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Abstract In this paper, we present a fractional order predator-prey system
with Crowley-Martin functional response. Firstly, we analyze the asymptotic
stability of the system. At the same time, some sufficient conditions for the
stability of the system are given. Then, we investigate the stability of the cor-
responding system with time delay and also discuss some sufficient conditions
for the equilibrium stability of the system with time delay. In the end, the
numerical simulations illustrate the accuracy of our conclusions.
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1. Introduction

Population dynamics is one of the main contents of biological mathematics and the-
oretical ecology. The research of population dynamics originates from demography,
fishery resource and the application of zoology. In order to predict the trend of
population, researchers use dynamic model to describe the change of population.
Because of the establishment of modern differential equation theory, researchers
have put forward various kinds of differential equation models. Since then, mathe-
maticians and ecologists have studied various predator-prey models. So far, there
have been a great deal of research results on the predator-prey model [3]. A general
predator-prey model is given by dN1

dt = N1f(N1)− h(N1, N2)N2,

dN2

dt = ch(N1, N2)N2 −mN2,
(1.1)

where N1 and N2 represent the population density of the prey and predator, re-
spectively; c and m indicate the conversion rate and death rate, respectively; the
function f(N1) is the growth pattern of the prey population without predators;
h(N1, N2) is the functional response of predator and denotes the average feeding
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rate of a predator. The classical predator-prey model is given by Lotka and Volterra
(L-V model)  dN1

dt = AN1 −BN1N2,

dN2

dt = BN1N2 −DN2,
(1.2)

where A and D represent the birth rate of prey and the death rate of predator, re-
spectively. The L-V model assumes that the average predation rate of each predator
is a linear growth model. With the increase of the prey, the average predation a-
bility of per predator continues to increase. This is not in line with the actual
situation. In view of this situation, some researches have proposed many different
types of functional response: Holling type [8], Holling type II [17,18,25] and Holling
type III [6, 7]. According to the above literature, we can find that Holling type I-
III functional response is more reasonable than L-V functional response. However,
there is not the effect of predator among Holling types I-III. Actually, with the
increase of predator, there will occur competition among predators. That is to
say, functional response will also be affected by the population density of preda-
tor. Therefore, some researchers have discussed functional response with predator
dependence (Beddington-DeAngelis [2, 19, 21] and Crowley-Martin [14]). In the
Beddinton-DeAngelis functional response and Crowley-Martin functional response,
we can find that the average predation rate of per predator will be affected by the
density of predator. Skalski and Gilliam [15] presented statistical evidence from
19 predator-prey systems and proved that three predator-dependent functional re-
sponse (Beddington-DeAngelis, Crowley-Martin and Hassell-Varley) could provide
better description of predator feeding over a range of predator-prey abundances. In
some cases, the Crowley-Martin type preformed better among them, which is given
blow

h(N1, N2) =
p1N1

(1 + p2N1)(1 + p3N2)
, (1.3)

where p1, p2 and p3 are positive parameters and denote effects of capture rate,
handling time and mutual interference among predators, respectively. Therefore, in
this paper, we consider Crowley-Martin functional response in the system.

In recent years, the fractional order systems have attracted the attention of
many scholars. The fractional calculus has been proved to be an effective tool
for system modeling in physical, biological, economic and other fields. Fractional
differential equation is very suitable for describing materials and processes with
memory and heredity. It has the advantages of simple modeling, clear physical
meaning of parameters and accurate description for complex systems. Because of
the heredity and memory of the fractional order system, fractional order population
system can better reflect the historical process of population development. Ahmed
researched the fractional order Lotka-Volterra predator-prey model and obtained the
conditions for the existence and uniqueness of the solution [1]. Rihan discussed the
stability of fractional order time delayed predator-prey systems with Holling type II
functional response [13]. Chinnathambi considered the stability of fractional order
prey-predator system with time delay and Monod-Haldane functional response [4].
Based on the previous analysis, we know that the fractional order predator-prey
system with Crowley-Martin functional response is important, which can better
response the changes of the population in some cases. However, there are few results
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on fractional order predator-prey system with Crowley-Martin functional response.
Therefore, we discuss fractional order predator-prey system with Crowley-Martin
functional response in this paper.

The structure of this paper is as follows. Section 2 presents the definition of
fractional order derivative. Section 3 gives the stability analysis of the fractional
order predator-prey system with Crowley-Martin functional response. In Section 4,
we investigate the time delayed fractional-order predator-prey system with Crowley-
Martin response function, and give sufficient conditions for stability of the system.
In Section 5, numerical simulations illustrate the theoretical results.

2. Preliminaries

There are three kinds of fractional derivative commonly used: Riemann-Liouville
derivative, Grunwald-Letnikov derivative and Caputo fractional derivative. The
Caputo fractional-order derivative is adopted in this paper.

Definition 2.1 ( [12]). The Caputo derivative of fractional order q for a function
f(t) is described as

0D
q
t f(t) =

1

Γ(n− q)

∫ t

0

f (n)(τ)

(t− τ)q−n+1
dτ, (2.1)

where Γ(·) denotes the Gamma function and n is a positive integer such that n−1 <
q ≤ n.

Proposition 2.1 ( [12]). The Laplace transform of the Caputo fractional order
derivative is given by

L{0Dq
t f(t); s} = sqF (s)−

n−1∑
k=0

sq−k−1f (k)(t0), n− 1 < q ≤ n,

where L{·} denotes the Laplace transform.

Consider the following fractional order time delayed linear system

0D
q
tX(t) = AX(t) +HX(t− τ), (2.2)

where X(t) = (x1(t), x2(t), · · · , xn(t)) is a state vector; X(t−τ) = (x1(t−τ), x2(t−
τ), · · · , xn−τ (t)) denotes a state vector with time delay; A = (aij)n×n represents
the coefficient matrix; H = (hi,j)n∗n indicates the coefficient matrix of the time
delay term; τ > 0 is the time delay.

Using Laplace transform on both sides of the system (2.2), we can obtain

sqY1(s)− sq−1φ1(0) = h11e
−sτ (Y1(s) +

∫ 0

−τ e
−stφ1(t)dt)

+ · · ·+ h1ne
−sτ (Yn(s) +

∫ 0

−τ e
−stφn(t)dt) + a1nYn(s) + a11Y1(s),

sqY2(s)− sq−1φ2(0) = h21e
−sτ (Y1(s) +

∫ 0

−τ e
−stφ1(t)dt)

+ · · ·+ h2ne
−sτ (Yn(s) +

∫ 0

−τ e
−stφn(t)dt) + a2nYn(s) + a22Y2(s),

...

sqYn(s)− sq−1φn(0) = hn1e
−sτ (Y1(s) +

∫ 0

−τ e
−stφ1(t)dt) + an1Y1(s)

+ · · ·+ hnne
−sτ (Yn(s) +

∫ 0

−τ e
−stφn(t)dt) + annYn(s),

(2.3)
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where Yi(s) = L(xi(t)) (i = 1, 2, · · · , n) and φi(t) (t ∈ [−τ, 0]) is initial condition.
We write formula (2.3) in the form of vectors as follows

4(s) · Y (s) = d(s),

where Y (s) = (Y1(s), Y2(s), · · · , Yn(s))T is the Laplace transform of the state vector
x(t) = (x1(t), x2(t), · · · , xn(t))t and d(s) = (d1(s), d2(s), · · · , dn(s)) denotes the
nonlinear item remaining in system (2.3).
By calculating, it can be obtained that

4(s) =


sq − h11e

−sτ − a11 −h12e
−sτ − a12 · · · −h1ne

−sτ − a1n

−h21e
−sτ − a21 sq − h22e

−sτ − a22 · · · −h2ne
−sτ − a2n

...
...

. . .
...

−hn1e
−sτ − an1 −hn2e

−sτ − an2 · · · sq − hnne−sτ − ann

 .

If time delay τ = 0, system (2.2) becomes

0D
q
tX(t) = AX(t) +HX(t) = MX(t),

where

M =


h11 + a11 h12 + a12 · · · h1n + a1n

h21 + a21 h22 + a22 · · · h2n + a2n

...
...

. . .
...

hn1 + an1 hn2 + an2 · · · hnn + ann

 .

Lemma 2.1 ( [22]). (Descartes rule of signs): Let p(x) = a0x
b0 + a1x

b1 + · · · +
anx

bn denote a polynomial with nonzero real coefficients ai, where the bi are integers
satisfying 0 ≤ b0 < b1 < b2 < · · · < bn. Then the number of positive real zero of p(x)
(counted with multiplicities) is either equal to the number of variations in sign in
the sequence a0, . . . , an of the coefficients or less than that by an even whole number.
The number of negative zeros of p(x) (counted with multiplicities) is either equal to
the number of variations in sign in the sequence of the coefficients of p(−x) or less
than that by an even whole number.

Lemma 2.2 ( [10]). (Routh-Hurwitz Criterion): All roots of the polynomial ans
n+

an−1s
n−1 + · · ·+ a1s+ a0 = 0 have strictly negative real parts if and only if ai > 0

for i = 0, 1, 2, · · · , n and the first column elements of the Routh-Hurwitz table are
positive.

For system (2.2), we have the following lemmas.

Lemma 2.3 ( [5]). If q ∈ (0, 1) and all the roots of the characteristic equation
det(4(s)) = 0 have negative real part, then the zero solution of the system (2.2) is
Lyapunov globally asymptotically stable.

Lemma 2.4 ( [9]). If q ∈ (0, 1), x(t) ∈ Rn and M ∈ Rn×n. Consider the following
linear fractional-order system

0D
q
tX(t) = MX(t),
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Suppose λi(i = 1, 2, · · · , n) are all eigenvalues of the matrix |λI −M | = 0. The
linear fractional-order system is asymptotically stable if and only if |λi| > qπ

2 , and
is stable if and only if |λi| > qπ

2 .

The stability region of a linear fractional-order system with order q (q ∈ (0, 1))
are depicted in Figure 1.

Figure 1. The stability region of a linear fractional-order system with order q (q ∈ (0, 1)).

Lemma 2.5 ( [23]). If q ∈ (0, 1), all the eigenvalus of M satisfy |arg(λ)| > π
2 and

the characteristic equation 4(s) = 0 has not pure imaginary roots for τ > 0, then
the zero solution of system (2.2) is Lyapunov asymptotically stable.

Remark 2.1. For system (2.2), if all eigenvalues of the coefficient matrix M satisfy
|arg(λ)| > π

2 , and characteristic equation det(4(s)) = 0 for any τ > 0 has not pure
imaginary roots. Then, the zero solution of the system (2.2) is stable. Noticing
Lemma 2.4, if all eigenvalues of the coefficient matrix M satisfy |arg(λ)| > qπ

2 . The
zero solution of the system (2.2) is not necessarily stable. The corresponding counter
examples can be cited. Details are discussed in [24]. Therefore, the stability of time
delay systems is judged by condition |arg(λ)| > π

2 instead of condition |λi| > qπ
2 .

3. Local asymptotic stability of the system

Through the above analysis, we consider the following predator-prey model 0D
q
tN1(t) = N1(A−BN1 −K1(N1, N2)),

0D
q
tN2(t) = N2(−D − EN2 +K2(N1, N2)),

(3.1)

where q ∈ (0, 1); N1 and N2 denote the density of prey and predator at time t,
respectively; A and B denote the birth rate and intraspecific competition rate of
prey, respectively; C is the predation rate; D and E represent the death rate and
intraspecific competition rate of predator, respectively; F represents conversion rate
of prey; the initial conditions N1(0) = N10 > 0, N2(0) = N20 > 0; K1(N1, N2) =

CN2

A1+B1N1+C1N2+B1C1N1N2
; K2(N1, N2) = FN1

A1+B1N1+C1N2+B1C1N1N2
. All the pa-

rameters A,B,C,D,E, F,A1, B1, C1 are assumed positive. For the convenience of
the later discussion, transform the system (3.1) into the following system 0D

q
tx(t) = x(1− x− k1(x, y)),

0D
q
t y(t) = y(−d− ey + k2(x, y)),

(3.2)
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where k1(x, y) = cy
1+a1x+b1y+c1xy

, k2(x, y) = fx
1+a1x+b1y+c1xy

, N1 = Ax
B , y = N2,

t = AT , x(0) = x0 > 0, y(0) = y0 > 0, c = C
AA1

, a1 = AB1

A1B
, b1 = C1

A1
, c1 = AB1C1

A1B
,

d = D
A , e = E

A and f = FA
AA1B

.
E1 = (0, 0) and E2 = (1, 0) are obviously the two nonnegative equilibrium points

of the system (3.2). For the nontrivial equilibrium point E3 = (x∗, y∗), we have the
following analysis.

Theorem 3.1. The component x∗ in the nontrivial equilibrium point E3 of system
(3.2) is positive, if b1 < c.

Proof. The interior equilibrium E3 of system (3.2) is given by

1− x− cy

1 + a1x+ b1y + c1xy
= 0, (3.3)

−d− ey +
fx

1 + a1x+ b1y + c1xy
= 0. (3.4)

It can be obtained by (3.3)

y =
(1 + a1x)(1− x)

c− b1 + b1x− c1x+ c1x2
. (3.5)

Taking (3.5) into (3.4), we have

υ1x
5 + υ2x

4 + υ3x
3 + υ4x

2 + υ5x+ υ6 = 0, (3.6)

where
υ1 = c21f , υ2 = 2c1f(b1 − c), υ3 = a1c(a1e − c1d) + f(b21 + c21 + 2cc1 − 4b1c1),
υ4 = c(−c1d + a1d(c1 − b1)) − a1ce(a1 − 2) + f(2b1c − 2cc1 − 2b21 + 2b1c1), υ5 =
cd(c1 − b1) + a1cd(b1 − c) + ce− 2a1ce+ f(c2 + b21 − 2b1c) and υ6 = cd(b1 − c)− ce.
x∗ in equilibrium point E3 = (x∗, y∗) is a solution of equation (3.6). According to
Lemma 2.1 (Descartes’ rule of signs) and assuming b1 < c, we have υ2 < 0 and
υ6 < 0. And we can find the symbols of υ1, υ2, υ3, υ4, υ5, υ6 change odd times,
there must be a positive root x∗ in the equation (3.6).

According to the proof of Theorem 3.1, we can get the corresponding y∗ =
(1+a1x

∗)(1−x∗)
c−(b1+c1x∗)(1−x∗) . If conditions b1 < c, c > (b1 + c1x

∗)(1 − x∗) and 0 < x∗ < 1

are satisfied, we can get y∗ > 0. Therefore, the equilibrium point E3 of the system
(3.2) is the positive equilibrium point.

Theorem 3.2. With respect to system (3.2), we have that

(i) the equilibrium point E1 = (0, 0) is unstable;

(ii) the equilibrium point E2 = (1, 0) is locally asymptotically stable, if d > f
1+a1

;

(iii) the equilibrium point E3 = (x∗, y∗) is locally asymptotically stable, if a1(b1 −
c) > c1.

Proof. Assuming that the equilibrium point of (3.2) is (x̄, ȳ) and letting Z(t) =
(x(t), y(t)), we can obtain the linearize of the system (3.4)

0D
q
tZ(t) = AZ(t) +BZ(t), (3.7)

with

A =

1 0

0 −d

 , B =

l11 l12

l21 l22

 ,
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where

l11 = −2x̄+
c(a1 + c1ȳ)x̄ȳ − cȳk3(x̄, ȳ)

k4(x̄, ȳ)
, l12 =

cx̄ȳ(b1 + c1x̄)− cx̄k3(x̄, ȳ)

k4(x̄, ȳ)
,

l21 =
fȳk3(x̄, ȳ)− (a1 + c1ȳ)fx̄ȳ

k4(x̄, ȳ)
and l22 = −2eȳ +

fx̄k3(x̄, ȳ)− fx̄ȳ(b1 + c1x̄)

k4(x̄, ȳ)
,

with k3(x̄, ȳ) = 1 + a1x̄+ b1ȳ + c1x̄ȳ and k4(x̄, ȳ) = (1 + a1x̄+ b1ȳ + c1x̄ȳ)2.
We can obtain the corresponding characteristic matrix

4(s) =

sq − 1− l11 −l12

−l21 sq + d− l22

 ,
and characteristic equation

det(4(s)) = (sq − 1− l11)(sq + d− l22)− l12l21 = 0. (3.8)

Taking E1 = (0, 0) into (3.8), we can obtain

det(4(s)) = (sq − 1)(sq + d) = 0.

It can be obtained that sq − 1 = 0 or sq + d = 0. The characteristic equation has a
positive root sq = 1. According to Lemma 2.4, the equilibrium point E1 is unstable.
Similarly, with respect to E2, we have

det(4(s)) = (sq + 1)(sq + d− f

1 + a1
) = 0. (3.9)

Letting sq = g, we have

det(4(s)) = (g + 1)(g + d− f

1 + a1
) = 0. (3.10)

It is clear that Re(s) < 0 in (3.9) is equivalent to |arg(g)| > qπ
2 in (3.10)(see

Ref. [16]). The characteristic equation (g + 1)(g + d − f
1+a1

) = 0 has a clear root

g1 = −1, and g1 satisfies |arg(g1)| > q∗π
2 (q ∈ (0, 1)). Assuming d − f

1+a1
> 0,

anothor root g2 < 0 satisfies |arg(g)| > q∗π
2 (q ∈ (0, 1)). According to Lemma

2.3 and Lemma 2.4, if d − f
1+a1

> 0, the equilibrium point E2 = (1, 0) is locally
asymptotically stable.

For E3, taking x(t) = x∗ + z(t) and y(t) = y∗ + w(t) into (3.2), we have 0D
q
t z(t) = [x∗ + z(t)]− [x∗ + z(t)]2 c[x

∗+z(t)][y∗+w(t)]
k5(z(t),w(t)) ,

0D
q
tw(t) = −d[y∗ + w(t)]− e[y∗ + w(t)]2 + f [x∗+z(t)][y∗+w(t)]

k5(z(t),w(t)) ,
(3.11)

where k5(z(t), w(t)) = 1+a1[x∗+z(t)]+b1[y∗+w(t)]+c1[x∗+z(t)][y∗+w(t)]. We can
get the linearization matrix of system (3.11) at the equilibrium point E3 = (x∗, y∗)

H =

h11 h12

h21 h22

 ,
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where h11 = (a1+c1y
∗)cx∗y∗

k6(x,y) − x∗, h12 = −cx∗(1+a1x
∗)

k6(x,y) , h21 = fy∗(1+b1y
∗)

k6(x,y) and h22 =

− fx
∗y∗(b1+c1x

∗)
k6(x,y) − ey∗, with k6(x, y) = (1 + a1x

∗ + b1y
∗ + c1x

∗y∗)2. It is obvious

that h12 < 0, h21 > 0 and h22 < 0. Assuming h11 < 0, we can obtain s1 + s2 = tr(H) = h11 + h22 < 0,

s1s2 = det(H) = h11h22 − h12h21 > 0,
(3.12)

where s1 and s2 are the roots of the characteristic equation |λE−H| = 0. Therefore,
we can get Re(s1) < 0 and Re(s2) < 0. According to Lemma 2.3, E3 is locally
asymptotically stable. Based on the above analysis, we need to find the conditions
to meet h11 < 0.

Assuming h11 < 0, we can obtain

−1 +
cy∗(a1 + c1y

∗)

(1 + a1x∗ + b1y∗ + c1x∗y∗)2
< 0. (3.13)

Furthermore, we have the equilibrium equation

1 + a1x
∗ + b1y

∗ + c1x
∗y∗ =

cy∗

1− x∗
. (3.14)

Then, we have

y∗ =
(1 + a1x

∗)(1− x∗)
c− (1− x∗)(b1 + c1x∗)

. (3.15)

Taking (3.14) into (3.13), we can obtain

(1− x∗)2(a1 + c1y
∗)

cy∗
< 1. (3.16)

Taking (3.15) into (3.16), we can get

(1− x∗)2(a1 + c1y
∗)[c− (1− x∗)(b1 + c1x

∗)]

c(1 + a1x∗)(1− x∗)
< 1. (3.17)

If 0 < x∗ < 1, it can be obtained that

a1[c− (1− x∗)(b1 + c1x
∗)] <

c(1 + a1x
∗)

1− x∗
− c1(1 + a1x

∗)(1− x∗). (3.18)

We assume

(1 + a1x
∗)[c− c1(1− x∗)] > a1[c− (1− x∗)(b1 + c1x

∗)]. (3.19)

Under (3.19), we can find the inequality (3.18) is satisfied. Furthermore, inequality
(3.19) is equivalent to

[c1 + a1(c− b1)](x∗ − 1) + c > 0.

Therefore, the condition c1 + a1(c − b1) < 0 can guarantee the establishment of
h11 < 0. Therefore, the equilibrium point E3 is locally asymptotically stable. If
x∗ > 1, according to (3.15), we have

y∗ =
(1 + a1x

∗)(1− x∗)
c− (1− x∗)(b1 + c1x∗)

< 0. (3.20)

Therefore, the case is not considered.
If x∗ = 1, according to (3.16), we have y∗ = 0. Then, the equilibrium point E3

and the equilibrium point E2 are the same point.
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4. Local asymptotic stability of the time delayed
system

In the early research of predator-prey model, it is assumed that the predation
process of predator increased its population density instantaneously. However, the
change of density of population is effected by not only the current activity, but also
the past state of the population. We assume that the reproduction of predator after
predating the prey will not be instantaneous, but arbitrated by some constant time
delay τ due to prey handling and digesting [20]. Therefore, we consider the system
(3.2) with time delayed term in this section, it can be given by 0D

q
tx(t) = x− x2 − xk1(x, y),

0D
q
t y(t) = −dy − ey2 + y(t− τ)k2(x(t− τ), y(t− τ)),

(4.1)

where x(t) > 0, y(t) > 0, t ∈ (−τ, 0) and q ∈ (0, 1). In this part, we consider
the local asymptotic stability of equilibrium points for time delayed system (4.1).
Correspondingly, the stability of equilibrium points can be analyzed by the following
theorem.

Theorem 4.1. With respect to the stability of equilibrium point of system (4.1),
we have that

(i) the equilibrium point E1 = (0, 0) is unstable;

(ii) the equilibrium point E2 = (1, 0) is locally asymptotically stable, if d > f
1+a1

;

(iii) the equilibrium point E3 = (x∗, y∗) is locally asymptotically stable, if ar > 0,

br > 0, cr > 0, dr > 0 and br − cr
ar
> 0,

a2rdr−arbrcr+c2r
cr−arbr > 0;

where ar = −2(m11 + m22)cos(qπ/2), br = m2
11 + 2m11m22 + 2m11m22cos(qπ) +

m2
22−n2

22, cr = 2cos(qπ/2)n22(m11n22−m12n21)−2cos(qπ/2)m11m22(m11 +m22),

dr = m2
11m

2
22 − (m11n22 − m12n21)2, m11 = (a1+c1ȳ)cx̄ȳ

k4(x̄,ȳ) − x̄, m12 = −cx̄(1+a1x̄)
k4(x̄,ȳ) ,

m22 = −d− 2eȳ, n21 = fȳ(1+b1ȳ)
k4(x̄,ȳ) and n22 = fx̄(1+a1x̄)

k4(x̄,ȳ) .

Proof. The Jacobian matrix of the linearized system of model (4.1) is

J =

1− 2x̄− cȳ(1+b1ȳ)
k4(x̄,ȳ)

−cx̄(1+a1x̄)
k4(x̄,ȳ)

fȳ(1+b1ȳ)
k4(x̄,ȳ) e−τs −d− 2eȳ + fx̄(1+a1x̄)

k4(x̄,ȳ) e−τs

 ,
where (x̄, ȳ) is the equilibrium point of the system (4.1). The characteristic equation
at the equilibrium point E1 reduces to

(sq − 1)(sq + d) = 0.

Obviously, the characteristic equation has a positive root sq = 1. Therefore, the
equilibrium point E1 is unstable.

For E2, letting x(t) = x̄ + z(t) and y(t) = ȳ + w(t) and linearizing the system
(4.1), we have

0D
q
tP (t) = MP (t) +NP (t− τ), (4.2)
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where P (t) = [z(t), w(t)], P (t− τ) = [z(t− τ), w(t− τ)] and q ∈ (0, 1).

M =

m11 m12

m21 m22

 , N =

n11 n12

n21 n22

 ,
with m11 = (a1+c1ȳ)cx̄ȳ

k4(x̄,ȳ) − x̄, m12 = −cx̄(1+a1x̄)
k4(x̄,ȳ) , m21 = 0, m22 = −d− 2eȳ, n11 = 0,

n12 = 0, n21 = fȳ(1+b1ȳ)
k4(x̄,ȳ) and n22 = fx̄(1+a1x̄)

k4(x̄,ȳ) = − fcm12.

With respect to E2 of the system (4.2), we have

M1 =

−1 −c
1+a1

0 −d

 and N1 =

0 0

0 f
1+a1

 .
Then, we can obtain

4(s) =

sq + 1 c
1+a1

,

0 sq + d− f
1+a1

e−τs

 .
According to Theorem 3.2, when τ = 0 and d− f

1+a1
< 0, It is clear that the equi-

librium point E2 is locally asymptotically stable. When τ > 0, the corresponding
characteristic equation is given by

det(4(s)) = (sq + 1)(sq + d− f

1 + a1
e−sτ ) = 0.

Then, we have sq + 1 = 0 or sq + d− f
1+a1

e−sτ = 0. Assuming that s = ωi is a root

of the characteristic equation, we can get sq = (ωi)q = |ω|qe
qπ
2 i = |ω|q(cos( qπ2 ) +

isin( qπ2 )). If sq + 1 = 0, we have

|ω|q(cos(
qπ

2
) + i sin(

qπ

2
)) + 1 = 0.

Then, we can obtain  |ω|q cos( qπ2 ) = −1,

sin( qπ2 ) = 0.
(4.3)

It is clear that qπ
2 ∈ (0, π2 ). We have sin( qπ2 ) > 0. Therefore, sq + 1 = 0 does not

exist pure imaginary roots.
Similarly, if sq + d− f

1+a1
e−sτ = 0, we can obtain

|ω|q(cos(
qπ

2
) + i sin(

qπ

2
)) + d− f

1 + a1
(cos(ωτ)− i sin(ωτ)) = 0.

Then, we can get  |ω|q cos( qπ2 ) + d = f
1+a1

cos(ωτ),

|ω|q sin( qπ2 ) = − f
1+a1

sin(ωτ).
(4.4)
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Furthermore, we have

|ω|2q + 2d|ω|q cos(
qπ

2
) + d2 − f2

(1 + a1)2
= 0.

Letting |ω|q = v > 0, it can be obtained that

v2 + 2dv cos(
qπ

2
) + d2 − f2

(1 + a1)2
= 0. (4.5)

Assuming that v1 and v2 are the roots of (4.5), we have v1 + v2 = −2d cos( qπ2 ) < 0,

v1v2 = (d− f
1+a1

)(d+ f
1+a1

) > 0.
(4.6)

There are only negative roots in (4.5) by (4.6). This is in contradiction with the
assumption |ω|q = v > 0. According to Lemma 2.5, E2 is locally asymptotically
stable.

For E3, similarly, we can obtain the corresponding characteristic matrix

4(s) =

 sq −m11 −m12

−n21e
−sτ sq −m22 − n22e

−sτ

 ,
and characteristic equation

det(4(s)) = (sq −m11)(sq −m22 − n22m12e
−sτ )−m12n21e

−sτ = 0. (4.7)

Assuming that s = ωi is a root of the characteristic equation (4.7), we can obtain

[n22|ω|q cos(qπ/2)−m11n22 +m12n21] cos(ωτ) + n22|ω|q sin(qπ/2) sin(ωτ)

= |ω|2q cos(qπ)− |ω|q(m11 +m22) cos(qπ/2) +m11m22,

n22|ω|q sin(qπ/2) cos(ωτ) + [m11n22 −m12n21 − n22|ω|q cos(qπ/2)] sin(ωτ)

= |ω|2q sin(qπ)− |ω|q(m11 +m22) sin(qπ/2).

(4.8)

Furthermore, we have

|ω|4q − 2(m11 +m22) cos(qπ/2)|ω|3q + (m2
11 + 2m11m22 + 2m11m22 cos(qπ)

+m2
22 − n2

22)|ω|2q + [2 cos(qπ/2)n22(m11n22 −m12n21)

− 2 cos(qπ/2)m11m22(m11 +m22)]|ω|q +m2
11m

2
22 − (m11n22 −m12n21)2 = 0.

Letting |ω|q = u > 0, we can obtain

u4 + aru
3 + bru

2 + cru+ dr = 0, (4.9)

where ar = −2(m11 + m22) cos(qπ/2), br = m2
11 + 2m11m22 + 2m11m22 cos(qπ) +

m2
22−n2

22, cr = 2 cos(qπ/2)n22(m11n22−m12n21)−2 cos(qπ/2)m11m22(m11 +m22)
and dr = m2

11m
2
22 − (m11n22 −m12n21)2.

According to Routh-Hurwitz Criterion, this is in contradiction with our hypo-
thetical condition. Therefore, the characteristic equation (4.7) does not exist any
pure imaginary roots. Based on Lemma 2.5, the equilibrium point E3 is locally
asymptotically stable.
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5. Numerical simulation

In order to show the analytical stability results obtained in the previous sections
graphically, the numerical simulations of systems are conducted respectively.

The system without time delay: we consider the following set of parametric
values: a1 = 2, b1 = 3.2, c = 2.4, d = 0.7, e = 0.3, f = 0.7, c1 = 2 and q = 0.7.
Then, the system becomes 0D

0.7
t x(t) = x− x2 − 2.4xy

1+2x+3.2y+2xy ,

0D
0.7
t y(t) = −0.7y − 0.3y2 + 0.7xy

1+2x+3.2y+2xy .
(5.1)

It is easy to find that the parameters of the system (5.1) satisfy the condition
d > f

1+a1
. We select initial condition x(0) = 4, y(0) = 3. It can be seen from

Figure 2 that the result of the numerical simulation is in line with the conclusion
of Theorem 3.2.

Selecting another set of parameters for system (3.2): a1 = 1, b1 = 0.5, c = 0.1,
d = 0.1, e = 0.3, f = 0.6, c1 = 0.1 and q = 0.7, we can find that the corresponding
system has a nontrivial equilibrium E∗ ≈ (0.9772462, 0.5207189) ∈ R2

+. These
parameters obviously satisfy the corresponding conditions of Theorem 3.2. Selecting
initial condition x(0) = 0.6, y(0) = 0.3, according to Figure 3, E∗ is a stable
equilibrium point and this is in line with the conclusion of Theorem 3.2.
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Figure 2. Stability of the equilibrium point
E1 = (1, 0).
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Figure 3. Stability of the equilibrium point
E∗ ≈ (0.9772462, 0.5207189).

Then, we consider another set of parametric values: a1 = 0.1, b1 = 0.1, c = 0.1,
d = 0.1, e = 0.8, f = 0.6, c1 = 0.1and q = 0.7. With these parameters, it is easy to
calculate the corresponding nontrivial equilibrium point is (0.9596775, 0.4798384).
The condition of Theorem 3.2 is not met. However, according to Figure 4, we can
find that E∗ ≈ (0.9596775, 0.4798384) is still a stable equilibrium point. This shows
that the conditions for judging the stability of the equilibrium point in Theorem 3.2
are sufficient and not necessary, which can also be seen from the proof of Theorem
3.2.

The system with time delay: For system (4.1), we select the following set of
parameters: a1 = 2, b1 = 3.2, c = 3, d = 0.7, e = 0.3, f = 1.5, c1 = 2, τ = 0.2 and
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Figure 4. Stability of the equilibrium point
E∗ ≈ (0.9596775, 0.4798384).
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Figure 5. Stability of the equilibrium point
E2 = (1, 0).

q = 0.7. It satisfies the condition of Theorem 4.1. Then, we choose initial condition
x0 = 0.6, y0 = 0.6. The equilibrium point E2 = (1, 0) is locally asymptotically
stable and the result of numerical simulation is in line with the conclusion of the
Theorem 4.1 (Figure 5).

For system (4.1), we set x0 = 0.5, y0 = 0.6. Selecting parameters a1 = 0.1,
b1 = 0.1, c = 0.6, d = 0.8, e = 0.7, f = 1.6, c1 = 0.1, τ = 0.3 and q = 0.7, we can
get the nontrivial equilibrium point is (0.7846384, 0.4135931). It is easy to find that
this set of parameters satisfies Theorem 4.1. The equilibrium point E3 ≈ (x∗, y∗) is
locally asymptotically stable and the result of numerical simulation is in line with
the conclusion of the Theorem 4.1 (Figure 6).
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Figure 6. Stability of the equilibrium point E3 ≈ (0.7846384, 0.4135931).
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