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ON AN ITERATIVE METHOD FOR A CLASS
OF 2 POINT & 3 POINT NONLINEAR SBVPS

Mandeep Singh1, Amit Kumar Verma2,† and Ravi P. Agarwal3

Abstract In this article, we propose a novel modification to Quasi-Newton
method, which is now a days popularly known as variation iteration method
(VIM) and use it to solve the following class of nonlinear singular differential
equations which arises in chemistry −y′′(x) − α

x
y′(x) = f(x, y), x ∈ (0, 1),

where α ≥ 1, subject to certain two point and three point boundary conditions.
We compute the relaxation parameter as a function of Bessel and the modified
Bessel functions. Since rate of convergence of solutions to the iterative scheme
depends on the relaxation parameter, thus we can have faster convergence.
We validate our results for two point and three point boundary conditions.
We allow ∂f/∂y to take both positive and negative values.

Keywords Singular differential equation, quasi-Newton method, Bessel func-
tion, modified Bessel function, two point boundary condition, three point
boundary condition.
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1. Introduction

In [39], we proposed that the appropriate equation for the thermal balance between
the heat generated by the chemical reaction and that the heat conducted away can
be written as

∇2u(P ) = f(P, u(P ), du(P )/dP ),

which gives rise to singular differential equation given by

−(xαy′)′ = xαf(x, y, xαy′), x ∈ (0, 1),

whenever we are interested in radially symmetric solutions. Such nonlinear singular
boundary value problems (SBVPs) pose great challenges to researchers, due to
unpredictable behavior of their solutions in the neighborhood of the singular points.
It is also not easy to obtain the closed form solutions of these nonlinear SBVPs. So,
researchers try to develop efficient numerical schemes which can produce accurate
and stable results.

The main objective of our work is to compute the relaxation parameter or La-
grange’s multiplier for Quasi-Newton’s method (VIM) (see [14–19,31,35–37,40,41]
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and find the approximate solutions of the following class of nonlinear SBVPs

−(xαy′)′ = xαf(x, y), 0 < x < 1, ′ ≡ d

dx
, (1.1)

y′(0) = A, a1y(1) + b1y
′(1) = c1, or (1.2)

y′(0) = 0, y(1) = δy(η), δ > 0, 0 < η < 1, (1.3)

where α,A, a1, b1, c1 are real constants and α ≥ 1. Here we assume that f(x, y) is
continuous and Lipschitz continuous in D = {(x, y) ∈ [0, 1]× R}.

Chandrashekhar [4] in Chapter IV (Polytropic and Isothermal Gas Spheres)
derived Lane-Emden equation of index n (α = 2, f(x, y) = yn). SBVP (1.1) is also
derived by several researchers (see [1, 5, 23,25]).

As far as analytical results are considered, enormous literature is available for
two point SBVP (see [6,12,26,27,33]). Russell and Shampine [33] showed that the
above class have unique solution for α = 1 if K < j2

0 , where j0 is the first positive
zero of Bessel function J0(x), for α = 2, the problem has unique solution if K < π2,
where K is Lipschitz constant. Chawla and Shivakumar [6] have shown that the
SBVP (1.1)-(1.2) has unique solution for all α, if K = ∂f

∂y < K2
1 , where K1 is the first

zero of J(α−1
2 )(
√
K). El-Gebeily and Boumenir [12] have shown that the problem

has a unique solution for certain boundary conditions under the assumption that the
range of ∂f

∂y has empty intersection with the closure of the spectrum of the singular

differential operator, where f denotes the nonlinearity. Pandey and Verma [26, 27]
generalized some of these results for a general class of SBVPs.

The numerical solutions of these SBVP have been discussed by several methods
such as Cubic spline and B-spline methods ( [7, 32, 34]), mixed decomposition-
spline method (MDSM) [20], finite difference method ( [8, 28–30]), two fold spline
Chebyshev linearization apporach [21], patching approach [22]. These methods are
very popular and have several advantages, but they need a lot of computational
work.

Iterative methods are preferred over other numerical methods as they take less
computational work and provide highly accurate approximations or even exact so-
lutions. Recently, researchers have used Adomian decomposition method (ADM),
modified Adomian decomposition method (MDM) and Homotopy analysis method
(HAM) ( [2, 3, 9, 11]) for non-linear SBVPs.

Literature survey shows that Quasi-Newton method also referred as varitional
iteration methods (VIMs) (see [14–19,31,35–37,40,41]) are very efficient for solving
nonlinear differential equations. Ravikanth et al. [31], Wazwaz [40] and Singh et al.
[37] considered class of SBVPs (1.1)-(1.2) and discussed certain aspects of iterative
scheme referred as variational method. Variation iteration methods are still under
investigation, recently, e.g., Daliri et al. [10] used it on a class of nonlinear Fredholm
integral equations, Zhang et al. [42] discussed it on a family of fifth-order convergent
methods for solving nonlinear equations, Ghorbani et al. [13] used it on nonlinear
two-point boundary value problems, Zellal et al. [43] used it on biological population
model, Noeiaghdam [24] used it on epidemiological model of computer viruses.

As far as analytical results of three point singular BVPs are considered, the
reader is suggested to read ( [38,39] and the references there in). But there are very
few papers which talk about numerical solutions for a class of nonlinear singular
three point BVPs. So, the result of this paper fills the gap existing in literature on
numerical solutions for class of singular three point BVPs.
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In this paper, we propose a modification to Quasi-Newton method (or VIM) and
use it to solve a class of two/three point nonlinear SBVPs (1.1)-(1.3). We generalize
the relaxation parameter (or Lagranges multiplier) (λ) and compute it as a function
of the variable (ω). The relaxation parameter (λ) is expressed in terms of Bessel
and modified Bessel functions.

For two point SBVPs, when ω = 0 our results coincide with the results in [31,40].
For positive values of ω our scheme converges faster. We allow ∂f

∂y to take both
positive and negative values.

For three point SBVPs, we have given two examples whose results do not exist
in literature.

We have organized this paper into the following sections. In section 2, we discuss
the basic ideas of Quasi-Newton iteration method (or VIM) and its convergence. In
section 3, we verify our results with suitable test examples.

2. The basic idea of Quasi-Newton iteration method
(or VIM)

Roots of nonlinear equation φ(x) = 0 can be computed by Newton’s method, which
we can write as

xn+1 = xn −
φ(xn)

φ′(xn)
.

If we replace 1
φ′(xn) by an approximation (say λ), the resulting method

xn+1 = xn − λφ(xn)

is then referred as Quasi-Newton iteration method. This approximation λ is referred
as relaxation parameter. Since xn is an approximated root of φ(xn) 6= 0, so, we
look for an optimal value of λ such that the difference xn+1 − xn which is equal to
λφ(xn) is minimized. Using this optimal value of λ, we generate a sequence {xn}
which converges to a root of the nonlinear equation.

The solution of the differential equation (1.1) is a zero of (1.1). So, the above
ideas can be used to compute the solution of (1.1). In next paragraph we will discuss
some of the preliminary results which will use the above concepts.

Schunk [35] used these concepts, to calculate the bending of cylindrical panels
while Zhukov [41] used this method for thin rectangular slabs. The method was
strengthened by Kirichenko and Krys’ko [18]. They considered a class of equations
which was described by positive definite operators. Inokuti et al. [17] referred the
relaxation parameter as Lagrange’s parameter and solved the nonlinear equations,
which may involve algebraic, differential, integral, or finite difference operators. He
( [14–16]) popularized this method and after that several authors started referring
this method as He’s variation iteration method.

In variational iteration method [14], the following non-linear differential equation
is considered

L(y) +N(y) = g(x), (2.1)

where L is a linear operator, N is a non-linear operator and g(x) is the source term.
We can write correction functional as

yn+1(x) = yn +

∫ x

0

λ [L(yn(t)) +N(ỹn(t))− g(t)] dt, n ≥ 0, (2.2)
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where ỹn is treated as restricted variation, i.e., δỹn = 0 and λ is the relaxation
parameter which is identified optimally with the help of variational theory.

2.1. Relaxation parameter in terms of Bessel functions

For the nonlinear SBVPs (1.1), we define the following iterative scheme

yn+1(x) = yn +

∫ x

0

λ
(
−ÿn(t)− α

t
ẏn(t)− f̃(t, yn)

)
dt, n ≥ 0. (2.3)

To find an optimal value of relaxation parameter “λ”, such that the second term
(right hand side) of the above equation will be minimized, we write the iterative
scheme (correction functional) as suggested by Soltani and Shirzadi (see [36]))

yn+1(x) = yn(x) +

∫ x

0

λ
(
−ÿn(t)− α

t
ẏn(t)− ωyn(t)− f̃(t, yn) + ωỹn(t)

)
dt, (2.4)

where ˙≡ d
dt . When ω = 0, this scheme is same as considered in [31,40].

By taking the variation on both sides of (2.3), we get

δyn+1(x) = δyn(x) + δ

∫ x

0

λ
(
−ÿn(t)− α

t
ẏn(t)− ωyn(t)− f̃(t, yn) + ωỹn(t)

)
dt.

Hence

δyn+1(x) = δyn(x) + δ

∫ x

0

λ
(
−ÿn(t)− α

t
ẏn(t)− ωyn(t)

)
dt, where δỹn = 0.

Integrating by parts, we get

δyn+1(x) =

(
1 + λx(x)− αλ(x)

x

)
δyn(x)− δλ(x)y′n(x)

−
∫ x

0

(
λtt − α

(tλt − λ)

t2
+ ωλ

)
δyn(t)dt

= 0.

Hence, we get

1 + λx(x)− αλ(x)

x
= 0, (2.5)

λ(x) = 0, (2.6)

−λtt(t) + α
(tλt(t)− λ(t))

t2
− ωλ(t) = 0. (2.7)

We can write (2.7) as follows

t2λtt − tαλt + (α+ t2ω)λ = 0. (2.8)

The Standard Bessel’s equation given by

z2 d
2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0, (2.9)
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is transformed (Lommel’s transformations z = βζγ , w = ζ−av(ζ)) into (2.10)

ζ2 d
2v

dζ2
+ ζ(1− 2a)

dv

dζ
+
[
(βγζγ)2 + (a2 − ν2γ2)

]
v = 0. (2.10)

Now, if we set ν = (1−α)
2 , a = (1+α)

2 , γ = 1, β2 = ω, ζ = t then (2.10) is reduced
into (2.8). The transformed Bessel’s equation (2.10) has two linearly independent
solutions, which are defined as

v1(ζ) = ζaw1 (βζγ) , v2(ζ) = ζaw2 (βζγ) , (2.11)

where w1(z) and w2(z) are two linearly independent solutions of the Bessel’s equa-
tion (2.9). Hence, we obtain two linearly independent solutions of (2.8) in terms of
w1(z) and w2(z). The bounded solution of (2.8) is given by tν+αJ−ν (t

√
ω) , if ω > 0

or tν+αI−ν (t
√
ω) , if ω < 0, where J−ν and Y−ν are Bessel functions of first and

second kind, respectively and I−ν and Kν are modified Bessel functions of first and
second kind, respectively.

By using the conditions (2.5) and (2.6), we obtain the optimal values of the
relaxation parameter. For ω > 0, we get

λ(t) =
πxtνtα

2xνxα
[
J−ν

(
t
√
ω
)
Y−ν

(
x
√
ω
)
− J−ν

(
x
√
ω
)
Y−ν

(
t
√
ω
)]
, (2.12)

and similarly for ω < 0, we get

λ(t) =
tαtν x

xν xα

[
I−ν

(
x
√
|ω|
)
Kν

(
t
√
|ω|
)
− I−ν

(
t
√
|ω|
)
Kν

(
x
√
|ω|
)]
. (2.13)

The successive approximation yn+1, n ≥ 0 can be computed from the correctional
functional (2.3), where λ is given by equation ((2.12) or (2.13)), and the sequence
{yn(x)} converges uniformly (will be proved in the next section) to the exact solution
(say y(x)) of the nonlinear SBVP (1.1), where the initial approximation y0 may be
chosen, so that it satisfies at least the initial or boundary conditions.

2.2. Convergence Analysis

To prove that, the limit of the sequence {yn(x)} obtained from (2.3) will converge
to the solutions of (1.1)-(1.2), we have to prove that the sequence is convergent.

It is clear that

y0(x) +

n∑
i=1

(yi − yi−1) = yn(x) (2.14)

is nth partial sum of the infinite series

y0(x) +

∞∑
i=1

(yi − yi−1). (2.15)

Therefore, to prove that the sequence {yn(x)} converges (uniformly), it is enough
to prove that (2.15) converges (uniformly).

Theorem 2.1. Let ω > 0, yn(x) ∈ C2[0, 1], for n = 0, 1, 2, · · · , and there exist
N ≥ 0 such that for all f(x, u), f(x, v) ∈ D

|f(x, u)− f(x, v)| ≤ N |u− v|, (2.16)
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where D = {(x, y) ∈ [0, 1] × R}, then the sequences defined by (2.14), where yn+1

is given by (2.3), will converge uniformly to the exact solutions of nonlinear SBVP
(1.1)-(1.2).

Proof. For n = 0 from (2.3) we get,

y1(x) = y0(x)−
∫ x

0

λ
(
ÿ0(t) +

α

t
ẏ0(t) + f̃(t, y0)

)
dt.

Integrating by parts and using equations (2.5)–(2.7) on the right hand side of above
equation, we get

|y1(x)− y0(x)| =
∣∣∣∣−∫ x

0

((
−λt(t) +

αλ(t)

t

)
ẏ0(t) + λf̃(t, y0)

)
dt

∣∣∣∣ (2.17)

≤
∫ x

0

(∣∣∣∣−λt(t) +
αλ(t)

t

∣∣∣∣ |ẏ0(t)|+
∣∣∣λf̃(t, y0)

∣∣∣) dt. (2.18)

For n = 1 from (2.3) by similar analysis, we get

|y2(x)− y1(x)| =

∣∣∣∣∣
∫ x

0

((
−λtt(t) + α

(tλt(t)− λ)

t2

)
(y1(t)− y0(t))

+ λ
(
f̃(t, y1)− f̃(t, y0)

))
dt

∣∣∣∣∣ (2.19)

≤
∣∣∣∣∫ x

0

λ
(
ω(y1(t)− y0(t))−

(
f̃(t, y1)− f̃(t, y0)

))
dt

∣∣∣∣ (2.20)

≤
∫ x

0

|λ|
(
|ω| |(y1(t)− y0(t))|+

∣∣∣(f̃(t, y1)− f̃(t, y0)
)∣∣∣) dt. (2.21)

Further, by using Lipschitz condition, we get

|y2(x)− y1(x)| ≤
∫ x

0

|λ| (|(ω +N)| |(y1(t)− y0(t))|) dt, (2.22)

where N is Lipschitz constant. In general, we have

|yn+1(x)− yn(x)| ≤
∫ x

0

|λ| (|(ω +N)| |(yn(t)− yn−1(t))|) dt. (2.23)

Using series expansion of J−ν , Y−ν , I−ν and Kν (Appendix 5), we can easily con-
clude ∣∣∣∣λt

∣∣∣∣ & λt

are bounded for all t ≤ x ≤ 1 and α ≥ 1. So, we define

(M1)∞ = sup

{∣∣∣∣−λt(t) +
αλ(t)

t

∣∣∣∣ |ẏ0(t)|+
∣∣∣λf̃(t, y0)

∣∣∣} , (2.24)

(M2)∞ = sup {|λ| |(ω +N)|} . (2.25)

Consider

M = max {(M1)∞, (M2)∞} . (2.26)
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From equations (2.18), (2.24) and (2.26), we get

|y1(x)− y0(x)| ≤
∫ x

0
(M1)∞dt ≤

∫ x

0

Mdt = Mx. (2.27)

Similarly from equation (2.22),(2.25) and (2.26) we get

|y2(x)− y1(x)| ≤
∫ x

0

(M2)∞|y1(t)− y0(t)|dt ≤
∫ x

0

M ×Mtdt =
M2x2

2!
. (2.28)

In general,

|yn+1(x)− yn(x)| ≤
∫ x

0

(M2)∞|yn(t)− yn−1(t)|dt ≤
∫ x

0

M × Mntn

n!
dt

=
Mn+1xn+1

(n+ 1)!
, ∀x ∈ [0, 1]. (2.29)

As the series
∑∞
n=0

Mn+1xn+1

(n+1)! is convergent, ∀x ∈ [0, 1], therefore the series defined

by (2.15)

|y0(x)|+
∞∑
i=1

|(yi(x)− yi−1(x))| ≤ |y0(x)|+
∞∑
n=0

Mnxn

(n)!
, (2.30)

is absolutely convergent, i.e., the sequence of partial sums is convergent for x ∈ [0, 1].
Hence, by the Weierstrass M-Test

|y0(x)|+
∞∑
i=1

|(yi(x)− yi−1(x))|

converges uniformly ∀x ∈ [0, 1].
Similarly, from the convergence analysis for ω < 0, we arrive at the following

theorem.

Theorem 2.2. Let ω < 0, yn(x) ∈ C2[0, 1] for n ∈ 0, 1, 2, · · · and that there exist
N ≥ 0 such that for all f(x, u), f(x, v) ∈ D,

|f(x, u)− f(x, v)| ≤ N |u− v|, (2.31)

then the sequence defined by (2.14) where yn+1 is given by (2.3), will converge
uniformly to the exact solutions of nonlinear SBVP (1.1)-(1.2).

3. Numerical Illustrations

In this section, we consider four examples of two point and two examples of three
point SBVPs. We illustrate that our modified version of Quasi-Newton’s method
gives very good results. In the limiting case ω → 0, the numerical and analytical
results are exactly the same in result ( [31, 40]). We use (2.3) to compute the
solution. We introduce ω to have a better control over convergence. In the limiting
case, since ωyn and ωỹn will be canceled, so it does not affect our original iterative
scheme. Thus, we use (2.3), but as λ is the new relaxation parameter which involves
ω, so this method is not same as proposed in [31].
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Example 3.1. Consider the linear singular two point boundary value problem

−y′′(x)− 1

x
y′(x) = y(x)− 5

4
− x2

16
, 0 < x < 1, (3.1)

y′(0) = 0, y(1) =
17

16
. (3.2)

Solution:
The exact solution of this problem is y(x) = 1 + x2

16 . Here ∂f
∂y > 0. Now by using

the equation (2.3), we get

yn+1(x) = yn(x)−
∫ x

0

λ

(
ÿn(t) +

1

t
ẏn(t) + yn(t)− 5

4
− t2

16

)
dt. (3.3)

Here, λ is given by (2.12). Using the equation (3.3) with initial approximation
y0(x) = a, we get the following successive approximations

y0(x) =a,

y1(x) =
((4a− 5)ω + 1)J0 (

√
ωx)

4ω2
− 16a− x2 − 20

16ω
+ a− 1

4ω2
,

....

Now, we find the values of a by imposing the boundary condition ‘y(1) = 17
16 ’ on

the above approximations for different values of ω. The solutions at different space
points are displayed in tables 1 and 2.

Table 1. Solution (y1) of Example 3.1 for different values of ω.

x/y1 ω = 0 ( [31]) ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.6 ω = 0.72 ω = 0.9 Exact
0 0.994792 0.995335 0.995874 0.996407 0.997976 0.998591 0.999501 1
0.1 0.99543 0.995972 0.996509 0.997041 0.998606 0.99922 1.00013 1.000625
0.2 0.99735 0.997887 0.99842 0.998947 1.0005 1.00111 1.00201 1.0025
0.3 1.00057 1.00109 1.00162 1.00213 1.00366 1.00426 1.00514 1.005625
0.4 1.0051 1.00561 1.00612 1.00662 1.0081 1.00868 1.00953 1.01
0.5 1.01099 1.01147 1.01195 1.01243 1.01382 1.01437 1.01518 1.015625
0.6 1.01827 1.01871 1.01915 1.01958 1.02086 1.02136 1.0221 1.0225
0.7 1.02699 1.02737 1.02775 1.02812 1.02922 1.02965 1.03028 1.030625
0.8 1.03723 1.03752 1.0378 1.03809 1.03893 1.03925 1.03974 1.04
0.9 1.04903 1.0492 1.04937 1.04953 1.05001 1.0502 1.05047 1.050625
1 1.0625 1.0625 1.0625 1.0625 1.0625 1.0625 1.0625 1.0625

Table 2. Solution (y2) of Example 3.1 for different values of ω.

x/y2 ω = 0 ( [31]) ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.6 ω = 0.72 ω = 0.9 Exact
0 1.00014 1.00011 1.00009 1.00007 1.00002 1.00001 1 1
0.1 1.00077 1.00074 1.00071 1.00069 1.00065 1.00064 1.00063 1.000625
0.2 1.00264 1.00261 1.00259 1.00257 1.00252 1.00251 1.0025 1.0025
0.3 1.00576 1.00574 1.00571 1.00569 1.00565 1.00564 1.00563 1.005625
0.4 1.01014 1.01011 1.01009 1.01007 1.01002 1.01001 1.01 1.01
0.5 1.01576 1.01573 1.01571 1.01569 1.01565 1.01564 1.01563 1.015625
0.6 1.02262 1.0226 1.02258 1.02256 1.02252 1.02251 1.0225 1.0225
0.7 1.03074 1.03072 1.0307 1.03068 1.03064 1.03063 1.03063 1.030625
0.8 1.04009 1.04007 1.04006 1.04004 1.04001 1.04001 1.04 1.04
0.9 1.05068 1.05067 1.05066 1.05065 1.05063 1.05063 1.05063 1.050625
1 1.0625 1.0625 1.0625 1.0625 1.0625 1.0625 1.0625 1.0625
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Example 3.2. Consider the following nonlinear two-point SBVP (α=2 and f(x, y)=
yγ), derived by Chandrasekhar ( [4]) where γ is a physical constant, in connection
with the equilibrium of iso thermal gas spheres. We consider the case of γ = 5.

−y′′(x)− 2

x
y′(x) = y5, 0 < x < 1, (3.4)

y′(0) = 0, y(1) =

√
3

4
. (3.5)

Solution:
The exact solution of this problem is y(x) = (1 + x2

3 )−
1
2 . Here ∂f

∂y > 0. Now by

using the equation (2.3), we get

yn+1(x) = yn(x)−
∫ x

0

λ

(
ÿn(t) +

1

t
ẏn(t) + (yn(t))5

)
dt, (3.6)

where λ is defined by (2.12). Using the equation (3.6) with initial approximation
y0(x) = a, we get the following successive approximations (to save some space we
do not write y2(x))

y0(x) =a,

y1(x) =a− a5 (
√
ωx− sin (

√
ωx))

ω3/2x
,

....

Now we find the values of a by imposing the boundary condition y(1) =
√

3
4 on

the above approximations for different values of ω. The solutions at different space
points are displayed in table 3.

Table 3. Solution (y2) of Example 3.2 for different values of ω.

x/y2 ω = 0 ( [31]) ω = 0.1 ω = 0.2 ω = 1 ω = 2 ω = 2.3 Exact
0 0.993678 0.993989 0.994293 0.996453 0.998454 0.9989 1
0.1 0.992067 0.992376 0.992677 0.994819 0.996804 0.997247 0.998337488
0.2 0.987282 0.987583 0.987878 0.989967 0.991904 0.992336 0.993399268
0.3 0.979461 0.97975 0.980032 0.982038 0.983896 0.98431 0.985329278
0.4 0.968827 0.969099 0.969366 0.971256 0.973006 0.973397 0.974354704
0.5 0.955679 0.95593 0.956176 0.95792 0.959533 0.959892 0.960768923
0.6 0.940377 0.940602 0.940822 0.942382 0.94382 0.94414 0.944911183
0.7 0.923325 0.923517 0.923704 0.925027 0.926243 0.926512 0.927145541
0.8 0.904958 0.905104 0.905248 0.906258 0.90718 0.907382 0.907841299
0.9 0.885714 0.885799 0.885883 0.886468 0.886997 0.887112 0.887356509
1 0.866025 0.866025 0.866025 0.866025 0.866025 0.866025 0.866025404

Example 3.3. Consider the nonlinear two point SBVP ( [20]),

−y′′(x)− 1

x
y′(x) = ey, 0 < x < 1, (3.7)

y′(0) = 0, y(1) = 0. (3.8)
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Solution:
The exact solution of this problem is y(x) = 2 ln

(
C+1

C x2+1

)
, where C = 3 − 2

√
2.

Here ∂f
∂y > 0. Now by using the equations (2.3), we get

yn+1(x) = yn(x)−
∫ x

0

λ

(
ÿn(t) +

1

t
ẏn(t) + eyn(t)

)
dt, (3.9)

where λ is defined by (2.12). Using the equation (3.9) with initial approximation
y0(x) = a, we get the successive approximations. Since expressions are lengthy,
we are not mentioning it here. We find the values of a by imposing the boundary
condition y(1) = 0 on the above approximations for different values of ω. The
solutions at different space points are displayed in table 4.

Table 4. Solution (y1) of Example 3.3 for different values of ω.

x/y1 ω = 0 ω = 0.2 ω = 0.4 ω = 0.6 ω = 0.7 ω = 0.78 Exact
0 0.357403 0.350549 0.343887 0.337407 0.334233 0.331724 0.316694
0.1 0.353829 0.347 0.340362 0.333905 0.330742 0.328242 0.313266
0.2 0.343107 0.336358 0.329797 0.323415 0.320288 0.317817 0.303015
0.3 0.325237 0.318639 0.312224 0.305984 0.302927 0.30051 0.286047
0.4 0.300218 0.293869 0.287696 0.28169 0.278748 0.276422 0.262531
0.5 0.268052 0.262086 0.256285 0.250643 0.247879 0.245694 0.232697
0.6 0.228738 0.223337 0.218087 0.212982 0.210481 0.208504 0.196827
0.7 0.182276 0.177681 0.173216 0.168875 0.16675 0.16507 0.155248
0.8 0.128665 0.125185 0.121805 0.118521 0.116914 0.115645 0.108323
0.9 0.0679066 0.0659284 0.0640089 0.0621457 0.0612344 0.0605148 0.0564386
1 -5.55112E-17 -1.11022E-16 1.11022E-16 -5.55112E-17 5.55112E-17 0 0

Example 3.4. ∗ Consider the following nonlinear two-point SBVP which occurs
in diffusion problems with Michaelis-Menten kinetics ( [1]),

y′′(x) +
2

x
y′(x) =

ny

y + k
, 0 < x < 1, (3.10)

y′(0) = 0, 5y(1) + y′(1) = 5, (3.11)

where n = 0.76129 and k = 0.03119.

Solution:
Here ∂f

∂y < 0. Now by using the equations (2.3), we get

yn+1(x) = yn(x)−
∫ x

0

λ

(
ÿn(t) +

2

t
ẏn(t)− 0.76129 y

y + 0.03119

)
dt, (3.12)

where λ is defined by (2.13). Using the equation (3.12) with initial approximation
y0(x) = a, we get the following successive approximations

y0(x) =a,

y1(x) =a−
0.76129ax

ω − 0.76129a(sinh(
√
ωx))

ω3/2

ax+ 0.03119x
....

∗Exact solution is not known.
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Now, we compute the values of a by using the boundary condition ‘y(1) = 0’ on
the above approximations for different values of ω. The solutions at different space
points are displayed in table 5. The exact solution of this problem is not available.
So, making use of absolute residual error (table 6), we show the efficiency of our
technique and show how well the approximate solution satisfies nonlinear SBVP
(1.1)–(1.2). We plot the residual errors and figure 1 shows that residual error is
more near x = 1, but near the point of singularity it is very very less. Residual
error is defined as follows

Rω =

∣∣∣∣y′′(x) +
2

x
y′(x)− ny

y + k

∣∣∣∣ ,
where n = 0.76129 and k = 0.03119.

Table 5. Solution (y1) of Example 3.4 for different values of ω.

x/y1 ω = −3 ω = −1 ω = −0.5 ω = −0.1 ω = 0 ω = 0 ( [31])
0 0.793101 0.817568 0.823268 0.827713 0.828808 0.828808024
0.1 0.794324 0.818791 0.824491 0.828935 0.830031 0.830030824
0.2 0.798014 0.822467 0.828163 0.832605 0.833699 0.833699224
0.3 0.804238 0.828618 0.834295 0.838722 0.839813 0.839813223
0.4 0.813109 0.83728 0.842906 0.847292 0.848373 0.848372822
0.5 0.824787 0.848507 0.854022 0.858319 0.859378 0.85937802
0.6 0.839486 0.862366 0.867676 0.871811 0.872829 0.872828818
0.7 0.857475 0.87894 0.883909 0.887774 0.888725 0.888725216
0.8 0.879086 0.89833 0.902769 0.906219 0.907067 0.907067213
0.9 0.90472 0.920653 0.924315 0.927156 0.927855 0.92785481
1 0.934858 0.946046 0.948611 0.9506 0.951088 0.951088007

Table 6. Residual Errors of Example 3.4 for different values of ω.

x/Rω Rω=−3 Rω=−1 Rω=−0.5 Rω=−0.1 Rω=0

0 0 0 0 0 0
0.1 0.00362525 0.00118256 0.000571692 8.29781E-05 3.92021E-05
0.2 0.0145672 0.00473802 0.00228916 0.00033263 0.000156143
0.3 0.0330256 0.0106898 0.00515958 0.000751083 0.000348856
0.4 0.0593387 0.0190771 0.00919487 0.0013418 0.000614153
0.5 0.0939897 0.0299551 0.0144116 0.00210944 0.000947756
0.6 0.137618 0.0433951 0.020831 0.00305974 0.00134446
0.7 0.191033 0.0594853 0.0284788 0.0041993 0.00179834
0.8 0.255232 0.078331 0.0373853 0.00553538 0.00230293
0.9 0.331422 0.100055 0.0475849 0.00707574 0.00285147
1 0.421043 0.1248 0.0591165 0.00882843 0.00343707

3.1. Problems based on three point BVP

The exact solutions of the following three point BVPs are not available, so with the
help of absolute residual error, we show the efficiency and accuracy of our proposed
technique. We consider the following expression for residual error

Rω =
∣∣∣−y′′(x)− α

x
y′(x)− f(x, y)

∣∣∣ .
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Figure 1. Residual Errors of Example 3.4 for different values of ω.

Example 3.5. Consider the nonlinear three point singular boundary value problem

−y′′(x)− 2

x
y′(x) =

3

4
ey(x), 0 < x < 1, (3.13)

y′(0) = 0, y(1) =
2

5
y

(
1

2

)
. (3.14)

Solution:
Here ∂f

∂y > 0, so from equation (2.3), we get

yn+1(x) = yn(x)−
∫ x

0

λ

(
ÿn(t) +

1

t
ẏn(t) +

3

4
eyn(t)

)
dt, (3.15)

were λ is given by (2.12). We choose the initial approximation y0(x) = a, now from
equation (3.15), we get that

y0(x) =a,

y1(x) =a− 3ea (
√
ω x− sin (

√
ω x))

4ω3/2x
,

....

Now we find the values of a by imposing the boundary condition ‘y(1) = 2
5y
(

1
2

)
’

on the above approximations for different values of ω. The solutions and residual
error at different space points are displayed in tables 7, 8 and figure 2.
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Table 7. Solution (y1) of Example 3.5 for different values of ω.

x/y1 ω = 0 ω = 0.1 ω = 0.3 ω = 0.5 ω = 0.7 ω = 1
0 0.237846 0.236163 0.232841 0.229576 0.226366 0.221653
0.1 0.236261 0.234581 0.231264 0.228004 0.224799 0.220093
0.2 0.231504 0.229833 0.226534 0.223292 0.220105 0.215425
0.3 0.223576 0.221923 0.218661 0.215454 0.212303 0.207674
0.4 0.212476 0.210856 0.207658 0.204515 0.201425 0.196889
0.5 0.198205 0.196638 0.193546 0.190506 0.187519 0.183133
0.6 0.180763 0.179279 0.176349 0.17347 0.170641 0.166489
0.7 0.16015 0.158787 0.156099 0.153458 0.150863 0.147056
0.8 0.136365 0.135177 0.132832 0.130529 0.128267 0.124949
0.9 0.109409 0.108461 0.106589 0.104751 0.102946 0.100299
1 0.0792821 0.0786554 0.0774182 0.0762025 0.0750076 0.0732533

Table 8. Residual Error of Example 3.5 for different values of ω.

x/Rω Rω=0 Rω=0.1 Rω=0.3 Rω=0.5 Rω=0.7 Rω=1

0 0 0 0 0 0 0
0.1 0.00150736 0.00134393 0.00101888 0.000696179 0.000375749 0.000100777
0.2 0.00601514 0.0053607 0.00405962 0.00276869 0.00148763 0.00041608
0.3 0.0134806 0.0120054 0.00907481 0.00616992 0.00329007 0.000984209
0.4 0.0238333 0.0212042 0.0159866 0.0108219 0.00570876 0.001867
0.5 0.0369762 0.0328556 0.0246885 0.0166185 0.00864317 0.00314692
0.6 0.0527871 0.0468318 0.0350474 0.023428 0.0119697 0.00492325
0.7 0.0711207 0.0629818 0.0469067 0.0310968 0.0155458 0.00730751
0.8 0.0918104 0.081133 0.0600896 0.0394532 0.0192143 0.0104184
0.9 0.114672 0.101095 0.0744023 0.0483116 0.0228082 0.0143763
1 0.139504 0.122662 0.0896384 0.0574772 0.0261558 0.0192983
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Figure 2. Residual Error of Example 3.5 for different values of ω.
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Example 3.6. Consider the nonlinear three point singular boundary value problem

−y′′(x)− 2

x
y′(x) = 1− 2y3(x), 0 < x < 1, (3.16)

y′(0) = 0, y(1) =
1

3
y

(
1

4

)
. (3.17)

Solution:
Here ∂f

∂y < 0, so from equation (2.3), we get

yn+1(x) = yn(x)−
∫ x

0

λ

(
ÿn(t) +

1

t
ẏn(t) + 1− 2y3(t)

)
dt, (3.18)

where λ is given by (2.13) and we choose the initial approximation y0(x) = a. Now
from equation (3.18), we get that

y0(x) =a,

y1(x) =a−

(
2a3 − 1

) (
x
√
|k| − sinh

(
x
√
|k|
))

x |k|3/2
,

....

Now we find the values of a by imposing the boundary condition ‘y(1) = 1
3y
(

1
4

)
’ on

the above approximations for different values of ω. The solutions at different space
points are displayed in tables 9, 10 and figure 3.

Table 9. Solution (y1) of Example 3.6 for different values of ω.

x/y1 ω = −2 ω = −1.5 ω = −1 ω = −0.7 ω = −0.5 ω = −0.3 ω = 0
0 0.261313 0.255398 0.249569 0.246114 0.243828 0.241557 0.238177
0.1 0.259704 0.253786 0.247954 0.244497 0.242209 0.239937 0.236555
0.2 0.254858 0.248934 0.243097 0.239637 0.237348 0.235074 0.23169
0.3 0.246717 0.2408 0.23497 0.231515 0.22923 0.22696 0.223582
0.4 0.235183 0.229309 0.223524 0.220097 0.217831 0.21558 0.212231
0.5 0.220116 0.214358 0.20869 0.205334 0.203116 0.200913 0.197636
0.6 0.201335 0.195811 0.190379 0.187165 0.185041 0.182932 0.179798
0.7 0.17861 0.1735 0.16848 0.165512 0.163552 0.161607 0.158717
0.8 0.151665 0.147221 0.142861 0.140285 0.138584 0.136897 0.134392
0.9 0.12017 0.116735 0.113366 0.111375 0.110062 0.108759 0.106825
1 0.0837349 0.0817604 0.079815 0.0786619 0.0778993 0.0771414 0.0760139

Table 10. Residual Error of Example 3.6 for different values of ω.

x/ Rω Rω=−2 Rω=−1.5 Rω=−1 Rω=−0.7 Rω=−0.5 Rω=−0.3 Rω=0

0 0 0 0 0 0 0 4.51028 E-17
0.1 0.00256251 0.00179147 0.00101577 0.000548266 0.000235771 7.73604E-05 0.000548203
0.2 0.0103294 0.00722957 0.00411575 0.00224134 0.000989362 0.000264404 0.00214823
0.3 0.0235388 0.0165046 0.00945628 0.00522193 0.00239722 0.000428686 0.00466939
0.4 0.0425886 0.0299309 0.0172923 0.00972074 0.00467869 0.000358431 0.00790413
0.5 0.0680352 0.0479414 0.0279678 0.0160451 0.00812342 0.00022376 0.0115833
0.6 0.100591 0.071078 0.0419016 0.024562 0.013073 0.00164118 0.0153979
0.7 0.141114 0.0999744 0.0595652 0.0356741 0.0198956 0.00423675 0.0190262
0.8 0.190585 0.135329 0.0814511 0.0497868 0.0289529 0.00833947 0.022168
0.9 0.25007 0.177858 0.108029 0.0672648 0.0405574 0.0142227 0.0245846
1 0.320643 0.228231 0.139683 0.0883746 0.0549177 0.0220532 0.0261442
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Figure 3. Residual Error of Example 3.6 for different values of ω.

4. Conclusion

In this paper, we have shown that introduction of parameter ω (correction term)
in the iterative scheme greatly influence the convergence of the solution. In Tables
1, 2, 3 and 4 we have shown that when ω = 0, our results are same as results
in [32, 40]. For ω > 0 the results are improved and are getting closer and closer to
exact solutions. In tables 1 and 2, we have taken values of ω up to 0.72 which is less
than square of first positive zeros of respective Bessel functions (see [33]) and we
have also taken value of ω = 0.9 which is greater that square of first positive zeros
of respective Bessel functions (see [12]). In table 5, due to the absence of exact
results, we compare the results with the results given in [32]. This table also shows
that when value of ω is increasing the results are better (see Table 6). In table 7,
8, 9, 10 we depict the solutions of a class of three point SBVPs that does not exist
in literature.

This techniques is extremely powerful and gives accurate solution in few itera-
tions. The drawback of the method is that it is software dependent if we want to
further increase the accuracy then software (Mathematica v11.3) may not be able to
compute the solutions of integral in close form. But for few iterations this method
should be preferred over other methods. To over come this we may have to use some
interpolation technique for each iteration where we don’t find close form solution
of the integral but a discrete data which may be converted into a polynomial form
by using interpolation. This method can also be extended easily for other class of
IVPs or BVPs with singularity, the only issue that we need to take care of, is that
integral in the iterative scheme must exist. Figures 1, 2, 3 depict that the residual
errors are more towards the end point. But when ω < 0 and close to zero then
residual errors are uniform throughout the interval. When ω > 0 and close to first
eigenvalue of the corresponding BVPs then residual errors are uniform throughout
the interval. Tables clarify that the results are quite encouraging for computing
solutions of a class of three point nonlinear SBVPs.
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5. Appendix

For ω > 0, the Lagrange multipliers is

λ(t) =
πxtνtα

2xνxα
[(
J−ν

(
t
√
ω
)
Y−ν

(
x
√
ω
)
− J−ν

(
x
√
ω
)
Y−ν

(
t
√
ω
))]

,

where J−ν (t
√
ω) =

∑∞
m=0

(−1)m
(
t
√
ω

2

)−ν+2m

m! Γ(m−ν+1) , Jν (t
√
ω) =

∑∞
m=0

(−1)m
(
t
√
ω

2

)ν+2m

m! Γ(m+ν+1) ,

and

Y−ν
(
t
√
ω
)

=
2

π
J−ν

(
ln
t
√
ω

2
+ γ

)
− 1

π

m=0∑
−ν−1

(−ν −m− 1)!

m!

(
t
√
ω

2

)2m+ν

+

1

π

∞∑
m=0

(−1)m−1
[(

1 + 1
2 + · · ·+ 1

m

)
+
(

1 + 1
2 + · · ·+ 1

m−ν

)]
m! (m− ν)!

(
t
√
ω

2

)2m−ν

.

We also have a relation

Y−ν
(
t
√
ω
)

=
Jν (t
√
ω)− cos νπJ−ν (t

√
ω)

sin νπ
.

i.e.,

λ(t) =
πxtα

2 xα


 2

π

 ∞∑
m=0

(−1)mx−2ν+2m
(√

ω
2

)−ν+2m

m! Γ(m− ν + 1)

(ln
x
√
ω

2
+ γ

)

− 1

π

−ν−1∑
m=0

(−ν −m− 1)!

m!
(x)2m

(√
ω

2

)2m+ν

+
1

π

∞∑
m=0

(−1)m−1
[(

1 + 1
2 + · · ·+ 1

m

)
+
(

1 + 1
2 + · · ·+ 1

m−ν

)]
m! (m− ν)!

(x)2m−2ν

(√
ω

2

)2m−ν

+

 ∞∑
m=0

(−1)mx−2ν+2m
(√

ω
2

)−ν+2m

m! Γ(m− ν + 1)

 cot νπ

 ∞∑
m=0

(−1)mt2m
(√

ω
2

)−ν+2m

m! Γ(m− ν + 1)


− πx

2 xα


 ∞∑
m=0

(−1)mx−2ν+2m
(√

ω
2

)−ν+2m

m! Γ(m− ν + 1)

 csc νπ

∞∑
m=0

(−1)mt2m+1
(√

ω
2

)ν+2m

m! Γ(m+ ν + 1)

 .
(5.1)

Now for ω < 0, the Lagrange multipliers is

λ(t) =
tαtν x

xν xα

[
I−ν

(
x
√
|ω|
)
Kν

(
t
√
|ω|
)
− I−ν

(
t
√
|ω|
)
Kν

(
x
√
|ω|
)]
,

where Iν

(
x
√
|ω|
)

=
∑∞
m=0

(
x
√
|ω|
2

)2m+ν

m! Γ(m+ν+1) , I−ν

(
x
√
|ω|
)

=
∑∞
m=0

(
x
√
|ω|
2

)2m−ν

m! Γ(m−ν+1) ,

and
Kν

(
x
√
|ω|
)

=
π

2 sin νπ

[
I−ν

(
x
√
|ω|
)
− Iν

(
x
√
|ω|
)]
.
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λ(t) =
π tα

2xα sin νπ


∞∑
m=0

(t)2m

(√
|ω|
2

)2m−ν

m! Γ(m− ν + 1)


∞∑
m=0

(x)2m+α

(√
|ω|
2

)2m−ν

m! Γ(m− ν + 1)

−


∞∑
m=0

(x)2m+α

(√
|ω|
2

)2m−ν

m! Γ(m− ν + 1)
−
∞∑
m=0

(x)2m+1

(√
|ω|
2

)2m+ν

m! Γ(m+ ν + 1)





− π

2 sin νπ


∞∑
m=0

(x)2m

(√
|ω|
2

)2m−ν

m! Γ(m− ν + 1)

∞∑
m=0

(t)2m+1

(√
|ω|
2

)2m+ν

m! Γ(m+ ν + 1)

 . (5.2)
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