation. Although the
normal form theory for partial functional differential equations has been developed
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in [8], the explicit expression of the coefficient of the normal form of the Turing-Hopf
bifurcation depending on the original system has not been derived. We first derive
the algorithm of calculating the normal form of Turing-Hopf bifurcation for the
general raction-diffusion system with delay and obtain the explicit expression of the
coefficients up to third-order terms of the normal form, which can be determined by
the coefficients of second and third terms of the original system. Then, applying the
obtained general theoretical results to a diffusive predator-prey model with weak
Allee effect and delay, the coefficiens of the normal form can be explicitly given in
terms of the coefficients of the original system and obtain dynamical classification
near the Turing-Hopf bifurcation point. We would like to mention that partial of
the work presented in this paper is based on Heping Jiang’s doctoral dissertation
in 2016, while similar project has also been studied in [17]. The theoretical results
obtained in both of this manuscript and [17] are general extension of [34] from the
RD system without delay to delay case.

This paper is organized as follows. In Section 2, we derive the algorithm of
calculating the normal form of Turing-Hopf bifurcation for the general raction-
diffusion system with delay. In Section 3, we investigate the dynamics of diffusive
predator-prey model with weak Allee effect and delay. We end the paper with a
conclusion.

2. Normal forms of Turing-Hopf bifurcation in the
reaction-diffusion system with delay

We consider the following reaction-diffusion system with delay

∂u(x, t)

∂t
= d∆u(x, t) +G(u(x, t), u(x, t− τ), δ), x ∈ (0, `π), t > 0, (2.1)

where u(x, t) = (u1(x, t), u2(x, t), · · · , un(x, t))
T

,

d∆ = diag

{
d1

∂2

∂x2
, d2

∂2

∂x2
, · · · , dn

∂2

∂x2

}
, G = (G1, G2, · · · , Gn)

T
,

G(0, 0, δ) = 0, τ > 0 and δ > 0 are parameters.
In the following, we investigate the Turing-Hopf bifurcation for system (2.1)

with the Neumann boundary condition ∂u(x,t)
∂x

∣∣∣
x=0,`π

= 0, t > 0. Obviously, u = 0

is always a solution. The characteristic equation of the linearized system of system
(2.1) at u = 0 is ∏

k∈N0

Γk(λ) = 0, (2.2)

where N0 = {0, 1, 2, · · · }, Γk(λ) = det (Mk(λ)) with

Mk(λ) = λIn+diag

{
d1

(
k

`

)2

, d2

(
k

`

)2

, · · · , dn
(
k

`

)2
}
−A0,δ−A1,δe

−λτ , (2.3)

where In is an n× n identity matrix, A0,δ = ∂G(0,0,δ)
∂u(x,t) , A1,δ = ∂G(0,0,δ)

∂u(x,t−τ) .

The notations used in this section are the same as in references [8, 34]. For the
codimension−2 Turing-Hopf singularity, we give the following assumption:
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(A1) when (δ, τ) = (δ∗, τ∗), the equation Γ0(λ) = 0 has a pair of simple purely
imaginary roots ±iω∗, and there exists an integer k = k∗ ∈ N = {1, 2, · · · }
such that the equation Γk∗(λ) = 0 has a simple zero root λ = 0. In addition,
the corresponding transversality condtion holds.

In what follows, set δ = δ∗ + µ1 and τ = τ∗ + µ2 such that µ1 and µ2 are per-
turbation parameters. Normalizing the delay by the time-scaling t→ t/τ , defining
the real-valued Sobolev space

X =

{
u ∈

(
W 2,2(0, `π)

)n
,
∂ui
∂x

= 0, x = 0, `π, i = 1, 2, · · · , n
}
,

and letting C := C ([−1, 0]; X ) be the Banach space of continuous mappings from
[−1, 0] to X with the sup norm, system (2.1) becomes the following system on C

∂u(x, t)

∂t
= (τ∗ + µ2)d∆u(x, t) + L(µ)(ut(x, θ)) + F (ut(x, θ), µ), (2.4)

where ut(x, θ) ∈X for ut(x, θ) = u(x, t+ θ),−1 ≤ θ ≤ 0,

L(µ)(ut(x, θ)) = (τ∗ + µ2) (A0,δ∗+µ1
ut(x, 0) +A1,δ∗+µ1

ut(x,−1)) , (2.5)

F (ut(x, θ), µ) = (τ∗ + µ2)G(ut(x, 0), ut(x,−1), δ∗ + µ1)− L(µ)(ut(x, θ)). (2.6)

Assume that V is a neighbourhood of zero in R2, and F : C × V → X is
a Ck function (k ≥ 2) with F (0, µ) = 0, DF (0, µ) = 0 for all µ = (µ1, µ2) ∈ V ,
where Ck = Ck ([−1, 0]; X ) denotes the space of k times continuously differentiable
functions from [−1, 0] to X . Further, we write system (2.4) as the following form
in which linear tems is separated from nonlinear terms

∂u(x, t)

∂t
= τ∗d∆u(x, t) + L0(ut(x, θ)) + F̃ (ut(x, θ), µ), (2.7)

where

L0(ut(x, θ)) = L(0)(ut(x, θ)) = τ∗ (A0,δ∗ut(x, 0) +A1,δ∗ut(x,−1)) (2.8)

and

F̃ (ut(x, θ), µ) = F (ut(x, θ), µ) +L(µ) (ut(x, θ))−L0 (ut(x, θ)) +µ2d∆u(x, t). (2.9)

The linearized system of (2.7) is

∂u(x, t)

∂t
= τ∗d∆u(x, t) + L0(ut(x, θ)). (2.10)

The characteristic equation of (2.10) is∏
k∈N0

Γ̃k(λ) = 0, (2.11)

where Γ̃k(λ) = det
(
M̃k(λ)

)
with

M̃k(λ) = λIn − τ∗diag
{
δ

(1)
k , δ

(2)
k , · · · , δ(n)

k

}
− τ∗A0,δ∗ − τ∗A1,δ∗e

−λ, (2.12)
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where δ
(j)
k = −dj

(
k
`

)2
, j = 1, 2, · · · , n, k ∈ N0.

It follows from the assumption (A1) that the characteristic equation (2.11) has
a pair of simple purely imaginary roots ±iωc with ωc = ω∗τ∗ for k = 0, and has a
simple zero root λ = 0 for k = k∗.

Let C := C ([−1, 0],Rn) , C∗ := C ([0, 1],Rn∗), where Rn∗ is the n−dimensional
space of row vectors, and define the adjoint bilinear form on C∗ × C as follows

〈ψ(s), φ(θ)〉 = ψ(0)φ(0)−
∫ 0

−1

∫ θ

0

ψ(ξ − θ)dMk(θ)φ(ξ)dξ, for ψ ∈ C∗, φ ∈ C,

where Mk ∈ BV ([−1, 0];Rn) such that for φ(θ) ∈ C,

diag
{
δ

(1)
k , δ

(2)
k , · · · , δ(n)

k

}
φ(0) + L0(φ(θ)) =

∫ 0

−1

dMk(θ)φ(θ).

Choosing

Φ1(θ) =
(
ξ0e

iωcθ, ξ0e
−iωcθ

)
, Φ2(θ) = ξk∗ ,

Ψ1(s) = col
(
ηT0 e

−iωcs, ηT0 e
iωcs

)
, Ψ2(s) = ηTk∗ ,

where ξ0 ∈ Cn and ξk∗ ∈ Rn are the eigenvectors of system (2.10) associated with
the eigenvalues iωc and 0, respectively, η0 ∈ Cn and ηk∗ ∈ Rn are the corresponding
adjoint eigenvectors such that

〈Ψ1(s),Φ1(θ)〉 = I2, 〈Ψ2(s),Φ2(θ)〉 = 1.

For u = (u1, · · · , un)T , v = (v1, · · · , vn)T ∈ X , define the inner product [·, ·] as
follows

[u, v] =

∫ lπ

0

uT vdx.

The eigenvalues of τ∗d∆ on X are τ∗δ
(j)
k with corresponding normalized eigenfunc-

tions β
(j)
k defined by

β
(j)
k = γk(x)ej , γk(x) =

cos
(
kx
`

)
‖ cos

(
kx
`

)
‖2,2

=


1√
`π
, for k = 0,

√
2√
`π

cos
(
kx
`

)
, for k 6= 0,

where ej is the unit coordinate vector of Rn.

Following [8] and [34], define C 1
0 =

{
φ ∈ C : φ̇ ∈ C , φ(0) ∈ dom(d∆)

}
and let

Φ(θ) =
(

Φ1(θ) Φ2(θ)
)
, zx = (z1(t)γ0(x), z2(t)γ0(x), z3(t)γk∗(x))

T
. For ϕt(x, θ) ∈

C 1
0 , we have the following decomposition

ϕt(x, θ) = Φ(θ)zx + w, w ∈ C 1
0 ∩Kerπ := Q1. (2.13)

Then, system (2.7) is decomposed as a system of abstract ODEs on R3 ×Kerπ
ż = Bz + Ψ(0)


[
F̃ (Φ(θ)zx + w, µ) , β

(1)
ν

]
· · ·[

F̃ (Φ(θ)zx + w, µ) , β
(n)
ν

]

ν=k∗

ν=0

,

ẇ = AQ1w + (I − π)X0(θ)F̃ (Φ(θ)zx + w, µ) ,

(2.14)
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where AQ1 : Q1 → Kerπ is defined by

AQ1w = ẇ +X0(θ)
(
L0(w) + Ld0(w)− ẇ(0)

)
, (2.15)

and B = diag {iωc,−iωc, 0} ,Ψ(0) = diag {Ψ1(0),Ψ2(0)}.
In terms of the normal form theory of partial functional differential equations [8],

after a recursive transformation of variables of the form

(z, w) = (z̃, w̃) +
1

j!

(
U1
j (z̃, µ), U2

j (z̃, µ)
)
, j ≥ 2,

where z, z̃ ∈ R3, w, w̃ ∈ Q1 and U1
j : R5 → R3, U2

j : R5 → Q1 are homogeneous
polynomials of degree j in z̃ and µ, the flow on the local center manifold for (2.14)
is written as

ż = Bz +
∑
j≥2

1

j!
g1
j (z, 0, µ), (2.16)

which is the normal form as in the usual sense for ODEs.

2.1. Calculation of g1
2(z, 0, µ)

The calculation of g1
2(z, 0, µ) is very similar to that in [34]. Here, we simply give

the results. Consider the formal Taylor expansion

L(µ) = L0 + µ1L
(1,0)
1 + µ2L

(0,1)
1 +

1

2

(
µ2

1L
(2,0)
2 + 2µ1µ2L

(1,1)
2 + µ2

2L
(0,2)
2

)
+ · · · ,

(2.17)

F (v, µ) =
1

2
F2(v, µ) +

1

3!
F3(v, µ) + · · · , (2.18)

where Fj , j ≥ 2 is the jth Fréchet derivative of F . By (2.14), (2.17) and (2.18), we
have

f1
2 (z, 0, µ) = Ψ(0)


[
2L̃1(µ) (Φ(θ)zx) + F2 (Φ(θ)zx, µ) , β

(1)
ν

]
· · ·[

2L̃1(µ) (Φ(θ)zx) + F2 (Φ(θ)zx, µ) , β
(n)
ν

]

ν=k∗

ν=0

, (2.19)

where
L̃1(µ) = L1(µ) + µ2d∆ = µ1L

(1,0)
1 + µ2L

(0,1)
1 + µ2d∆.

For simplification of notations, we set

H (αzq11 z
q2
2 z

q3
3 µ

ι1
1 µ

ι2
2 ) =

αzq11 z
q2
2 z

q3
3 µ

ι1
1 µ

ι2
2

αzq21 z
q1
2 z

q3
3 µ

ι1
1 µ

ι2
2

 , α ∈ C.

Then, we obtain

1
2g

1
2(z, 0, µ) = 1

2 ProjKer(M1
2 ) f

1
2 (z, 0, µ)

=

H ((B11µ1 +B21µ2)z1)

(B13µ1 +B23µ2) z3

 ,
(2.20)
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where
B11 = ηT0 L

(1,0)
1

(
ξ0e

iωcθ
)
, B21 = ηT0 L

(0,1)
1

(
ξ0e

iωcθ
)
,

B13 = ηTk∗L
(1,0)
1 (ξk∗) , B23 = ηTk∗

(
L

(0,1)
1 (ξk∗)−

(
k∗
`

)2

Idξk∗

)
,

where Id = diag {d1, d2, · · · , dn} .

2.2. Calculation of g1
3(z, 0, ε)

Since F (0, µ) = 0 and DF (0, µ) = 0, F2(Φ(θ)zx + w, µ) can be written as

F2(Φ(θ)zx + w, µ) = F2(Φ(θ)zx + w, 0)

=
∑

q1+q2+q3=2
Aq1q2q3γ

q1+q2
0 (x)γq3k∗(x)zq11 z

q2
2 z

q3
3 + S2 (Φ(θ)zx, w) +O(|w|2),

(2.21)

where S2 are product terms of Φ(θ)zx and w, q1, q2, q3 ∈ N0 and

Aq1q2q3 ∈ Cn, Aq1q2q3 = Aq2q1q3 ,

we have

g1
3(z, 0, ε) = ProjKer(M1

3 )f̃
1
3 (z, 0, ε) = ProjS f̃1

3 (z, 0, 0) +O
(
|z||ε|2 + |z|2|ε|

)
,

where

S =span
{
z2

1z2e1, z1z
2
3e1, z1z

2
2e2, z2z

2
3e2, z1z2z3e3, z

3
3e3

}
,

f̃1
3 (z, 0, 0) =f1

3 (z, 0, 0) +
3

2

[ (
Dzf

1
2

)
(z, 0, 0)U1

2 (z, 0)

+
(
Dwf

1
2

)
(z, 0, 0)U2

2 (z, 0)−
(
DzU

1
2 (z, 0)

)
g1

2(z, 0, 0)
]
,

with
U1

2 (z, 0) =
(
M1

2

)−1
ProjIm(M1

2 )f
1
2 (z, 0, 0) (2.22)

and (
M2

2U
2
2

)
(z, 0) = f2

2 (z, 0, 0). (2.23)

Here, the definitions of the operators M1
2 and M2

2 are the same as in [8]. We

calculate ProjS f̃
1
3 (z, 0, 0) in the following three subsections.

2.2.1. The calculation of ProjSf
1
3 (z, 0, 0).

Writing F3(Φ(θ)zx, 0) as follows

F3(Φ(θ)zx, 0) =
∑

q1+q2+q3=3

Aq1q2q3γ
q1+q2
0 (x)γq3k∗(x)zq11 z

q2
2 z

q3
3 , Aq1q2q3 = Aq2q1q3 ,

(2.24)
we have

1

3!
ProjSf

1
3 (z, 0, 0) =

H
(
C210z

2
1z2 + C102z1z

2
3

)
C111z1z2z3 + C003z

3
3

 , (2.25)
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where

C210 = 1
6`πη

T
0 A210, C102 = 1

6`πη
T
0 A102,

C111 = 1
6`πη

T
k∗
A111, C003 = 1

4`πη
T
k∗
A003.

(2.26)

2.2.2. The calculation of ProjS
(
Dzf

1
2

)
(z, 0, 0)U1

2 (z, 0) and ProjS
(
DzU

1
2 (z, 0)

)
g12(z, 0, 0).

1

3!
ProjS

(
Dzf

1
2 (z, 0, 0)U1

2 (z, 0)
)

=

H
(
D210z

2
1z2 +D102z1z

2
3

)
D111z1z2z3 +D003z

3
3

 , (2.27)

where

D210 = 1
6`πωci

{
−
(
ηT0 A200

) (
ηT0 A110

)
+
∣∣ηT0 A110

∣∣2 + 2
3

∣∣ηT0 A020

∣∣2} ,
D102 = 1

6`πωci

{
−2
(
ηT0 A200

) (
ηT0 A002

)
+
(
ηT0 A110

) (
ηT0 A002

)
+2
(
ηT0 A002

) (
ηTk∗A101

)}
,

D111 = − 1
3`πωc

Im
{(
ηTk∗A101

) (
ηT0 A110

)}
,

D003 = − 1
3`πωc

Im
{(
ηTk∗A101

) (
ηT0 A002

)}
.

(2.28)

Note that

1

3!
ProjS

(
DzU

1
2 (z, 0)

)
g1

2(z, 0, 0) =
(

0 0 0
)T

.

2.2.3. The calculation of ProjS
(
Dwf

1
2

)
(z, 0, 0)U2

2 (z, 0).

Let

U2
2 (z, 0)(θ) , h(z) =

∑
k≥0

n∑
j=1

h
(j)
k (z, θ)β

(j)
k

with h
(j)
k (z, θ) =

∑
q1+q2+q3=2

h
(j)
kq1q2q3

(θ)zq11 z
q2
2 z

q3
3 . For simplification of notations, set

hk(z, θ)=
(
h
(1)
k (z, θ), h

(2)
k (z, θ),· · ·, h(n)

k (z, θ)
)T
, hkq1q2q3(θ)=

(
h
(1)
kq1q2q3

(θ),· · ·, h(n)
kq1q2q3

(θ)
)T

and

hkq1q2q3(z, θ) = hkq1q2q3(θ)zq11 z
q2
2 z

q3
3 .

Then, we have

1

3!
ProjS

(
Dwf

1
2 (z, 0, 0)U2

2 (z, 0)
)

=

H
(
E210z

2
1z2 + E102z1z

2
3

)
E111z1z2z3 + E003z

3
3

 , (2.29)
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where

E210 = 1
6
√
`π
ηT0
{
S2(ξ0e

iωcθ, h0110(θ)) + S2(ξ0e
−iωcθ, h0200(θ))

}
,

E102 = 1
6
√
`π
ηT0
{
S2(ξ0e

iωcθ, h0002(θ)) + S2(ξk∗ , hk∗101(θ))
}
,

E111 = 1
6
√
`π
ηTk∗
{
S2(ξ0e

iωcθ, hk∗011(θ))+S2(ξ0e
−iωcθ, hk∗101(θ))+S2(ξk∗ , h0110(θ))

}
+ 1

6
√

2`π
ηTk∗S2(ξk∗ , h(2k∗)110(θ)),

E003 = 1
6
√
`π
ηTk∗S2(ξk∗ , h0002(θ)) + 1

6
√

2`π
ηTk∗S2(ξk∗ , h(2k∗)002(θ)).

(2.30)
Clearly, we still need to compute h0110, h0200, h0002, hk∗101, hk∗011, h(2k∗)110,

h(2k∗)002. From [8] and (2.15), defining X0(θ) = 0 for −1 ≤ θ < 0 and X0(0) = 0,
then we have

M2
2

(
n∑
j=1

h
(j)
k (z, θ)β

(j)
k

)

=

(
Dz

(
n∑
j=1

h
(j)
k (z, θ)β

(j)
k

)
Bz

)
−AQ1

(
n∑
j=1

h
(j)
k (z, θ)β

(j)
k

)
,

which leads to

[
M2

2

(
n∑
j=1

h
(j)
k (z, θ)β

(j)
k

)
, β

(1)
k

]

· · ·[
M2

2

(
n∑
j=1

h
(j)
k (z, θ)β

(j)
k

)
, β

(n)
k

]


= iωc

(
2hk200(θ)z2

1 + hk101(θ)z1z3 − 2hk020(θ)z2
2 − hk011(θ)z2z3

)
−
(
ḣk(z, θ)+X0(θ)

[
L0(hk(z, θ))+τ∗diag

{
δ

(1)
k , δ

(2)
k , · · · , δ(n)

k

}
hk(z, 0)−ḣk(z, 0)

])
.

(2.31)
By (2.14), we get

f2
2 (z, 0, 0) = (I − π)X0(θ)F̃2 (Φ(θ)zx, 0)

= X0(θ)F̃2 (Φ(θ)zx, 0)− Φ1(θ)Ψ1(0)


[
F̃2 (Φ(θ)zx, 0) , β

(1)
0

]
· · ·[

F2 (Φ(θ)zx, 0) , β
(n)
0

]
 γ0(x)

−Φ2(θ)Ψ2(0)


[
F̃2 (Φ(θ)zx, 0) , β

(1)
k∗

]
· · ·[

F2 (Φ(θ)zx, 0) , β
(n)
k∗

]
 γk∗(x).
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So,
[
f2
2 (z, 0, 0), β

(1)
k

]
· · ·[

f2
2 (z, 0, 0), β

(n)
k

]
 =



1√
`π

(X0(θ)− Φ1(θ)Ψ1(0))
(
A200z

2
1 +A020z

2
2

+A002z
2
3 +A110z1z2

)
,

k = 0,

1√
`π

(X0(θ)− Φ2(θ)Ψ2(0)) (A101z1z3 +A011z2z3) , k = k∗,

1√
2`π

X0(θ)A002z
2
3 , k = 2k∗.

(2.32)
Hence, denote

Lk (h(θ)) = L0 (h(θ)) + τ∗diag
{
δ

(1)
k , δ

(2)
k , · · · , δ(n)

k

}
(h(θ))

and then from (2.31), (2.32) and matching the coefficients of z2
1 , z1z2, z1z3, z2z3, z

2
3 ,

we have

k = 0,



z2
1 :

ḣ0200(θ)− 2iωch0200(θ) = 1√
`π

Φ1(θ)Ψ1(0)A200,

ḣ0200(0)−L0(h0200(θ)) = 1√
`π
A200,

z1z2 :

ḣ0110(θ) = 1√
`π

Φ1(θ)Ψ1(0)A110,

ḣ0110(0)−L0(h0110(θ)) = 1√
`π
A110,

z2
3 :

ḣ0002(θ) = 1√
`π

Φ1(θ)Ψ1(0)A002,

ḣ0002(0)−L0 (h0002(θ)) = 1√
`π
A002,

(2.33)

k = k∗, z1z3 :

ḣk∗101(θ)− iωchk∗101(θ) = 1√
`π

Φ2(θ)Ψ2(0)A101,

ḣk∗101(0)−Lk∗hk∗101(0) = 1√
`π
A101,

(2.34)

k = 2k∗,


z23 :

{
ḣ(2k∗)002(θ) = 0,

ḣ(2k∗)002(0)−L2k∗

(
h(2k∗)002(0)

)
= 1√

2`π
A002,

z1z2 :

{
ḣ(2k∗)110(θ) = 0,

ḣ(2k∗)110(0)−L2k∗

(
h(2k∗)110(0)

)
= 0,

(2.35)

and hk∗011 = hk∗101.
Let

B210 = C210 +
3

2
(D210 + E210) , B102 = C102 +

3

2
(D102 + E102) ,

B111 = C111 +
3

2
(D111 + E111) , B003 = C003 +

3

2
(D003 + E003) .

Then, by (2.20),(2.25), (2.27) and (2.29), and transforming the system (2.16) to
the cylindrical coordinates form, we obtain the normal form truncated to the third
order terms for the Turing-Hopf bifurcation as follows{

ρ̇ = α1(µ)ρ+ κ11ρ
3 + κ12ρr

2,

ṙ = α2(µ)r + κ21ρ
2r + κ22r

3,
(2.36)
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where

α1(µ) = Re (B11)µ1 + Re (B21)µ2, α2(µ) = Re (B13)µ1 + Re (B23)µ2,

κ11 = Re (B210) , κ12 = Re (B102) , κ21 = B111, κ22 = B003.

3. The dynamics of diffusive predator-prey model
with weak Allee effect and delay

Using the developed algorithm in the previous section, we consider the following
diffusive predator-prey model with weak Allee effect and delay under the Neumann
boundary condtion

∂u(x,t)
∂t = d1uxx(x, t) + u2(x, t)(1− u(x, t))− u(x, t)v(x, t− τ), 0 < x < π, t > 0,

∂v(x,t)
∂t = d2vxx(x, t) + δv(x, t)

(
1− v(x,t)

γu(x,t)

)
, 0 < x < π, t > 0,

ux(0, t) = ux(π, t) = vx(0, t) = vx(π, t) = 0, t ≥ 0,

(3.1)
where u(x, t) and v(x, t) can be interpreted as the densities of prey and predator
populations, respectively, d1 and d2 are the corresponding coefficients of the diffu-
sion in space, δ stands for the conversion rate of prey into predators biomass and τ
represents the hunting delay of the predator species. For the biological meaning of
this model, see [4, 10,25,43] and references therein.

Clearly, there exists a positive constant steady state E∗ (1− γ, γ(1− γ)) in (3.1)
provided that 0 < γ < 1. Therefore, the linearization of (3.1) at the equilibrium
E∗ is  ∂u(x,t)

∂t

∂v(x,t)
∂t

 = d∆

u(x, t)

v(x, t)

+A0

u(x, t)

v(x, t)

+A1

u(x, t− τ)

v(x, t− τ)

 (3.2)

with

d∆ =

d1∆ 0

0 d2∆

 , A0 =

a11 0

a21 a22

 , A1 =

 0 a12

0 0

 ,

where for 0 < γ < 1,

a11 = (1− γ)(2γ − 1)


≤ 0, 0 < γ ≤ 1/2,

> 0, 1/2 < γ < 1,

a12 = γ − 1 < 0,

a21 = δγ > 0, a22 = −δ < 0.

(3.3)

The characteristic equation of (3.2) is (2.2) with

Γk = λ2 + Tkλ+Dk(τ) = 0, k ∈ N0, (3.4)

where

Tk =
(
(d1 + d2) k2 − (a11 + a22)

)
= (d1 + d2) k2 + δ − (1− γ)(2γ − 1), (3.5)
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and

Dk(τ)

= d1d2k
4 − (d2a11 + d1a22) k2 + a11a22 − a12a21e

−λτ

= d1d2k
4 + (d1δ − d2(1− γ)(2γ − 1))k2 − δ(1− γ)(2γ − 1) + δγ(1− γ)e−λτ .

(3.6)

3.1. Stability and diffusion-driven Turing instability for the
case without delay

Without diffusion and delay (d1 = d2 = τ = 0), system (3.1) becomes the following
ordinary differential model

du(t)
dt = u2(t)(1− u(t))− u(t)v(t),

dv(t)
dt = δv(t)

(
1− v(t)

γu(t)

)
.

(3.7)

Clearly, the system (3.1) and (3.7) have the same positive equilibrium E∗. By
a simple linear analysis, we can obtian the following result.

Lemma 3.1. For system (3.7) with 0 < γ < 1, the positive equilibrium E∗ is stable
when (γ, δ) ∈ R1 and unstable when (γ, δ) ∈ R2, and H0 is the Hopf bifurcation
curve, where

R1 =

{
(γ, δ)

∣∣∣∣ 0 < γ ≤ 1

2
, δ > 0

}
∪
{

(γ, δ)

∣∣∣∣ 1

2
< γ < 1, δ > (1− γ)(2γ − 1)

}
,

R2 =

{
(γ, δ)

∣∣∣∣ 1

2
< γ < 1, 0 < δ < (1− γ)(2γ − 1)

}
.

and H0 is defined by

H0 : δ = (1− γ)(2γ − 1),
1

2
< γ < 1. (3.8)

Next, we investigate the effect of diffusion on the positive equilibrium E∗ of
(3.1) in the case of τ = 0. For convenient statement, we rewrite system (3.1) with
τ = 0 as

∂u(x,t)
∂t = d1uxx(x, t) + u2(x, t)(1− u(x, t))− u(x, t)v(x, t), 0 < x < π, t > 0,

∂v(x,t)
∂t = d2vxx(x, t) + δv(x, t)

(
1− v(x,t)

γu(x,t)

)
, 0 < x < π, t > 0,

ux(0, t) = ux(π, t) = vx(0, t) = vx(π, t) = 0, t ≥ 0.

(3.9)
Then, we have the following Theorem.

Theorem 3.1. For the positive equilibrium E∗ of system (3.9), when 0 < γ < 1,
we have the following results on its stability and Turing instability.

(i) When 0 < d2 ≤ d1, there is no diffusion-driven Turing instability, and the
stability region is exactly the same to the case without diffusion.
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(ii) When 0 < d1 < d2, Turing instability may occur for

(1− γ)(2γ − 1) < δ < β(1− γ)(2γ − 1)− 2(1− γ)
√
βδ, γh < γ < 1, (3.10)

where β = d2/d1 and γh = 1
2 + β

1+β2 .

Proof. (i) By the characteristic equation (3.4), the positive equilibrium E∗ of
system (3.9) is locally stable if and only if Tk > 0, Dk(0) > 0 for all k ∈ N0.

Firstly, we have

D0(0) = δ(1− γ)2 > 0, T0 = δ − (1− γ)(2γ − 1).

When 0 < d2 ≤ d1 and (γ, δ) ∈ R1, it is easy to verify (d1δ−d2(1−γ)(2γ−1)) > 0,
which implies that Dk(0) = d1d2k

4 + (d1δ − d2(1 − γ)(2γ − 1))k2 + D0(0) > 0. In
addition, T0 = δ− (1−γ)(2γ−1) > 0 if and only if (γ, δ) ∈ R1 and Tk > 0 provided
that T0 > 0. The conclusion (i) is confirmed.

(ii) Assume that T0 > 0 and D0(0) > 0, i.e., the positive equilibrium is stable
without diffusion. We investigated the effect of the diffusion on the stability of the
positive equilibrium. Notcing that if T0 > 0, then Tk = (d1 + d2)k2 +T0 > 0. Thus,
the necessary condition for the occurrence of Turing instability is d1a22 +d2a11 > 0
and 4d1d2 (a11a22 − a12a21) − (d1a22 + d2a11)

2
< 0. By (3.3), it is easy to verify

that the inequality d1a22 + d2a11 > 0 is equivalent to δ < β(1− γ)(2γ − 1) and the

inequality 4d1d2 (a11a22 − a12a21)− (d1a22 + d2a11)
2
< 0 is equivalent to

0 < δ < β(1− γ)(2γ − 1)− 2(1− γ)
√
βδ. (3.11)

In the γ − δ plane, define a curve L by

L : δ = β(1− γ)(2γ − 1)− 2(1− γ)
√
βδ. (3.12)

It is easy to verify that the curves L and H0 intersect at γ = γh. Taking δ as a
parameter and letting λ(δ) be the root of Eq.(3.4) with τ = 0 near δ = δ∗ satisfying
λ(δ∗) = 0. Differentiating the two sides of Eq. (3.4) with respect to δ, we obtain

dλ(δ)

dδ

∣∣∣∣
δ=δ∗

= − (1− γ)2 + d1k
2

(d1 + d2)k2 + δ∗ − (1− γ)(2γ − 1)
< 0.

In addition, noticing that the stability region is R1 in the absence of diffusion. Thus,
the proof of conclusion (ii) is completed.

Notice that the condition (3.10) is not the sufficient and necessary condition for
the occurrence of Turing instability since the critical wave number should be positive
integer under the Neumann boundary condition. And the curve L defined by (3.12)
is not the exact boundary between the stability region and Turing instability region.
In what follows, we seek the exact boundary of Turing instability for the case
0 < d1 < d2.

Theorem 3.2. For system (3.9), assume that 0 < γ < 1 and 0 < d1 < d2. Let δ =
δ(γ) be the function defined by the implicit function δ = β(1−γ)(2γ−1)−2(1−γ)

√
βδ

and define

γk =
3 +
√

7

8
, βc =

√
7 + 5√
7− 1

, δh = δ(γh), δk = δ(γk),
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and
k̃c =

[
kMc
]
, (3.13)

where [·] is the integer function and kMc is defined by (3.16). Then we have the
following:

(i) When k̃c < 1, there is no diffusion-driven Turing instability and the positive
equilibrium E∗ is stable when (γ, δ) ∈ R1;

(ii) When k̃c ≥ 1, Turing instability occurs for (γ, δ) ∈ R12, where the region R12

is surrounded by the Hopf bifurcation curve H0 and Turing bifurcation curves
Lk with k = 1, · · · , k̃c; the positive equilibrium E∗ is stable for (γ, δ) ∈ R11

and unstable for (γ, δ) ∈ R2 ∪ R12, where R11 = R1 \ R12, and Lk is defined
by

Lk : δ =
−d1d2k

4 + d2(1− γ)(2γ − 1)k2

d1k2 + (1− γ)2
. (3.14)

Proof. On the curve L defined by (3.12) , the critical wave number kc is deter-
mined by

k2
c =
−δ + β(1− γ)(2γ − 1)

2d2
=

(1− γ)
√
βδ

d2
. (3.15)

Then Lk defined by (3.14) is followed from Dk(0) = 0. It is easy to verify that the
curves L and H0 intersect at γ = γh. Thus, if there exists at least one positive
integer k such that for γh ≤ γ < 1, the curve Lk is tangent to L, then Turing
instability occurs.

By (3.15), letting Z(γ) = (1−γ)
√
βδ

d2
, we have

Z ′(γ) =

√
βδ

2d2δ
(−2δ + (1− γ)δ′(γ))


> 0, δ < β

2 (1− γ)(−4γ + 3),

= 0, δ = β
2 (1− γ)(−4γ + 3),

< 0, δ > β
2 (1− γ)(−4γ + 3).

Solving δ = β
2 (1 − γ)(−4γ + 3) and δ = β(1 − γ)(2γ − 1) − 2(1 − γ)

√
βδ, we have

γ = γk. Thus, on the curve L, the critical wave number kc is increasing with γ for
0 < γ < γk and decreasing with γ for γ > γk. Solving γh = γk yields to β = βc.
And γk ≤ γh for β ≤ βc and γk > γh for β > βc. Thus, define

kMc =


√

(1−γh)
√
βδh

d2
, 1 < β ≤ βc,√

(1−γk)
√
βδk

d2
, β > βc.

(3.16)

Then, for γh ≤ γ < 1, the critical wave number kc satisfies 0 < kc < kMc . Therefore,
let k̃c =

[
kMc
]
. Then, if k̃c < 1, then for γh ≤ γ < 1, there is no Turing bifurcation

curve Lk. In this case, there is no diffusion-driven Turing instability.
If k̃c ≥ 1, there are k̃c Turing bifurcation curves Lk tangent to the curve L for

γh ≤ γ < 1, and the boundaries of Turing instability region consist of these curves
Lk with k = 1, · · · , k̃c. The proof is completed.

According to Lemma 3.1 and Theorems 3.1, for 0 < d2 ≤ d1, there is no diffusion-
driven Turing instability for system (3.9), the stability and instability regions are
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(B)
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Turing instability
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12

H
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L

2
L

1
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2

P
1

0 < d1 < d2

P

Figure 1. Stability and Turing instability regions for system (3.9). (A): when 0 < d2 ≤ d1, there is no
Turing instability and the shaded region R1 is the stability region of the positive equilibrium E∗ ; (B):
when 0 < d1 < d2, Turing instability region is the white region R12 and the shaded region R11 is the
stability region of the positive equilibrium E∗. Here d1 = 0.0125, d2 = 0.125.

illustrated in Fig.1(A). When d2 > d1, Turing instability may occur. Letting δ =
δ(γ) be the function defined by (3.12). From

δ′(γ) =
δ(β(−4γ + 3) + 2

√
βδ)

δ + (1− γ)
√
βδ


> 0, γ < γc,

= 0, γ = γc,

< 0, γ > γc,

where γc = 3+2
√

2
4+2
√

2
, obviously, the function δ(γ) is increasing for γ < γc and de-

creasing for γ > γc. Taking d1 = 0.0125, d2 = 0.125, implying β = 10 > βc =(√
7 + 5

)
/
(√

7− 1
)
, then k̃c = 2 follows from Theorem 3.2 and (3.13) . Thus,

there are only two Turing bifurcation curves L1 and L2 tangent to the curve L
for γh ≤ γ < 1. Numerical calculation confirms that these two Turing bifurca-
tion curves L1 and L2 intersect at P (0.8668, 0.3522) and are tangent to the curve
L, respectively, at P1(0.9325, 0.3362) and P2(0.7, 0.25) (Fig.1(B)). In Fig.1(B), the
stability region for the positive equilibrium E∗ is marked by R11, the region R12

(the white region) is diffusion-driven Turing instability region which is surround by
the Turing bifurcation curves L1 and L2 (the solid line) and the Hopf bifurcation
curve H0. The positive equilibrium E∗ is stable for (γ, δ) ∈ R11 and unstable for
(γ, δ) ∈ R12 ∪R2.

3.2. Delay-induced Hopf bifurcation and Turing-Hopf bifur-
cation

In this section, we investigate the effect of the delay on the stability of the positive
equilibrium E∗ of system (3.9) and delay-induced bifurcation phenomenon. We
focus on the following two cases:
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Case (i) either 0 < d2 ≤ d1 and (γ, δ) ∈ R1, or 0 < d1 < d2 and (γ, δ) ∈ R11;

Case (ii) 0 < d1 < d2 and (γ, δ) lies on Lk with k ∈ N and 0 < k ≤ k̃c.

When τ = 0, we know that the positive equilibrium E∗ of (3.9) is stable for case
(i) and the parameter pair (γ, δ) lies on the boundary of Turing instability region
for case (ii).

In what follows, for simplication of notations, we denote by k∗ for some k sat-
isfying k ∈ N and 0 < k ≤ k̃c and the corresponding Turing bifurcation curve is
Lk∗ .

From Theorems 3.1 and 3.2, we first have the following results on the distribution
of roots of the characteristic equation (3.4) when τ = 0.

Lemma 3.2. For τ = 0, we have the following:

(i) For case (i), all roots of Eq.(3.4) have negative real parts;

(ii) For case (ii), Eq.(3.4) has a simple zero root λ = 0 when k = k∗, no root with
zero real parts when k ∈ N0 and k 6= k∗ .

When τ > 0, the following theorem describes the distribution of roots of the
characteristic equation (3.4).

Lemma 3.3. Assume that ωk and τk,j are defined by (3.24) and (3.27), respectively
and

k∗c =


k0 − 1, k0 ∈ N,

[k0], k0 /∈ N,
(3.17)

where [·] is the integer function and k0 is the unique positive root of Q̃k given in
(3.23) . We have the following:

(i) when 0 < γ ≤ 1
3 , Eq.(3.4) has no purely imaginary roots;

(ii) when 1
3 < γ < 1, for case (i), Eq.(3.4) has a pair of purely imaginary roots

±iωk at τ = τk,j, k ∈ {0, 1, · · · , k∗c} , j ∈ N0, no purely imaginary roots for
any τ ≥ 0 when k ≥ k∗c + 1;

(iii) For case (ii), Eq.(3.4) has a pair of purely imaginary roots ±iωk at τ = τk,j,
k ∈ {0, 1, · · · , k∗c} , j ∈ N0, and k 6= k∗, no purely imaginary roots for any
τ ≥ 0 when either k = k∗ or k ≥ k∗c + 1.

Proof. Assume that iω(ω > 0) is a root of (3.4), then we have

ω2 −
(
(d1 + d2) k2 − (a11 + a22)

)
ωi− d1d2k

4 + (d2a11 + d1a22) k2

−a11a22 + a12a21(cosωτ − i sinωτ) = 0.
(3.18)

Separating the real and imaginary parts of (3.18) leads to{
ω2 −

(
d1d2k

4 − (d2a11 + d1a22) k2 + a11a22

)
+ a12a21 cosωτ = 0,(

(d1 + d2) k2 − (a11 + a22)
)
ω + a12a21 sinωτ = 0.

(3.19)

By (3.19), we have
ω4 + Pkω

2 +Qk = 0, k ∈ N0 (3.20)
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with
Pk =

(
d1k

2 − a11

)2
+
(
d2k

2 − a22

)2
> 0, (3.21)

Qk =
(
d1d2k

4 − (d1a22 + d2a11) k2 + a11a22

)2 − (a12a21)2 = Dk(0) · Q̃k, (3.22)

where
Dk(0) = d1d2k

4 − (d1a22 + d2a11) k2 + a11a22 − a12a21

and
Q̃k = d1d2k

4 − (d1a22 + d2a11) k2 + a11a22 + a12a21. (3.23)

Then, by a simple analysis, we have Dk(0) > 0 and Q̃k > 0 for 0 < γ ≤ 1
3 from

(3.3) and

Q̃0 = a11a22 + a12a21 = −δ(1− γ)(3γ − 1)

≥ 0, 0 < γ ≤ 1
3 ,

< 0, 1
3 < γ < 1.

Therefore, Eq.(3.20) has no positive real roots. This completes the proof of conclu-
sion (i).

It follows from Theorem 3.2 that for case (i) we have Dk(0) > 0 for k ∈ N0.
Notice that Q̃k is a quadratic polynomial with respect to k2 and Q̃0 < 0 for 1

3 <

γ < 1. Thus, we can conclude that there exists k0 > 0 such that Q̃k0 = 0 and

Qk = Dk(0)Q̃k

< 0, 0 ≤ k ≤ k∗c ,

≥ 0, k ≥ k∗c + 1,
k ∈ N0,

where k∗c is defined by (3.17). Thus, Eq.(3.20) has only one positive root ωk for
fixed k ∈ [0, k∗c ] and k ∈ N0, where

ω2
k =

1

2

(
−Pk +

√
P 2
k − 4Qk

)
=

2√
P 2
k

(−Qk)2 + 4
−Qk + Pk

−Qk

. (3.24)

But for k ≥ k∗c + 1, (3.24) has no positive real root, which implies that Eq.(3.4) has
no purely imaginary roots for any τ ≥ 0.

By (3.19), we have

cosωτ =
ω2 −

(
d1k

2 − a11

) (
d2k

2 − a22

)
−a12a21

(3.25)

and

sinωτ =

(
(d1 + d2) k2 − (a11 + a22)

)
ω

−a12a21
. (3.26)

It follows from (3.26) that sinωτ > 0 since − (a11 + a22) = δ−(1−γ)(2γ−1) > 0
and a12a21 < 0. Thus, by (3.25), we can define

τk,j =
1

ωk

(
arccos

ω2
k −

(
d1k

2 − a11
) (
d2k

2 − a22
)

−a12a21
+ 2jπ

)
, 0 ≤ k ≤ k∗c , k, j ∈ N0.

(3.27)

Then (3.4) has a pair of purely imaginary roots ±iωk at τ = τk,j . This confirms
conclusion (ii).
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When 0 < d1 < d2 and (γ, δ) ∈ Lk∗ , Dk∗(0) = 0 and Dk(0) > 0 for k ∈ N0 and
k 6= k∗. Since Q̃k = Dk(0) − 2δγ(1 − γ), we have Q̃k∗ = Dk∗(0) − 2δγ(1 − γ) =
−2δγ(1− γ) < 0. Thus, k∗ ≤ k∗c . Then we have

Qk = Dk(0)Q̃k


< 0, 0 ≤ k ≤ k∗c and k 6= k∗,

= 0, k = k∗,

≥ 0, k ≥ k∗c + 1,

which, together with Pk > 0, complets the proof of conclusion (iii).
If taking τ as a parameter, letting λ(τ) = α(τ) + iβ(τ) be the pair of roots

of Eq.(3.4) near τ = τk,j satisfying α (τk,j) = 0 and β (τk,j) = ωk, we have the
following transversality condition.

Lemma 3.4. dRe(λ(τ))
dτ

∣∣∣
τ=τk,j

> 0.

Proof. Differentiating the two sides of Eq. (3.4) with respect to τ , we obtain(
dλ(τ)

dτ

)−1

=
(2λ+ Tk)eλτ

−a12a21λ
− τ

λ
.

By (3.4), (3.25) and (3.26), we have

Re
(
dλ(τ)
dτ

∣∣∣
τ=τk,j

)−1

= Re
(

(2iωk+Tk)eiωkτk,j

−iωka12a21

)
= Re

(
(−2ω2

k+iωkTk)(cosωkτk,j+i sinωkτk,j)

ω2
k(a12a21)2

)
=

(−2ω2
k cosωkτk,j−ωTk sinωkτk,j)a12a21

ω2
k(a12a21)2

=
2ω2
k+(d1k2+a11)

2
+(d2k2+a22)

2

(a12a21)2 > 0.

This, together with the fact that

sgn

{
dRe(λ(τ))

dτ

∣∣∣∣
τ=τk,j

}
= sgn

Re

(
dλ(τ)

dτ

∣∣∣∣
τ=τk,j

)−1
 ,

completes the proof.
In terms of Lemmas 3.2, 3.3 and 3.4 , we have the following results on stability,

Hopf bifurcation and Turing-Hopf bifurcation induced by delay.

Theorem 3.3. Denote τ∗ = min {τk,j , 0 ≤ k ≤ k∗c , j ∈ N0}, τk,j are given in (3.27).
E∗ is the positive equilibriumof system (3.1).

(i) When 0 < γ ≤ 1
3 , E

∗ is asymptotically stable for all τ ≥ 0;

(ii) When 1
3 < γ < 1, for case (i), E∗ is asymptotically stable for τ < τ∗ and

unstable for τ > τ∗, and system (3.1) undergoes Hopf bifurcation at τ = τk,j ;

(iii) For case (ii), system (3.1) undergoes Turing-Hopf bifurcation at τ = τk,j ,
with 0 ≤ k ≤ k∗c , k, j ∈ N0 and k 6= k∗.

About the complete ordering of the bifurcation values τk,j , we have the following
result.
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Theorem 3.4. For case (i), if 1
3 < γ ≤ 1

2 , then τ0,j ≤ τ1,j ≤ · · · ≤ τk∗c−1,j ≤
τk∗c ,j , j ∈ N0 and τ∗ = τ00.

Proof. From (3.27), it is obvious that τk,j < τk,j+1 and τk,j is increasing with
respect to k provided that a11 + a22 ≤ 0 and ωk is decreasing with respect to k.
It follows from (3.24) that if Pk and Qk are increasing with respect to k, ωk is
decreasing in k. By (3.21) and (3.22), we also have

∂Pk
∂k

= 4k
((
d2

1 + d2
2

)
k2 − (d1a11 + d2a22)

)
and

∂Qk
∂k

= 4k
(
d2k

2 − a22

) (
d1k

2 − a11

) (
2d1d2k

2 − (d1a22 + d2a11)
)
.

Notice that a22 = −δ < 0. Then, if a11 ≤ 0, then a11 + a22 ≤ 0 and ∂Pk/∂k >
0, ∂Qk/∂k > 0. In addition, notice that a11 ≤ 0 if and only if 0 < γ ≤ 1

2 . This,
together with Lemma 3.3, completes the proof.

In the following, we always assume that 0 < d1 < d2 since we are interested in
the delay-induced Turing-Hopf bifurcation.

Theorem 3.5. For case (ii), if k∗c = k∗, then we have τ0,j ≤ τ1,j ≤ · · · ≤
τk∗c−1,j , j ∈ N0 and then τ∗ = τ00.

Proof. When (γ, δ) locates on Lk∗ , we have 1/2 < γ < 1, a11 +a22 < 0, Dk∗(0) =
0, Dk(0) > 0 for k 6= k∗ and

k2
∗ =

d2a11 + d1a22

2d1d2
. (3.28)

Thus, d1a11 + d2a22 < d1(a11 + a22) < 0 since d1 < d2 and a22 = −δ < 0. This
implies that ∂Pk/∂k ≥ 0.

When k < k∗, by (3.28) we have

d1k
2 − a11 < d1k

2
∗ − a11 = −1

2
a11 +

d1

2d2
a22 < −

1

2
a11 < 0, (3.29)

due to a22 < 0 and a11 > 0 for 1/2 < γ < 1.
It follows from (3.28) that

2d1d2k
2 − (d1a22 + d2a11)


< 0, 0 ≤ k < k∗,

= 0, k = k∗,

> 0, k > k∗.

(3.30)

By (3.29) and (3.30), we can conclude that ∂Qk/∂k ≥ 0 for 0 ≤ k ≤ k∗. Therefore,
if k∗c = k∗, then the conclusion is immediately confirmed.

Theorem 3.6. For case (ii), if τ∗ = τ00, then the characteristic equation (3.4) has
a pair of purely imaginary roots ±iω0 for k = 0 and a simple zero root for k = k∗,
no roots with zero real parts for k 6= 0 and k 6= k∗. In addition, all the roots of
(3.4) except ±iω0 and a simple zero have negative real parts.

Proof. It follows from Theorem 3.2 that the curve Lk∗ is the boundary of the
stability region for the positive equilibrium E∗ of (3.9). And from Lemma 3.2,
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when β = d2/d1 > 1 and (γ, δ) locates on the Turing bifurcation curve Lk∗ , the
characteristic equations (3.4) with τ = 0 has a simple zero root λ = 0 when k = k∗,
no root with zero real parts when k ∈ N0 and k 6= k∗. Noticing τ∗ is the minimal
critical value and the transversality condition shown in Lemma 3.4, the proof is
complete.

3.3. Dynamical classification near delay-induced Turing-Hopf
bifurcation point

In this subsection, we investigate the dynamical classification near the Turing-
Hopf bifurcation point using the normal form theory of Turing-Hopf bifurcation
of reaction-diffusion equations with delay developed in Section 2. Choosing δ and
τ as bifurcation parameter and assuming that system (3.1) undergoes Turing-Hopf
bifurcation at (τ, δ) = (τ∗, δ∗).

3.3.1. Normal form and dynamical classification

Introduce the perturbation parameters µ1 and µ2 by setting µ1 = δ−δ∗, µ2 = τ−τ∗
such that µ = (µ1, µ2) = (0, 0) is the value of Turing-Hopf bifurcation.

Setting ũ(·, t) = u(·, τ t) − u∗, ṽ(·, t) = v(·, τ t) − v∗, U(t) = (ũ(·, t), ṽ(·, t)) and
then dropping the tildes for simplicity, (3.1) can be rewritten as the following system
in the space C = C ([−1, 0],X )

dU(t)

dt
= τ∗d∆U(t) + L0(Ut) + F (Ut, µ), (3.31)

with

F (Ut, µ) = µ2d∆ϕ(0) + L(µ)(ϕ) + f(ϕ, µ),

where for ϕ = (ϕ1, ϕ2)T ∈ C, L(µ2)(.) : C → X, and f : C × R → X are given,
respectively, by

L0(ϕ) = τ∗

 a11ϕ1(0) + a12ϕ2(−1)

a21(δ∗)ϕ1(0) + a22(δ∗)ϕ2(0)

 ,

f(ϕ, µ) = (τ∗ + µ2)


∑

i+j+k+l≥2

1
i!j!k!l!f

(1)
ijklϕ

i
1(0)ϕj2(0)ϕk2(−1)µl1∑

i+j+k+l≥2

1
i!j!k!l!f

(2)
ijklϕ

i
1(0)ϕj2(0)ϕk2(−1)µl1

 , (3.32)

where a12 and a21 are defined by (3.3), a21(δ∗) = γδ∗, a22(δ∗) = −δ∗,

f
(1)
ijkl =

∂i+j+k+lf (1)

∂ui∂vk∂wk∂µl1
(0, 0, 0, 0) , f

(2)
ijkl =

∂i+j+k+lf (2)

∂ui∂vk∂wk∂µl1
(0, 0, 0, 0)

wheref
(1)(u, v, w, µ1) = (u+ u∗)

2
(1− (u+ u∗))− (u+ u∗) (w + v∗) ,

f (2)(u, v, w, µ1) = (δ∗ + µ1) (v + v∗)
(

1− v+v∗

γ(u+u∗)

)
.

(3.33)
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Notice that k = 0, k∗ > 0 in the Turing-Hopf bifurcation. By a straightforward
calculation, we obtain

Φ1(θ) =
(
ξ0e

iωcθ, ξ0e
−iωcθ

)
, Φ2(θ) = ξk∗ ,

Ψ1(s) = col
(
ηT0 e

−iωcs, η0
T eiωcs

)
, Ψ2(s) = ηTk∗ ,

where ωc = ω0τ∗,

ξ0 =

 ξ01

ξ02

 =

 1

iω0−a11
a12

eiωc

 , η0 =

 η01

η02

 = D1

 1

iω0−a11
a21(δ∗)

 ,

ξk∗ =

 ξk∗1

ξk∗2

 =

 1

d1k
2
∗−a11
a12

 , ηk∗ =

 ηk∗1

ηk∗2

 = D2

 d2k
2
∗−a22(δ∗)
a12

1

 ,

with

D1 =

(
1 + τ∗ (iω0 − a11) +

(iω0 − a11)
2

a12a21 (δ∗)
eiωc

)−1

,

D2 =

(
(d1 + d2) k2

∗ − (a11 + a22 (δ∗) + τ∗a12a21 (δ∗)))

a12

)−1

.

It follows from (3.33) that f
(1)
ijkl = 0 for either i ≥ 3, or j ≥ 1, or k ≥ 2, and

f
(2)
ijkl = 0 for either j ≥ 2, or k ≥ 1, and then by (2.21) and (2.24), we have

A200 = τ∗

 f
(1)
2000ξ

2
01 + 2f

(1)
1010ξ01ξ02e

−iωc

f
(2)
2000ξ

2
01 + 2f

(2)
1100ξ01ξ02 + f

(2)
0200ξ

2
02

 = A020,

A002 = τ∗

 f
(1)
2000ξ

2
k∗1 + 2f

(1)
1010ξk∗1ξk∗2

f
(2)
2000ξ

2
k∗1 + 2f

(2)
1100ξk∗1ξk∗2 + f

(2)
0200ξ

2
k∗2

 ,

A110 = τ∗

 2f
(1)
2000 |ξ01|2 + 2f

(1)
1010

(
ξ01ξ02e

iωc + ξ01ξ02e
−iωc

)
2f

(2)
2000 |ξ01|2 + 2f

(2)
1100

(
ξ01ξ02 + ξ01ξ02

)
+ 2f

(2)
0200 |ξ02|2

 ,

A101 = τ∗

 2f
(1)
2000ξ01ξk∗1 + 2f

(1)
1010

(
ξ01ξk∗2 + ξk∗1ξ02e

−iωc
)

2f
(2)
2000ξ01ξk∗1 + 2f

(2)
1100 (ξ01ξk∗2 + ξk∗1ξ02) + 2f

(2)
0200ξ02ξk∗2

 ,
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and

A210 = τ∗

 3f
(1)
3000ξ

2
01ξ01

3f
(2)
3000ξ

2
01ξ01 + f

(2)
2100

(
ξ201ξ02 + 2 |ξ01|2 ξ02

)
+ f

(2)
1200

(
ξ01ξ

2
02 + 2ξ01 |ξ02|2

)
 ,

A102 = τ∗

 3f
(1)
3000ξ01ξ

2
k∗1

3f
(2)
3000ξ01ξ

2
k∗1 + f

(2)
2100

(
ξ02ξ

2
k∗1 + 2ξ01ξk∗1ξk∗2

)
+ f

(2)
1200

(
ξ01ξ

2
k∗2 + 2ξ02ξk∗1ξk∗2

)
 ,

A111 = τ∗


6f

(1)
3000|ξ01|

2ξk∗1

6f
(2)
3000|ξ01|

2ξk∗1 + 2f
(2)
2100

(
|ξ01|2ξk∗2 + ξ01ξ02ξk∗1 + ξ01ξ02ξk∗1

)
+2f

(2)
1200

(
|ξ02|2ξk∗1 + ξ01ξ02ξk∗2 + ξ01ξ02ξk∗2

)
 ,

A003 = τ∗

 f
(1)
3000ξ

3
k∗1

f
(2)
3000ξ

3
k∗1 + f

(2)
2100ξ

2
k∗1ξk∗2 + f

(2)
1200ξk∗1ξ

2
k∗2

 .

Thus, hijkl(θ) can be obtain by (2.33) (2.34) and (2.35). Then, by (2.21) and
(3.33), we have

S2
(
ξ0e

iωcθ, h0110

)
=2τ∗


f
(1)
2000ξ01h

(1)
0110(0)+vf

(1)
1010

(
p01h

(2)
0110(−1)+ξ02e

−iωτ∗h
(1)
0110(0)

)
f
(2)
2000ξ01h

(1)
0110(0)+f

(2)
1100

(
ξ01h

(2)
0110(0)+ξ02h

(1)
0110(0)

)
+f

(2)
0200ξ02h

(2)
0110(0)

 ,

S2
(
ξ0e

−iωcθ, h0200

)
=2τ∗


f
(1)
2000ξ01h

(1)
0200(0)+f

(1)
1010

(
ξ01h

(2)
0200(−1)+ξ02e

iωτ∗h
(1)
0200(0)

)
f
(2)
2000ξ01h

(1)
0200(0)+f

(2)
1100

(
ξ01h

(2)
0200(0)+ξ02h

(1)
0200(0)

)
+f

(2)
0200ξ02h

(2)
0200(0)

 ,

S2
(
ξ0e

iωcθ, h0002

)
=2τ∗


f
(1)
2000ξ01h

(1)
0002(0) + f

(1)
1010

(
ξ01h

(2)
0002(−1)+ξ02e

−iωτ∗h
(1)
0002(0)

)
f
(2)
2000ξ01h

(1)
0002(0) + f

(2)
1100

(
ξ01h

(2)
0002(0)+ξ02h

(1)
0002(0)

)
+f

(1)
0200ξ02h

(2)
0002(0)

 ,

S2 (ξk∗ , hk∗101) = 2τ∗


f
(1)
2000ξk∗1h

(1)
k∗101(0) + f

(1)
1010

(
ξk∗1h

(2)
k∗101(−1) + ξk∗2h

(1)
k∗101(0)

)
f
(1)
2000ξk∗1h

(1)
k∗101(0) + f

(2)
1100

(
ξk∗1h

(2)
k∗101(0) + ξk∗2h

(1)
k∗101(0)

)
+f

(2)
0200ξk∗2h

(2)
k∗101(0)

 ,

S2
(
ξ0e

iωcθ, hk∗011

)
= 2τ∗


f
(1)
2000ξ01h

(1)
k∗011(0) + f

(1)
1010

(
ξ01h

(2)
k∗011(−1) + ξ02e

−iωτ∗h
(1)
k∗011(0)

)
f
(2)
2000ξ01h

(1)
k∗011(0) + f

(2)
1100

(
ξ01h

(2)
k∗011(0) + ξ02h

(1)
k∗011(0)

)
+f

(2)
0200ξ02h

(2)
k∗011(0)

 ,

S2
(
ξ0e

−iωcθ, hk∗101

)
= 2τ∗


f
(1)
2000ξ01h

(1)
k∗101(0) + f

(1)
1010

(
ξ01h

(2)

k∗101
(−1) + ξ02e

iωτ∗h
(1)

k∗101
(0)
)

f
(2)
2000ξ01h

(1)
k∗101(0) + f

(2)
1100

(
ξ01h

(2)

k∗101
(0) + ξ02h

(1)

k∗101
(0)
)

+f
(2)
0200ξ02h

(2)
k∗101(0)

 ,

S2 (ξk∗ , h0110) = 2τ∗


f
(1)
2000ξk∗1h

(1)
0110(0) + f

(1)
1010

(
ξk∗1h

(2)
0110(−1) + ξk∗2h

(1)
0110(0)

)
f
(2)
2000ξk∗1h

(1)
0110(0) + f

(2)
1100

(
ξk∗1h

(2)
0110(0) + ξk∗2h

(1)
0110(0)

)
+f

(2)
0200ξk∗2h

(2)
0110(0)

 ,
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S2
(
ξk∗ , h(2k∗)110

)
= 2τ∗


f
(1)
2000ξk∗1h

(1)

(2k∗)110
(0) + f

(1)
1010

(
ξk∗1h

(2)

(2k∗)110
(−1) + ξk∗2h

(1)

(2k∗)110
(0)
)

f
(2)
2000ξk∗1h

(1)

(2k∗)110
(0) + f

(2)
1100

(
ξk∗1h

(2)

(2k∗)110
(0) + ξk∗2h

(1)

(2k∗)110
(0)
)

+f
(2)
0200ξk∗2h

(2)

(2k∗)110
(0)

 ,

S2 (ξk∗ , h0002) = 2τ∗


f
(1)
2000ξk∗1h

(1)
0002(0) + f

(1)
1010

(
ξk∗1h

(2)
0002(−1) + ξk∗2h

(1)
0002(0)

)
f
(2)
2000ξk∗1h

(1)
0002(0) + f

(2)
1100

(
ξk∗1h

(2)
0002(0) + ξk∗2h

(1)
0002(0)

)
+f

(2)
0200ξk∗2h

(2)
0002(0)

 ,

S2
(
ξk∗ , h(2k∗)002

)
= 2τ∗


f
(1)
2000ξk∗1h

(1)

(2k∗)002
(0) + f

(1)
1010

(
ξk∗1h

(2)

(2k∗)002
(−1) + pk∗2h

(1)

(2k∗)002
(0)
)

f
(2)
2000ξk∗1h

(1)

(2k∗)002
(0) + f

(2)
1100

(
ξk∗1h

(2)

(2k∗)002
(0) + ξk∗2h

(1)

(2k∗)002
(0)
)

+f
(2)
0200ξk∗2h

(2)

(2k∗)002
(0)

 .

3.3.2. Numerical simulations

Next we provide numerical simulations to support and extend our analytical re-
sults. Taking d1 = 0.0125, d2 = 0.125 as used in Fig.1(B) and choosing the point
P2(0.7, 0.25), i.e., γ = 0.7, δ = 0.25, then the positive equilibrium is E∗(0.3, 0.21)
and by (3.27) , we have τ00 = 2.5278. Then system (3.1) undergoes Turing-Hopf b-
ifurcation at (δ∗, τ∗) = (0.25, 2.5278). Using the procedure in Section 2 and Section
3.2.2 with k∗ = 2, the normal form truncated to the third order terms is{

ρ̇ = (−0.5310µ1 + 0.0538µ2) ρ− 0.3126ρ3 + 1.1516ρr2,

ṙ = −0.6466µ1r − 7.1041ρ2r − 4.4652r3.
(3.34)

Notice that ρ > 0 and r is arbitrary real number. System (3.34) has a zero equilib-
rium A0(0, 0) for any µ1, µ2 ∈ R, three boundary equilibria:

A1

(√
−0.5310µ1 + 0.0538µ2

0.3126
, 0

)
, µ2 > 9.8699µ1,

A±2

(
0, ±

√
−0.6466µ1

4.4652

)
, µ1 < 0,

and two interior equilibria:

A
±
3

(√
−3.1155µ1 + 0.2403µ2

9.5767
, ±

√
3.5698µ1 − 0.3824µ2

9.5767

)
, 12.9650µ1 < µ2 < 9.3353µ1, µ1 < 0.

Define the critical bifurcation lines as follows:

T : µ1 = 0;

H0 : µ2 = 9.8699µ1;

T1 : µ2 = 9.3353µ1, µ1 < 0;

T2 : µ2 = 12.9652µ1, µ1 < 0.

These four lines divide the µ1 − µ2 parameter plane into six regions marked as
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Figure 2. Bifurcation diagrams (A) and dynamical classification (B) near the Turing-Hopf point. µ1

and µ2 are the perturbation for the parameters δ and τ , respectively, at (δ∗, τ∗) = (0.25, 2.5278).

Dj , j = 1, 2, · · · , 6, in Fig.2(A). By analyzing the stability of these equilibria, the
phase portrait of system (3.34) in each region Dj can be shown in Fig.2(B).

The dynmais of the original reaction-diffusion system (3.1) can be determined
by the the normal form system (3.34) near the neighbourhood of the Turing-Hopf
bifurcation point. We list the corresponding relationship between the equilibrium
of (3.34) and the solution of (3.1) in Table 1.

In what follows, we illustrate how the dynamics of system (3.1) changes with
the variation of the parameters µi(i = 1, 2). We use the following initial conditions
for delayed PDEs

u(x, t) = φ1(x), v(x, t) = φ2(x), t ∈ [−τ, 0].

and for simplicity of notations, we only write u(x, 0) = φ1(x), v(x, 0) = φ2(x) for

Table 1. Relationship between the equilibrium of (3.34) and the solution of (3.1)

Equilibrium of (3.34) Solution of (3.1)

A0 Constant equilibrium E∗

A1 Spatially homogeneous periodic solution

A±2 Two spatially inhomogeneous steady states

with cos(2x)− like shape

A±3 Two spatially inhomogeneous periodic solutions

with cos(2x)− like shape in space
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Figure 3. When (µ1, µ2) = (0.01,−0.12) ∈ D1, the positive constant equilibrium E∗ is asymptotically
stable.

these initial conditions.

In region D1, (3.34) has only one stable zero equilibrium A0 . Thus, the pos-
itive constant equilibrium E∗ of system (3.1) is asymptotically stable, as shown
in Fig.3 for (µ1, µ2) = (0.01,−0.12) ∈ D1 and the initial value u(x, 0) = 0.3 +
0.02 cos(2x), v(x, 0) = 0.21− 0.02 cos(2x) .

When µi(i = 1, 2) varies from the region D1 to D2, A0 loses its stability and one
stable boundary equilibrium A1 emerges in the µ1−axis. This means that the posi-
tive equilibrium E∗ of system (3.1) becomes unstable and the stable spatially homo-
geneous periodic solution emerges, as shown in Fig.4 for (µ1, µ2) = (0.01, 0.5) ∈ D2

and the same initial value as in Fig.3.

Altering µi from the region D2 to D3, A1 remains stable and two unstable
equilibria A±2 are born in the µ2−axis, which are saddle, implying there exist the
heteroclinic orbits connecting equilibria A±2 to stable boundary equilibrium A1. So,
the stable spatially homogeneous periodic solution of system (3.1) remains in this
region and there exists the connecting orbit from the unstable inhomogeneous steady
state to stable spatially homogeneous periodic solution. The unstable equilibria A±2
means that system (3.1) has two unstable spatially inhomogeneous steady states
with cos(2x) − like shape. Taking (µ1, µ2) = (−0.01, 0.01) ∈ D3 and the initial
value u(x, 0) = 0.3 − 0.006 cos(2x), v(x, 0) = 0.21 − 0.02 cos(2x) closing to one of
these two inhomogeneous steady states, Fig.5 shows the evolution of the solution
of system (3.1) . (A,D) depicts the short-term behaviour, (B,E) shows the middle-
term behaviour and (C,F) is the long-term behaviour. Same notation is used in
Figs.6-9.

When the parameters vary from the region D3 to D4, A1 of (3.34) loses its stabil-
ity and two stable interior eqilibria A±3 emerge. Taking (µ1, µ2) = (−0.01,−0.095) ∈
D4 and the initial condtion u(x, 0) = 0.3−0.01 cos(2x), v(x, 0) = 0.21+0.002 cos(2x)
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Figure 4. When (µ1, µ2) = (0.01, 0.5) ∈ D2, the positive constant equilibrium E∗ is unstable and there
is a stable spatially homogeneous periodic solution.

Figure 5. When (µ1, µ2) = (−0.01, 0.01) ∈ D3, there are unstable spatially inhomogeneous steady
states, stable spatially homogeneous periodic solution and there exists a orbit connecting these two
states.
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Figure 6. When (µ1, µ2) = (−0.01,−0.095) ∈ D4, there are unstable spatially inhomogeneous steady
states and stable spatially inhomogeneous periodic solutions. For the initial condtion u(x, 0) = 0.3 −
0.01 cos(2x), v(x, 0)) = 0.21 + 0.002 cos(2x), there is a transition from unstable spatially inhomogeneous
steady state to stable spatially inhomogeneous periodic solution.

close to the unstable inhomogeneous steady state, Fig.6 numerically shows the ex-
istence of the stable spatially inhomogeneous periodic solution and the transition
from the unstable inhomogeneous steady state to stable spatially inhomogeneous
periodic solution.

With the same values of µi as in Fig.6 and choosing different initial condtion
as u(x, 0) = 0.3 − 0.01, v(x, 0) = 0.21 + 0.001 cos(2x), the short-term behaviour
(Figs.7 (A,D) seems like spatially homogeneous periodic solution, which are differet
from that shown in Figs.6 (A,D). Then, with the increasing of time, the spatial
heterogeneity appears (Figs.7 (B,E)) and the system finally evolves into stable s-
patially inhomogeneous periodic solution (Figs.7 (C,F)). As shown in Fig.2(B) and
Table 1, when (µ1, µ2) ∈ D4, system (3.1) has two stable spatially inhomogeneous
periodic solutions. Choosing another initial condtion u(x, 0) = 0.3− 0.01, v(x, 0) =
0.21−0.001 cos(2x), Fig.8 shows that system (3.1) finally evolves into another stable
spatially inhomogeneous periodic solution (Figs.8(C,F)).

Moving from the region D4 to D5, A1 disappears and A±3 remain stable. For
system (3.1), Fig.9 shows the existence of stable spatially inhomogeneous periodic
solution and the transition from the unstable inhomogeneous steady state to stable
spatially inhomogeneous periodic solution for (µ1, µ2) = (−0.01,−0.1) ∈ D5 and
the initial value u(x, 0) = 0.3− 0.02 cos(2x), v(x, 0) = 0.21− 0.01 cos(2x).

In region D6, the normal form system (3.34) has one unstable zero equilibrium
A0 and two stable boundary equilibria A±2 in the µ2−axis. This implies that the
positive equilibrium E∗ of system (3.1) is unstable and there have two stable inho-
mogeneous steady states. Choosing (µ1, µ2) = (−0.01,−0.5) ∈ D6 and the initial
condtion u(x, 0) = 0.3−0.04 cos(2x), v(x, 0) = 0.21 + 0.01 cos(2x), Fig.10 shows the
existence of the stable spatially inhomogeneous steady state.
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Figure 7. When (µ1, µ2) = (−0.01,−0.095) ∈ D4, there are unstable spatially inhomogeneous steady
states and stable spatially inhomogeneous periodic solutions. For the initial condtion u(x, 0) = 0.3 −
0.01, v(x, 0)) = 0.21 + 0.001 cos(2x), there is a transition from unstable spatially homogeneous periodic
solution to stable spatially inhomogeneous periodic solution.

Figure 8. When (µ1, µ2) = (−0.01,−0.095) ∈ D4, there are unstable spatially inhomogeneous steady
states and stable spatially inhomogeneous periodic solutions. For the initial condtion u(x, 0) = 0.3 −
0.01, v(x, 0)) = 0.21 − 0.001 cos(2x), there is another stable spatially inhomogeneous periodic solution,
which is different from that shown in Fig.7 .
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Figure 9. When (µ1, µ2) = (−0.01,−0.1) ∈ D5, there are unstable spatially inhomogeneous steady
states and stable spatially inhomogeneous periodic solutions.

Figure 10. When (µ1, µ2) = (−0.01,−0.5) ∈ D6, the positive constant equilibrium is unstable and
there is stable spatially inhomogeneous steady states with cos(2x)− like shape.
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4. Conclusion

In this paper, we consider the Turing-Hopf bifurcation in the reaction-diffusion
system with delay. The algorithm of normal form corresponding to Turing-Hopf
bifurcation is analytically derived. As an application, we investigate the dynamics
of the diffusive predator-prey model with weak Allee effect and delay. The stability,
diffusion-driven instability, Hopf bifurcation and Turing-Hopf bifurcation are stud-
ied. Especially, the dynamical classification near Turing-Hopf bifurcation point can
be explicitly determined by applying our algorithm. The stable spatially homoge-
neous/inhomogeneous steady states and periodic solutions are found. We show that
there exist different heteroclinic orbits from spatially homogeneous/inhomogeneous
steady state to spatially homogeneous/inhomogeneous periodic solution, and from
spatially homogeneous periodic solution to spatially inhomogeneous periodic solu-
tion. To the best of our knowledge, the heteroclinic orbits in the reaction-diffusion
system with delay has not been reported in the literatures. The theoretical results
develped in this paper is helpful to understand deeply the complex dynamics due to
the interaction of diffusion-driven Turing instability and delay-induced Hopf bifur-
cation. We would like to mention that the results related to Turing-Hopf bifurcation
in this paper is dealt under the Neumann boundary condition but also applicable for
the case of Direchlet boundary condition. For the application, although we present
the results mainly for the diffusive predator-prey model with weak Allee effect and
delay, we believe some other application models can be studied in a similar manner.

The influence of the nonlocal intraspecific competition of the prey on the spa-
tiotemporal dynamics of the diffusive predator-prey model has been recently inves-
tigated in [5, 44]. The extension of this paper to the case with delay and nonlocal
term is interesting and in progress.

Acknowledgements. The authors are grateful to the anonymous referees for their
useful suggestions which improve the contents of this article.
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