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WITH HIGHLY SINGULAR (1,1) BLOCK
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Abstract In this paper, we present a block triangular preconditioner for gen-
eralized saddle point matrices whose coefficient matrices have singular (1,1)
blocks. Theoretical analysis shows that all the eigenvalues of the precon-
ditioned matrix are strongly clustered when choosing an optimal parameter.
Numerical experiments are given to demonstrate the efficiency of the presented
preconditioner.
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1. Introduction

Consider the following the generalized saddle point problem

A

x
y

 ≡
A BT

C 0

x
y

 =

f
g

 , (1.1)

where A ∈ Rn,n, B,C ∈ Rm,n,m ≤ n. The matrix A is assumed to be nonsingular,
whereas the matrix A is singular with a high nullity. That is to say dim(kernel(A))
is larger. Systems of the form (1.1) arise in a variety of scientific and engineering
applications and have attracted a lot of research, see [2–5, 28] for a comprehensive
survey. We refer the reader to [1–9, 14–18, 24–30] for possible applications of
generalized saddle point problems. We emphasize that while numerous effective
solution algorithms exist for the case of a positive definite or semidefinite (1,1)
block, relatively little has been done for the case where the (1,1) block is indefinite.
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Generally speaking, this is a rather challenging problem, which gets harder as the
matrix A becomes more indefinite and makes the coefficient matrix A close to
singular and therefore highly ill-conditioned.

In 2009, Huang, Cheng and Li [18] established two types of block triangular
preconditioners applied to the linear saddle point problems with the singular (1,1)
block. In 2006, for symmetric saddle point linear systems with (1,1) blocks that
have a high nullity, Greif and Schötzau presented a Schur complement-free block
diagonal preconditioner MW based on augmentation in [15], and showed that the
preconditioned matrix M−1

W A has only two distinct eigenvalues 1 and −1. Then,
Cao [8] extended the preconditioner MW of the generalized saddle point systems
(1.1) to DAug and showed that D−1

AugA still has two distinct eigenvalues 1 and −1.
In 2007, for the symmetric saddle point case, Rees and Greif [26] introduced a more
general augmentation block preconditioner Mk. Recently, Cao [7] and Zhang [30]
considered two augmentation block preconditioners Tk,j and Hξ,η. Moreover, they
gave the results on the eigenvalue distribution, forms of the eigenvectors of the
corresponding block preconditioned matrix and their minimal polynomial. Based
on the preconditioners by Cao and Zhang [7, 30], we present a block triangular
preconditioner, which is defined as follows:

Pt =

A+ tBTW−1C (1− t)BT

0 W

 , (1.2)

where W ∈m,mR is symmetric positive definite and such that A + tBTW−1C is
invertible, t is a scalar. Generally speaking, the condition number A + tBTW−1C
is relatively large including special cases t = −1.

Remark 1.1. Obviously, the preconditioner Pt is different from the precondi-
tioners Tk,j and Hξ,η. Note that the augmented Lagrangian formulation with the
absolute value of t taken sufficiently large makes the (1, 1) block A+tBTW−1C less
asymmetric and indefinite; indeed, in the limit as t → ∞ the symmetric positive
semidefinite contribution tBTW−1C will dominate the (1, 1) block. Moreover, a
very large value of absolute value t is likely to make the block A+ tBTW−1C very
ill-conditioned and therefore difficult to invert. Hence, the choice of the algorithmic
parameter t involves a trade-off.

Based on the block triangular preconditioned matrix P−1
t A, similar to the prov-

ing process of section 2 in [7, 30] we give the eigenvalue distribution with the pre-
sented preconditioner. Finally, numerical examples show that the block triangular
preconditioner Pt has the same spectral clustering with preconditioners Tk,j and
Hξ,η when choosing the suitable parameters.

This paper is organized as follows. In Section 2, we will study the spectral
analysis of the block triangular preconditioner for the saddle point system. One
numerical example is given in Section 3. Finally, conclusions are made in Section 4.

2. Main results

Consider the following augmentation block preconditioner:

Pt =

A+ tBTW−1C (1− t)BT

0 W

 ,
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where t is a scalar.
Now we consider the spectrum of the preconditioned matrix P−1

t A.

Theorem 2.1. Assume that A is nonsingular and its (1, 1) block A is singular with
nullity s(≤ m). Let {zi}n−mi=1 be a basis of N (C), {xi}si=1 a basis of N (A). Then 1
is an eigenvalue of the preconditioned matrix P−1

t A of geometric multiplicity n−m,
the corresponding eigenvectors are {[zTi , 0T ]T }n−mi=1 .

(1) When t 6= −1, then λ1 = t−1+|t+1|
2t and λ2 = t−1−|t+1|

2t are two eigenvalues of

P−1
t A both of geometric multiplicity s, the corresponding eigenvectors are{[

xTi , (W
−1Cxi)

T
]T
and

[
xTi ,−t(W−1Cxi)

T
]}s

i=1
,

respectively.
(2) When t = −1, then 1 is an eigenvalue of multiplicity 2s, while the algebraic mul-
tiplicity is 2. 1 corresponds s eigenvectors {[xTi , (W−1Cxi)

T ]}si=1 and s generalized
eigenvectors of order 2(Please refer to Chapter 13: Preconditioning [29]).

Proof. Let λ denote an eigenvalue of P−1
t A with eigenvector [uT , vT ]T . HenceA BT

C 0

u
v

 = λ

A+ tBTW−1C (1− t)BT

0 W

u
v

 . (2.1)

Expanding out (2.1) we obtainAu+BT v = λ(A+ tBTW−1C)u+ λ(1− t)BT v,

Cu = λWv.
(2.2)

Since A is nonsingular, it follows that λ 6= 0. Furthermore, we claim that u 6= 0.
If not, from Eq. (2.2) we have Wv = 0. Since W is a symmetric positive definite
matrix, then we can immediately get that v = 0. Hence, from the second equation
of (2.2), we obtain

v =
1

λ
W−1Cu. (2.3)

Substituting (2.3) into the first equation of (2.2) yields

λ(1− λ)Au−
[
tλ2 + (1− t)λ− 1

]
BTW−1Cu = 0. (2.4)

Let u ∈ N (C), then Eq. (2.4) implies λ(1 − λ)Au = 0. Since N (A) ∩ N (C) =
{0} (please refer to Proposition 2.1 [8]), 1 is an eigenvalue of P−1

t A of geometric
multiplicity n−m, the corresponding eigenvectors are {zTi , 0T }

n−m
i=1 .

Let u ∈ N (A), then Eq. (2.4) implies
[
tλ2 + (1− t)λ− 1

]
BTW−1Cu = 0.

Since N (A) ∩ N (C) = {0} (please refer to Proposition 2.1 [8]) and rank(B) = m,
we obtain

tλ2 + (1− t)λ− 1 = 0. (2.5)

From Eq. (2.5) we have two roots

λ1 =
t− 1 + |t+ 1|

2t
and λ2 =

t− 1− |t+ 1|
2t

. (2.6)
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(1) If t 6= −1, we have: When t > −1, λ1 = 1, λ2 = − 1
t ; When t < −1, λ1 =

− 1
t , λ2 = 1. Then λ1 and λ2 are two distinct eigenvalues of P−1

t A both of geometric
multiplicity s, the corresponding eigenvectors are{[

xTi ,
2t

t− 1 + |t+ 1|
(W−1Cxi)

T

]T
and

[
xTi ,

2t

t− 1− |t+ 1|
(W−1Cxi)

T

]T}s
i=1

,

or {[
xTi , (W

−1Cxi)
T
]T

and
[
xTi ,−t(W−1Cxi)

T
]T}s

i=1
,

(2) If t = −1, then λ1 = λ2 = t−1
2t = −2

−2 = 1 is an eigenvalue of mul-
tiplicity 2s. While the geometric multiplicity is s. 1 corresponds s eigenvectors
{[xTi , (W−1Cxi)

T ]T }si=1 and s generalized eigenvectors of order 2.

Remark 2.1. The preconditioner Pt in this paper and the preconditioners Tk,j ,Hξ,η
in [7,30] are three different preconditioning modes. Moreover, they have an intersec-
tion. That is to say, when choosing the appropriate parameters, the preconditioners
Pt, Tk,j ,Hξ,η may become the same preconditioner.

Remark 2.2. From Theorem 2.1 we know that for any t,P−1
t A has eigenvalue 1

of multiplicity n − m. When t = −1, then P−1
t A has eigenvalue 1 of multiplicity

n−m+ 2s, very strong spectral clustering.

Corollary 2.2. When t = −1, then preconditioner Pt is the optimal in the aug-
mentation block preconditioner set {Pt : t real}.

Corollary 2.3. If nullity(A) = m, then the minimal polynomial pt(λ) of the pre-
conditioned matrix P−1

t A is

pt(λ) =

 (λ− 1)2(λ+ 1
t ), when t 6= −1,

(λ− 1)3, when t = −1.
(2.7)

3. Numerical examples

To further assess the effectiveness of the triangular block triangular preconditioned
matrix P−1

t A combined with Krylov subspace methods, we present a sample of
numerical example which is based on a two-dimensional time-harmonic Maxwell
equation in mixed form in a square domain (−1 ≤ x ≤ 1,−1 ≤ y ≤ 1). In all
our runs we used as a zero initial guess and stopped the iteration when the relative
residual had been reduced by at least six orders of magnitude (i.e, when ‖b−Axk‖2 ≤
10−6‖b‖2). For the simplicity, we take the generic source: f = 1 and a finite element
subdivision such as Figure 1 based on uniform grids of triangle elements. Three

mesh sizes are considered: h =
√

2
8 ,
√

2
12 ,

√
2

18 . The solutions of the preconditioned
systems in each iteration are computed exactly. Information on the sparsity of
relevant matrices on the different meshes is given in Table 1, where nz(A) denotes
the nonzero elements of matrix A and m denotes the scale of the generalized saddle
point problem.
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Figure 1. A uniform mesh with h =
√

2
4

Table 1. datasheet for different grids

Grid m n nz(A) nz(B) nz(W ) order of A
8× 8 176 49 820 462 217 225

16× 16 736 225 3556 2190 1065 961
32× 32 3008 961 14788 9486 4681 3969
64× 64 12160 3969 60292 39438 19593 16129
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Figure 2. The eigenvalue distribution for the block triangular preconditioned matrix P−1
t A when t =

−0.5(the first), t = 1.5(the second),t = 2.5(the third) and t = −1(the fourth,the optimal parameters),

respectively. Here, h =
√

2
8 .

Since the new preconditioner has one parameter, in numerical experiments we
will test different values. Numerical experiments show that the spectrum of the
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new preconditioned matrix P−1
t A is more strongly clustered when the parameters

t = −1, which has the same eigenvalues aggregation as that of the preconditioned
matrix H−1

ξ,ηA [30] when ξη = −1 and T −1
k,j A [14] when k = 2, j = −1.

In Figures 2, 3 and 4 we display the eigenvalues of the preconditioned matrix

P−1
t A in the case of h =

√
2

8 , h =
√

2
12 and h =

√
2

18 for different parameters. In
Figures 5, 6, and 7 we display the eigenvalue distribution for the block triangular
preconditioned matrix T −1

k,j A, [7] H−1
ξ,ηA, [26] P−1

t A when choosing the optimal
pamameters, respectively. Figures 2 ∼ 7 show that the distribution of eigenvalues
of the preconditioned matrix confirms our above theoretical analysis.
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Figure 3. The eigenvalue distribution for the block triangular preconditioned matrix P−1
t A when t =

−0.5(the first), t = 1.5(the second),t = 2.5(the third) and t = −1(the fourth,the optimal parameters),

respectively. Here, h =
√

2
12 .

In Tables 2 ∼ 4 we show iteration counts and relative residual about pre-
conditioned matrices P−1

t A, when choosing different parameters and applying to
BICGSTAB and GMRES Krylov subspace iterative methods on three meshes, where
ItBICGSTAB(P−1

t A) and ResBICGSTAB(P−1
t A) are the iteration numbers and relative

residual of the preconditioned matrices P−1
t A when applying to BICGSTAB Krylov

subspace iterative methods, respectively. ItGMRES(P−1
t A) and ResGMRES(P−1

t A)

are the iteration numbers and relative residual of the preconditioned matrices
P−1
t A when applying to GMRES Krylov subspace iterative methods, respectively.

ItBICGSTAB and ResBICGSTAB are the iteration numbers and relative residual of
unpreconditioned matrices when applying to BICGSTAB Krylov subspace iterative
methods, respectively.

Remark 3.1. From the above figures and tables, we know that the block precondi-
tioner Pt has the same spectral clustering as the preconditioner Hξ,η [26] and Tk,j
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[7] when choosing the optimal parameters.

Table 2. Iteration counts and time about preconditioned matrices P−1
t A when choosing different

parameters. Moreover, the contents of square brackets represent the iteration time (second). Here,

h =
√

2
8 denotes the size of the corresponding grid.

t ItBICGSTAB(P−1
t A) ResBICGSTAB(P−1

t A)

-0.5 1.5[0.020] 3.2368× 10−15

1.5 1.5[0.018] 9.8030× 10−15

2.5 1.5[0.019] 1.3409× 10−14

-1 1[0.013] 2.2374× 10−8

t ItGMRES(P−1
t A) ResGMRES(P−1

t A)

-0.5 2(1)[0.032] 8.4309× 10−14

1.5 2(1)[0.032] 8.1545× 10−15

2.5 2(1)[0.029] 6.9073× 10−15

-1 2(1)[0.028] 2.4741× 10−14

Table 3. Iteration counts and time about preconditioned matrices P−1
t A when choosing different

parameters. Moreover, the contents of square brackets represent the iteration time (second). Here,

h =
√

2
12 denotes the size of the corresponding grid.

t ItBICGSTAB(P−1
t A) ResBICGSTAB(P−1

t A)

-0.5 1.5[0.143] 8.6413× 10−15

1.5 1.5[0.155] 2.3759× 10−14

2.5 1.5[0.156] 3.3164× 10−14

-1 1[0.108] 2.0745× 10−9

t ItGMRES(P−1
t A) ResGMRES(P−1

t A)

-0.5 2(1)[0.231] 2.8502× 10−13

1.5 2(1)[0.219] 9.1310× 10−14

2.5 2(1)[0.217] 2.7118× 10−14

-1 2(1)[0.213] 3.7082× 10−13

Table 4. Iteration counts and time about preconditioned matrices P−1
t A when choosing different

parameters. Moreover, the contents of square brackets represent the iteration time (second). Here,

h =
√

2
18 denotes the size of the corresponding grid.

t ItBICGSTAB(P−1
t A) ResBICGSTAB(P−1

t A)

-0.5 1.5[1.5810] 2.6061× 10−14

1.5 1.5[1.567] 4.7794× 10−14

2.5 1.5[1.560] 7/7002× 10−14

-1 1[1.040] 1.8904× 10−10

t ItGMRES(P−1
t A) ResGMRES(P−1

t A)

-0.5 2(1)[2.105] 1.6401× 10−13

1.5 2(1)[2.149] 1.0922× 10−13

2.5 2(1)[2.056] 1.0281× 10−13

-1 2(1)[2.051] 4.3227× 10−13
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Figure 4. The eigenvalue distribution for the block triangular preconditioned matrix P−1
t A when t =

−0.5(the first), t = 1.5(the second),t = 2.5(the third) and t = −1(the fourth,the optimal parameters),

respectively. Here, h =
√

2
18 .
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Figure 5. The eigenvalue distribution for the block triangular preconditioned matrix T −1
k,j A

when k = 2, j = −1(the first,the optimal parameters), H−1
ξ,ηA when ξ = 1, η = −1(the sec-

ond, the optimal parameters (ξη = −1)) and ξ = −2, η = 1/2(the third, the optimal
parameters (ξη = −1)), P−1

t A when t = −1(the fourth, the optimal parameters), respec-

tively. Here, h =
√
2

8
.
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Figure 6. The eigenvalue distribution for the block triangular preconditioned matrix T −1
k,j A

when k = 2, j = −1(the first,the optimal parameters), H−1
ξ,ηA when ξ = 1, η = −1(the sec-

ond, the optimal parameters (ξη = −1)) and ξ = −2, η = 1/2(the third, the optimal
parameters (ξη = −1)), P−1

t A when t = −1(the fourth, the optimal parameters), respec-

tively. Here, h =
√
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12
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Figure 7. The eigenvalue distribution for the block triangular preconditioned matrix T −1
k,j A

when k = 2, j = −1(the first,the optimal parameters), H−1
ξ,ηA when ξ = 1, η = −1(the sec-

ond, the optimal parameters (ξη = −1)) and ξ = −2, η = 1/2(the third, the optimal
parameters (ξη = −1)), P−1

t A when t = −1(the fourth, the optimal parameters), respec-

tively. Here, h =
√
2

18
.
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4. Conclusions

In this paper, based on the preconditioners presented by Cao and Zhang [7, 30], we
present a block preconditioner for generalized saddle point matrices whose coefficient
matrices have singular (1,1) blocks. Moreover, theoretical analysis and numerical
examples show that the eigenvalues of the preconditioned matrix P−1

t A is strongly
clustered when t = −1.
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