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SOURCE TERM IN A TIME-FRACTIONAL

DIFFUSION WAVE EQUATION∗
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Abstract This work is concerned with identifying a space-dependent source
function from noisy final time measured data in a time-fractional diffusion
wave equation by a variational regularization approach. We provide a reg-
ularity of direct problem as well as the existence and uniqueness of adjoint
problem. The uniqueness of the inverse source problem is discussed. Using
the Tikhonov regularization method, the inverse source problem is formulated
into a variational problem and a conjugate gradient algorithm is proposed to
solve it. The efficiency and robust of the proposed method are supported by
some numerical experiments.
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1. Introduction

Time fractional diffusion equations and diffusion wave equations arise when using
time fractional derivatives instead of the standard time derivatives and can be used
to describe sub-diffusion and super-diffusion phenomena in [2,23]. Direct problems
for time fractional diffusion equations, i.e initial value problems and initial bound-
ary value problems have received a lot of attentions in recent years, such as some
uniqueness and existence results [22,28], the maximum principle [19,21], numerical
solution by finite element and difference methods in [12,13,24,36].

However, there are a number of parameters may not be measured directly in
some practical situations, and have to be inferred indirectly from some given mea-
sured data. The inverse source problems of anomalous diffusion process aim at
determining the source function of physical field from some known measuremen-
t. For the time-fractional diffusion equations, the inverse source problems have
attracted immense interest in recent years, see, e.g, [4, 10,27,29,32–34,37].

Recently, the research for time-fractional diffusion-wave equations becomes a
popular topic. Direct problems for time-fractional diffusion-wave equations have
been investigated, see, e.g, [1, 3, 5, 6, 11, 28]. However, the inverse problems for
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fractional diffusion-wave equations have only a few papers such as inverse time-
dependant source problems on an unbounded domain [20] and on a bounded domain
[31], the uniqueness of inverse coefficients [14]. In this paper, we investigate an
inverse space-dependent source problem for a time fractional diffusion wave equation
in a bounded domain.

Let Ω be a bounded domain in Rd with sufficient smooth boundary ∂Ω. We
consider the following the time-fractional diffusion wave problem.

∂α0+u(x, t) + Lu(x, t) = f(x)g(t), x ∈ Ω, 0 < t ≤ T,
u(x, 0) = a(x), x ∈ Ω̄,

∂tu(x, 0) = b(x), x ∈ Ω̄,

u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T,

(1.1)

where 1 < α < 2 and ∂α0+u(x, t) is the Caputo left-sided derivative defined by

∂α0+u(x, t) =
1

Γ(2− α)

∫ t

0

(t− s)1−α ∂
2u

∂s2
(x, s)ds, t > 0,

and L is a symmetric uniformly elliptic operator defined on D(L) = H2(Ω)∩H1
0 (Ω)

given by

Lu(x) = −
d∑

i,j=1

∂

∂xj

(
Aij(x)

∂

∂xi
u(x)

)
+ c(x)u(x), x ∈ Ω, (1.2)

in which the coefficients satisfy

Aij = Aji, 1 ≤ i, j ≤ d, Aij ∈ C1(Ω̄), (1.3)

σ

d∑
i=1

ξ2
i ≤

d∑
i,j=1

Aij(x)ξiξj , ∀x ∈ Ω̄, ∀(ξ1, ..., ξd) ∈ Rd, σ > 0, (1.4)

c(x) ≥ 0, x ∈ Ω̄, c(x) ∈ C(Ω̄). (1.5)

If all functions f(x), g(t), a(x), b(x) are given, then the problem (1.1) is a direct
problem. The inverse problem considered here is to determine the spatial source
f(x) in problem (1.1) from the additional final data

u(x, T ) = h(x), x ∈ Ω. (1.6)

Unless otherwise specified, we always assume f(x) ∈ L2(Ω), a(x) ∈ H2(Ω)∩H1
0 (Ω),

b(x) ∈ D(L
1
α ), h(x) ∈ H2(Ω) ∩ H1

0 (Ω), g ∈ C1[0, T ], g′′(t) ∈ L1(0, T ), where
L1(0, T ) denote the Lebesgue integrable function space.

The inverse source problem for the time-fractional diffusion wave equation men-
tioned above is an ill-posed problem (refer to Section 4). As we know, the inves-
tigations for inverse source problems of the time-fractional diffusion-wave equation
are very few. Šǐsková in [31] considered an inverse time-dependant source problem
for a time fractional wave equation from an additional integration condition. The
purpose of this work is to determine the space-dependent source problem in a time
fractional diffusion wave equation by the final time measured data.

The main difficulty here is to obtain the gradient of the Tikhonov regularization
functional. To get it, we need an integration formula by parts for fractional deriva-
tives which is unknown. As one of the main contributions of our work, we provide a
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new integration by parts for fractional derivatives from which we can obtain a new-
type adjoint problem related to the Riemann-Liouville fractional derivative. The
existence and uniqueness of a weak solution for the adjoint problem are investigat-
ed. Moreover, the uniqueness of inverse source problem is discussed. This paper
offers a generalized approach to solve the inverse space-dependent source problem
in an irregular domain for a multi-dimensional case. Although the Tikhonov regu-
larization method is well known, we have to face new difficulty on its application in
solving inverse problems of fractional partial differential equations.

The paper is organized as follows. In Section 2, we present some preliminar-
ies. The regularity of the direct problem as well as the existence and uniqueness
for the adjoint problem are provided in Section 3. We discuss the uniqueness of
inverse source problem in Section 4. In Section 5, we formulate the inverse problem
into a variational problem and obtain the gradient of the Tikhonov regularization
functional by an adjoint problem. In Section 6, we will show a conjugate gradient
algorithm. In Section 7, the numerical results for two examples in one dimensional
case and one example in two dimensional case are presented. In Section 8, we give
a conclusion on the paper.

2. Preliminaries

Throughout this paper, we use the following definitions given in [16] and some
lemmas.

Definition 2.1. The Mittag-Leffler function is

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C, (2.1)

where α > 0 and β ∈ C are arbitrary constants.

Definition 2.2. Let Ω = [0, T ] be finite interval on the real axis R. The Riemann-
Liouville left-sided and right-sided fractional integrals Iα0+f and IαT−f of order α ∈
C
(
<(α) > 0

)
are defined by

Iα0+f(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α ds, t > 0, (2.2)

IαT−f(t) =
1

Γ(α)

∫ T

t

f(s)

(s− t)1−α ds, t < T. (2.3)

Definition 2.3. Let Ω = [0, T ] be finite interval on the real axis R. The Riemann-
Liouville left-sided and right-sided fractional derivative Dα

0+f and Dα
T−f of order

α ∈ C
(
<(α) > 0

)
are defined by

Dα
0+f(t) =

1

Γ(2− α)

d2

dt2

∫ t

0

f(s)

(t− s)α−1
ds, 1 < <(α) < 2, t > 0,

Dα
T−f(t) =

1

Γ(2− α)

d2

dt2

∫ T

t

f(s)

(s− t)α−1
ds, 1 < <(α) < 2, t < T,

and

Dα
0+f(t) =

1

Γ(1− α)

d

dt

∫ t

0

f(s)

(t− s)α
ds, 0 < <(α) < 1, t > 0,



1804 T. Wei & X. B. Yan

Dα
T−f(t) =

−1

Γ(1− α)

d

dt

∫ T

t

f(s)

(s− t)α
ds, 0 < <(α) < 1, t < T.

Lemma 2.1 (see Lemma 3.2 in [28]). For λ > 0, α > 0 and positive integer m ∈ N ,
we have

dm

dtm
Eα,1(−λtα) = −λtα−mEα,α−m+1(−λtα), t > 0. (2.4)

Lemma 2.2 (see (1.10.7), (2.1.56), (2.2.52) in [16]). For λ ∈ R, α > 0, γ > 0, we
have

d

dt
(tγ−1Eα,γ(−λtα)) = tγ−2Eα,γ−1(−λtα), t > 0,

Dα
0+(tα−1Eα,α(−λtα)) = −λtα−1Eα,α(−λtα), t > 0,

Dγ
0+(tα−1Eα,α(−λtα)) = tα−γ−1Eα,α−γ(−λtα), t > 0.

Lemma 2.3 (see Theorem 1.6 in [26]). Let 0 < α < 2 and β ∈ R be arbitrary. We
suppose that µ is such that πα

2 < µ < min{π, πα}. Then there exists a constant
C1 = C1(α, β, µ) > 0 such that

|Eα,β(z)| ≤ C1

1 + |z|
, µ ≤ |arg(z)| ≤ π. (2.5)

Lemma 2.4. Let λ > 0, α > 0, we have

d

dt
Eα,α−1(−λtα) = −λtα−1[Eα,2α−2(−λtα) + (2− α)Eα,2α−1(−λtα)], t > 0.

Proof. By Definition 2.1, it is easy to prove

d

dt
Eα,α−1(−λtα) =

∞∑
k=1

αk(−λtα)k−1(−λtα−1)

Γ(αk + α− 1)

= −λtα−1[

∞∑
k=0

(−λtα)k

Γ(αk + 2α− 2)
+ (2− α)

∞∑
k=0

(−λtα)k

Γ(αk + 2α− 1)
]

= −λtα−1[Eα,2α−2(−λtα) + (2− α)Eα,2α−1(−λtα)].

Definition 2.4. Define ACn[0, T ] = {f(t)|f ∈ Cn−1[0, T ], fn−1(t) ∈ AC[0, T ]},
where AC[0, T ] is the space of functions which are absolutely continuous on [0, T ].

Definition 2.5. Define the function space

AC2−α[0, T ] = {f(t)|t2−αf(t) ∈ AC[0, T ]},
ACT2−α[0, T ] = {f(t)|(T − t)2−αf(t) ∈ AC[0, T ]}.

In order to deduce the adjoint problem, we have to use an integration by parts
for fractional derivatives. The following new formula is important in the study of
fractional diffusion-wave equations.

Lemma 2.5. Let u(t) ∈ AC2[0, T ], v(t) ∈ C[0, T ], v(T ) = 0, v′(t) ∈ ACT2−α[0, T ],
then we have∫ T

0

∂α0+u(t)v(t)dt
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= −u′(0)I2−α
T− v(0) + u(T )Dα−1

T− v(T )− u(0)Dα−1
T− v(0) +

∫ T

0

u(t)Dα
T−v(t)dt.

Proof. Since v(t) ∈ C[0, T ], v′(t) ∈ ACT2−α[0, T ], 1 < α < 2, we know v′ ∈
L1(0, T ) ∩ CT2−α[0, T ], noting that v(T ) = 0, by Lemmas 2.2 and 2.8 in [16], we

have d
dtI

2−α
T− v(t) = Dα−1

T− v = ∂α−1
T− v = I2−α

T− v′(t) ∈ C[0, T ]. By Lemma 2.10 in [35]

and the above equality, we have Dα
T−v(t) = d2

dt2 I
2−α
T− v(t) = d

dtI
2−α
T− v′(t) = Dα−1

T− v′ ∈
L1(0, T ). From v(t) ∈ C[0, T ], it is easy to know I2−α

T− v(T ) = 0. By Lemma 2.7
in [16] and using integration by parts for two times, we have∫ T

0

∂α0+u(t)v(t)dt =

∫ T

0

I2−α
0+ u′′(s)v(s)ds =

∫ T

0

u′′(s)I2−α
T− v(s)ds

=− u′(0)I2−α
T− v(0)−

∫ T

0

u′(s)
d

ds
I2−α
T− v(s)ds

=− u′(0)I2−α
T− v(0) +

∫ T

0

u′(s)Dα−1
T− v(s)ds

=− u′(0)I2−α
T− v(0) + u(T )Dα−1

T− v(T )− u(0)Dα−1
T− v(0)

+

∫ T

0

u(s)Dα
T−v(s)ds.

Lemma 2.6 (see [8]). Let f ∈ Lp(0, T ) and g ∈ Lq(0, T ), with 1 ≤ p, q ≤ ∞, and
1
p + 1

q = 1. Then the function f ∗ g define by

f ∗ g(t) =

∫ t

0

f(t− s)g(s)ds,

belong to C[0, T ] and satisfies

|f ∗ g(t)| ≤ ‖f‖Lp(0,t)‖g‖Lq(0,t), 0 ≤ t ≤ T.

3. Regularity of a weak solution for the direct prob-
lem and the existence and uniqueness for the ad-
joint problem

Denote the eigenvalues of L with homogeneous Dirichlet boundary condition as
λn and the corresponding eigenfunctions as ϕn ∈ H2(Ω) ∩ H1

0 (Ω), which means
Lϕn = λnϕn, ϕn|∂Ω = 0, counting according to the multiplicities, we can set
0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn ≤ · · · and {ϕn}∞n=0 is an orthonormal basis of L2(Ω).

Henceforth (·, ·) denotes the scalar product in L2(Ω). Now we define a fractional
power Lγ of L with γ ≥ 0 as (see Section 2.6 in [25])

D
(
Lγ
)

= {ψ ∈ L2(Ω)|
∞∑
n=1

λ2γ
n |(ψ,ϕn)|2 <∞},

then D(Lγ) is a Hilbert space with the norm

‖ψ‖D(Lγ) = {
∞∑
n=1

λ2γ
n |(ψ,ϕn)|2} 1

2 .
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Note that D(Lγ) ⊂ L2(Ω), for γ ≥ 0 and by Theorem 1 in [9], we know D(L
1
2 ) =

H1
0 (Ω), D(L) = H2(Ω) ∩H1

0 (Ω).
On the existence and uniqueness of weak solution for problem (1.1), one can refer

to [15,28]. In the following, based on the methods in [28], we improve the regularity
of the weak solution such that u(x, t) ∈ AC2([0, T ];L2(Ω)) while enhancing the
smoothness of g(t).

Theorem 3.1. Let 1 < α < 2, f(x) ∈ L2(Ω), a(x) ∈ H2(Ω) ∩ H1
0 (Ω), b(x) ∈

D(L
1
α ), g(t) ∈ AC2[0, T ], then the solution of problem (1.1) holds u(x, t) ∈ C([0, T ];

H2(Ω) ∩H1
0 (Ω)) ∩AC2([0, T ];L2(Ω)).

Proof. By the result in [28], we know that the weak solution of the direct problem
(1.1) is given by

u(x, t) =

∞∑
n=1

Eα,1(−λntα)(a, ϕn)ϕn(x) +

∞∑
n=1

tEα,2(−λntα)(b, ϕn)ϕn(x)

+

∞∑
n=1

(f, ϕn)

∫ t

0

g(t− τ)τα−1Eα,α(−λnτα)dτϕn(x)

=u1(x, t) + u2(x, t) + u3(x, t). (3.1)

It follows that

Lu(x, t) =

∞∑
n=1

λnEα,1(−λntα)(a, ϕn)ϕn(x) +

∞∑
n=1

tEα,2(−λntα)λn(b, ϕn)ϕn(x)

+

∞∑
n=1

λn(f, ϕn)

∫ t

0

g(t− τ)τα−1Eα,α(−λnτα)dτϕn(x)

=Lu1(x, t) + Lu2(x, t) + Lu3(x, t). (3.2)

Based on the method in [28], we can see Lu ∈ C([0, T ];L2(Ω)), and it deduce that
u(x, t) ∈ C([0, T ];H2(Ω) ∩ H1

0 (Ω)) by the regularity of the second-order elliptic
operator.

By (3.1) and Lemmas 2.1-2.2, we have

∂2

∂t2
u1(x, t) =

∞∑
n=1

(−λn)tα−2Eα,α−1(−λntα)(a, ϕn)ϕn(x), t > 0,

and
∂2

∂t2
u2(x, t) =

∞∑
n=1

(b, ϕn)(−λntα−1)Eα,α(−λntα)ϕn(x), t > 0.

By (3.1) and Lemma 2.2, it is not hard to prove

∂2

∂t2
u3(x, t) =

∞∑
n=1

(f, ϕn)[g(0)tα−2Eα,α−1(−λntα) + g′(0)tα−1Eα,α(−λntα)

+

∫ t

0

g′′(t− τ)τα−1Eα,α(−λnτα)dτ ]ϕn(x), t > 0.

By Lemma 2.3, we have

‖ ∂
2

∂t2
u1(x, t)‖2L2(Ω) =t2(α−2)

∞∑
n=1

|λn(a, ϕn)|2|Eα,α−1(−λntα)|2
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≤Ct2(α−2)‖a(x)‖2D(L), t > 0,

and

‖ ∂
2

∂t2
u2(x, t)‖2L2(Ω) =

∞∑
n=1

|λn(b, ϕn)|2|tα−1Eα,α(−λntα)|2

=

∞∑
n=1

|λ
1
α
n (b, ϕn)|2| (λnt

α)
α−1
α

1 + λntα
|2 ≤ C‖b(x)‖2

D(L
1
α )
.

By Lemma 2.6, we have

‖ ∂
2

∂t2
u3(x, t)‖2L2(Ω) ≤C

∞∑
n=1

|(f, ϕn)|2|tα−2Eα,α−1(−λntα)|2

+ C

∞∑
n=1

|(f, ϕn)|2|tα−1Eα,α(−λntα)|2

+ C

∞∑
n=1

|(f, ϕn)|2|
∫ t

0

g′′(t− τ)τα−1Eα,α(−λnτα)dτ |2

≤Ct2(α−2)‖f(x)‖2L2(Ω), t > 0.

From the above estimates, we can see that ∂2

∂t2u(x, t) ∈ L1(0, T ;L2(Ω)). It is not
hard to prove u(x, t) ∈ C1([0, T ];L2(Ω)), then we know u(x, t) ∈ AC2([0, T ];L2(Ω)).

In the following, we consider an initial boundary value problem for the Riemann-
Liouville fractional derivative equation as follow,

Dα
0+v̄(x, τ) + Lv̄(x, τ) = 0, x ∈ Ω, 0 < τ ≤ T,

Dα−1
0+ v̄(x, τ)|τ=0 = ψ(x), x ∈ Ω̄,

v̄(x, τ)|τ=0 = 0, x ∈ Ω̄,

v̄(x, τ) = 0, x ∈ ∂Ω, 0 < τ ≤ T.

(3.3)

For the new issued problem (3.3) given above, we can obtain the existence and
uniqueness of a weak solution by using the method of separation of variables and
the properties of the Mittag-Leffler functions.

Theorem 3.2. Let ψ ∈ L2(Ω), then there exists a unique solution for problem (3.3)
and the solution holds v̄(x, τ) ∈ C([0, T ];L2(Ω))∩C((0, T ];H2(Ω)∩H1

0 (Ω)) and the
estimate

‖v̄‖C([0,T ];L2(Ω)) ≤ C‖ψ‖L2(Ω). (3.4)

Moreover, if ψ ∈ D(L
1
α ), one has v̄τ (x, τ) ∈ AC2−α([0, T ];L2(Ω)).

Proof. By the separation of variables, we suppose that the solution is of form
v̄(x, τ) =

∑∞
n=1 v̄n(τ)ϕn(x), it is easy to see that v̄n(τ) satisfy

Dα
0+v̄n(τ) + λnv̄n(τ) = 0, 0 < τ ≤ T,

Dα−1
0+ v̄n(τ)|τ=0 = (ψ,ϕn),

v̄n(τ)|τ=0 = 0.

(3.5)
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By the second and third equalities in Lemma 2.2, it is easy to verify that one solution
of problem (3.5) is

v̄n(τ) = (ψ,ϕn)τα−1Eα,α(−λnτα).

Then, we know the formal solution for (3.3) is

v̄(x, τ) =

∞∑
n=1

(ψ,ϕn)τα−1Eα,α(−λnτα)ϕn(x). (3.6)

Since

‖v̄(x, τ)‖2L2(Ω) =

∞∑
n=1

|τα−1Eα,α(−λnτα)|2|(ψ,ϕn)|2 ≤ C‖ψ‖2L2(Ω), τ ∈ [0, T ],

then we have ‖v̄(x, τ)‖C([0,T ];L2(Ω)) ≤ C‖ψ‖L2(Ω).
By (3.6), we have

Lv̄(x, τ) =

∞∑
n=1

(ψ,ϕn)τα−1Eα,α(−λnτα)λnϕn(x). (3.7)

For any 0 < t0 < T , τ ∈ [t0, T ], by Lemma 2.3, we have

‖Lv̄(·, τ)‖2L2(Ω) =

∞∑
n=1

|(ψ,ϕn)|2|λnτα−1Eα,α(−λnτα)|2

≤C
∞∑
n=1

|(ψ,ϕn)|2| λnτ
α−1

1 + λnτα
|2 ≤ C

t20
‖ψ‖2L2(Ω).

It follows from the continuous of Eα,α(−λnτα) on τ > 0, we know Lv̄(x, τ) ∈
C((0, T ];L2(Ω)), that deduce v̄(x, τ) ∈ C((0, T ];H2(Ω) ∩H1

0 (Ω)).

Next, if ψ ∈ D(L
1
α ) we prove v̄τ (x, τ) ∈ AC2−α([0, T ];L2(Ω)). By the first

equality in Lemma 2.2, we have

v̄τ (x, τ) =

∞∑
n=1

(ψ,ϕn)τα−2Eα,α−1(−λnτα)ϕn(x), τ > 0,

then it follows that

τ2−αv̄τ (x, τ) =

∞∑
n=1

(ψ,ϕn)Eα,α−1(−λnτα)ϕn(x).

By continuous of Eα,α−1(−λnτα), it prove that τ2−αv̄τ (x, τ) ∈ C([0, T ];L2(Ω)).
By Lemma 2.4, we have

∂

∂τ
(τ2−αv̄τ (x, τ)) =

∞∑
n=1

(ψ,ϕn)[−λnτα−1(Eα,2α−2(−λnτα)

+ (2− α)Eα,2α−1(−λnτα))]ϕn(x).
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Therefore

‖ ∂
∂τ

(τ2−αv̄τ (x, τ))‖2L2(Ω) =

∞∑
n=1

|λn(ψ,ϕn)|2|τα−1(Eα,2α−2(−λnτα)

+ (2− α)Eα,2α−1(−λnτα))|2

=

∞∑
n=1

|λ
1
α
n (ψ,ϕn)|2|λ

α−1
α

n τα−1(Eα,2α−2(−λnτα)

+ (2− α)Eα,2α−1(−λnτα))|2

≤C
∞∑
n=1

|λ
1
α
n (ψ,ϕn)|2| (λnτ

α)
α−1
α

1 + λnτα
|2

≤C‖ψ‖
D(L

1
α )
.

Then we know ∂
∂τ (τ2−αv̄τ (x,τ))∈L1(0, T ;L2(Ω)), i.e v̄τ (x,τ)∈AC2−α([0, T ];L2(Ω)).

Next we prove the uniqueness of the weak solution to (3.3). Under the condition
ψ = 0, we have to prove problem (3.3) has only a trivial solution. Since {ϕn(x)}n∈N
is the orthonormal basis in L2(Ω), denote v̄n(τ) = (v̄(·, τ), ϕn), suppose v̄(·, τ) ∈
H2(Ω) ∩ H1

0 (Ω), then from (3.3), we know v̄n(τ) satisfy (3.5) for ψ = 0. If v̄n ∈
C[0, T ], then we know I2−α

0+ v̄n(0) = 0. Due to the uniqueness of the problem (3.5)

instead of the initial condition by I2−α
0+ v̄n(0) = 0 in [16], we obtain that v̄n(τ) = 0,

n = 1, 2, 3, · · · . Since {ϕn}n∈N is a complete orthonormal system in L2(Ω), we have
v̄(x, τ) = 0 in Ω× (0, T ).

Take a transformation on τ as t = T − τ and define v(x, t) = v̄(x, τ), then we
have

Dα
0+v̄(x, τ) =

1

Γ(2− α)

d2

dτ2

∫ τ

0

v̄(x, s)

(τ − s)α−1
ds

=
1

Γ(2− α)

d2

dt2

∫ T−t

0

v(x, T − s)
(T − t− s)α−1

ds

=
1

Γ(2− α)

d2

dt2

∫ T

t

v(x, y)

(y − t)α−1
dy

=Dα
T−v(x, t),

by a similar proof, we have Dα−1
0+ v̄(x, τ) = Dα−1

T− v(x, t), thus the function v(x, t)
satisfies the following problem

Dα
T−v(x, t) + Lv(x, t) = 0, x ∈ Ω, 0 ≤ t < T,

Dα−1
T− v(x, t)|t=T = ψ(x), x ∈ Ω̄,

v(x, T ) = 0, x ∈ Ω̄,

v(x, t) = 0, x ∈ ∂Ω, 0 ≤ t < T.

(3.8)

By Theorem 3.2, we can obtain the following theorem.

Theorem 3.3. Let ψ ∈ L2(Ω), then there exists a unique solution for problem (3.8)
and the solution holds v(x, t) ∈ C([0, T ];L2(Ω))∩C([0, T );H2(Ω)∩H1

0 (Ω)) and we
have an estimate

‖v‖C([0,T ];L2(Ω)) ≤ C‖ψ‖L2(Ω). (3.9)

Moreover, if ψ ∈ D(L
1
α ), the solution vt(x, t) ∈ ACT2−α([0, T ];L2(Ω)).
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4. The uniqueness for the inverse source problem

Let t = T in (3.1), it is easy to know the source function f(x) satisfies the following
first kind of Fredholm integral equation

Af(x) =

∫
Ω

f(ξ)k(x, ξ)dξ = q(x), (4.1)

where

k(x, ξ) =

∞∑
n=1

νn(T )ϕn(ξ)ϕn(x),

νn(T ) =

∫ T

0

g(T − τ)τα−1Eα,α(−λnτα)dτ,

q(x) = h(x)− u1(x, T )− u2(x, T ),

in which the functions u1(x, t) and u2(x, t) are defined by the

u1(x, t) =

∞∑
n=1

(a, ϕn)Eα,1(−λntα)ϕn(x),

u2(x, t) =

∞∑
n=1

(b, ϕn)tEα,2(−λntα)ϕn(x).

Let A∗ be the adjoint of A, it is easy to know

A∗q =

∫
Ω

k(x, ξ)q(x)dx, ξ ∈ Ω.

Since {ϕn}∞n=1 are orthonormal in L2(Ω), it is easy to verify

A∗Aϕn(ξ) = ν2
n(T )ϕn(ξ).

Hence, the singular values of A are σn = |νn(T )|. Define

ψn(x) =

{
ϕn(x), νn(T ) ≥ 0,

−ϕn(x), νn(T ) < 0.

It is clear that {ψn}∞n=1 are orthonormal in L2(Ω), we can verify

Aϕn(ξ) = σnψn(x) = νn(T )ϕn(x),

A∗ψn(x) = σnϕn(ξ) = νn(T )ψn(ξ).

Therefore, the singular system of A is (σn;ϕn, ψn).
If for all n, νn(T ) 6= 0, then the inverse source problem is unique. If there exists

n such that νn(T ) = 0, then the inverse source problem is not unique. For this case,
for any q ∈ R(A), there exist infinitely many solutions for the integral equation
(4.1) as

f(x) =

∞∑
νn 6=0

(q, ϕn)/νn(T )ϕn(x) +
∑
νn=0

Cnϕn(x), for any Cn.
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However the best-approximate solution in L2(Ω) is uniquely given by

f†(x) =

∞∑
νn 6=0

(q, ϕn)/νn(T )ϕn(x).

For a special case g(t) ≡ 1, by Lemma 2.1, we know νn(T ) =
1−Eα,1(−λnTα)

λn
. By

the asymptotic behavior of Mittag-Leffler function at infinity (See (1.8.28) in [16]),
for 1 < α < 2, β ∈ R, η > 0 , we have

Eα,β(−η) = −
N∑
k=1

1

Γ(β − αk)(−η)k
+O(

1

ηN+1
), η →∞. (4.2)

From which, we know that there exists L0 > 0 such that

Eα,1(−λnTα) ≤ 1

2Γ(1− α)λnTα
< 0, λnT

α > L0,

for 1 < α < 2, thus we know Eα,1(−λnTα) = 1 only if λnT
α ≤ L0, which means

that νn(T ) = 0 only if λnT
α ≤ L0. Since limn→+∞ λn = +∞, there are only finite

λn satisfying λnT
α ≤ L0. Therefore, we can know there are only finite terms such

that νn(T ) = 0. However, it remains unclear to give a condition for g such that∫ T
0
g(T − τ)τα−1Eα,α(−λnτα)dτ 6= 0 for all n for guaranteeing the uniqueness of

the inverse source problem which is quite different from the case α ∈ (0, 1) [28].
The main reason is the Mittag-Leffler functions Eα,1(−t), Eα,α(−t) for α ∈ (1, 2)
have zero points over t > 0.

Under the conditions in Theorem 3.1 and by the proof of it, we know that
Af ∈ H2(Ω) for f ∈ L2(Ω), thus the operator A is a bounded linear operator from
L2(Ω) into H2(Ω). By the Sobolev embedding theorem, we can conclude that the
space H2(Ω) is compactly embedded in L2(Ω), thus A is a compact operator from
L2(Ω) into L2(Ω). Further, we know that the inverse problem is ill-posed.

5. Tikhonov regularization method and gradient of
functional

In order to overcome the ill-posedness of the inverse problem, we apply the Tikhonov
regularization method to solve problem (4.1) , that is to define the Tikhonov regu-
larization functional

J(f) =
1

2
‖Af − hδ + u1(x, T ) + u2(x, T )‖2L2(Ω) +

µ

2
‖f‖2L2(Ω) (5.1)

=
1

2

∫
Ω

(
(uf (x, T )− hδ(x)

)2
dx+

µ

2

∫
Ω

f2(x)dx,

where µ > 0 is a regularization parameter and hδ ∈ L2(Ω) is a noisy data of h
satisfying ‖hδ − h‖L2(Ω) ≤ δ and uf (x, t) is the weak solution of direct problem
(1.1). The first term express the error between the exact data and noisy data, and
the second term denotes the penalty functional for stabilizing the numerical solution.
Then the inverse source problem is transformed into a variational problem.

min
f∈L2(Ω)

J(f). (5.2)
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Since there is no guarantee the uniqueness of inverse source problem, we have to
consider the best-approximate solution. By the standard discussion, it is not hard
to know that the problem (5.2) there exists a unique minimizer called a Tikhonov
regularized solution and the regularized solution converges to the best-approximate
solution under a suitable choice of the regularization parameter µ, refer to [7].

In this paper, we apply a conjugate gradient algorithm for finding the minimizer
of functional (5.1). The key work is to find the gradient of the Tikhonov function-
al. By deducing a sensitivity problem and an adjoint problem, we can obtain the
gradient of functional (5.1). We suppose that the solution uf has the regularity
in Theorem 3.1. Let the source term f(x) be perturbed by a small amount δf(x)
in L2(Ω), then the forward solution uf has a small change w = uf+δf − uf which
satisfies
Sensitive problem:

∂α0+w(x, t) + Lw(x, t) = δf(x)g(t), x ∈ Ω, 0 < t ≤ T,
w(x, 0) = 0, x ∈ Ω̄,

∂tw(x, 0) = 0, x ∈ Ω̄,

w(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T.

(5.3)

From (5.1), we have

δJ(f) =J(f + δf)− J(f)

=

∫
Ω

(
uf (x, T )− hδ(x)

)
w(x, T )dx+ µ

∫
Ω

fδfdx

+
1

2
‖w(x, T )‖2L2(Ω) +

µ

2
‖δf‖2L2(Ω).

By Theorem 3.1, we have ‖w(x, T )‖L2(Ω) ≤ ‖δf(x)‖L2(Ω), then

δJ(f) =

∫
Ω

(uf (x, T )− hδ)w(x, T )dx+ µ

∫
Ω

f(x)δf(x)dx+ o(‖δf(x)‖L2(Ω)). (5.4)

Let v(x, t) be an arbitrary function such that v ∈ C([0, T ];L2(Ω)), vt(x, t) ∈
ACT2−α([0, T ];L2(Ω)) and v(x, T ) = 0, w(x, t) is solution of (5.3), note that w(x, t) ∈
AC2([0, T ];L2(Ω)) from Theorem 3.1. Multiply v(x, t) on both sides of the first
equation in (5.3) and integrating over Ω× (0, T ), by Lemma 2.5, we have

∫ T

0

∫
Ω

g(t)δf(x)v(x, t)dxdt=

∫
Ω

∫ T

0

∂α0+w(x, t)v(x, t)dtdx+

∫ T

0

∫
Ω

Lw(x, t)v(x, t)dxdt

=

∫
Ω

w(x, T )Dα−1
T− v(x, T )dx+

∫
Ω

∫ T

0

w(x, t)(Dα
T−v(x, t) + Lv(x, t))dtdx

−
d∑

i,j=1

∫ T

0

∫
∂Ω

(
Aij(x)

∂

∂xi
w(x, t)

)
v(x, t)njdsdt, (5.5)

where ~n = (n1, n2, · · · , nd) is the outside unit normal vector.

Suppose hδm ∈ D(L
1
α ), such that ‖hδm − hδ‖L2(Ω) → 0. Let vm(x, t) be the
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solution of the following problem
Dα
T−vm(x, t) + Lvm(x, t) = 0, x ∈ Ω, 0 ≤ t < T,

Dα−1
T− vm(x, t)|t=T = uf (x, T )− hδm(x), x ∈ Ω̄,

vm(x, T ) = 0, x ∈ Ω̄,

vm(x, t) = 0, x ∈ ∂Ω, 0 ≤ t < T.

(5.6)

By Theorem 3.3, we know vm(x, t) holds the condition in Lemma 2.5. Taking
v = vm in (5.5), then we can apply the boundary conditions in (5.6) and (5.5) to
obtain ∫ T

0

∫
Ω

g(t)δf(x)vm(x, t)dxdt =

∫
Ω

(uf (x, T )− hδm(x))w(x, T )dx. (5.7)

Let v be the weak solution for the following
Adjoint problem:

Dα
T−v(x, t) + Lv(x, t) = 0, x ∈ Ω, 0 ≤ t < T,

Dα−1
T− v(x, t)|t=T = uf (x, T )− hδ(x), x ∈ Ω̄,

v(x, T ) = 0, x ∈ Ω̄,

v(x, t) = 0, x ∈ ∂Ω, 0 ≤ t < T.

(5.8)

From (3.9) in Theorem 3.3, we have ‖vm − v‖C([0,T ];L2(Ω)) ≤ C‖hδm − hδ‖L2(Ω) →
0,m→∞. Pass to limit as m→∞ in (5.7), and noting that g(t) ∈ C1[0, T ], then
we have ∫ T

0

∫
Ω

g(t)δf(x)v(x, t)dxdt =

∫
Ω

(uf (x, T )− hδ(x))w(x, T )dx, (5.9)

which implies that

δJ(f) =

∫ T

0

∫
Ω

g(t)δf(x)v(x, t)dxdt+ µ

∫
Ω

δf(x)f(x)dx+ o(‖δf(x)‖L2(Ω)).

Thus we conclude that

J ′f =

∫ T

0

g(t)v(x, t)dt+ µf(x). (5.10)

6. Conjugate gradient algorithm for solving the vari-
ational problem

We use a conjugate gradient algorithm to find the approximate minimizer of J(f).
Let fk be the kth approximate solution to f(x), we use the following iterative
scheme

fk+1 = fk + βkdk, k = 0, 1, 2, · · · , (6.1)

where βk is a step size and dk is a descent direction in the kth iteration with the
form

dk = −J ′fk + γkdk−1, (6.2)
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where γk is given by the Fletcher and Reeves method as

γk =

∫
Ω

(J ′fk)2dx∫
Ω

(J ′fk−1
)2dx

, γ0 = 0. (6.3)

From (5.1), we have

J(fk + βkdk) =
1

2

∫
Ω

(ufk + βkwk − hδ(x))2dx+
µ

2

∫
Ω

(fk + βkdk)2dx, (6.4)

where wk is a solution of the sensitive problem with δf = dk, by

dJ

dβk
=

∫
Ω

(ufk(x, T )− hδ(x) + βkwk)wkdx+ µ

∫
Ω

(fk + βkdk)dkdx = 0, (6.5)

we can get βk as

βk = −
∫

Ω

(
ufk(x, T )− hδ(x)

)
wkdx+ µ

∫
Ω
fkdkdx∫

Ω
wk2dx+ µ

∫
Ω
d2
kdx

. (6.6)

Next, we describe the process of the conjugate gradient algorithm:
(1) Initialize f0 = 0 and k = 0;
(2) Solve the direct problem (1.1) with f = fk, and obtain the residual rk = ufk−hδ;
(3) Solve the adjoint problem (5.8) and determine the gradient J ′fk ;
(4) Calculate the conjugate coefficient γk by (6.3) and the descent direct dk by (6.2);
(5) Solve the sensitive problem with δf = dk to obtain wk;
(6) Calculate the step size βk by (6.6);
(7) Update the source term fk+1 by (6.1);
(8) Increase k by one and go to step 2, repeat the process until a stopping condition
is satisfied.

7. Numerical experiments

In this section, we present two examples in one-dimensional case and one example
in two-dimensional case to demonstrate the effectiveness of the conjugate gradient
algorithm. In numerical computations, we always set T = 1. The noisy is generated
by adding a random perturbation, i.e

hδ = h+ εh · (2 · rand(size(h))− 1). (7.1)

The corresponding noise level is calculated by δ = ‖hδ − h‖L2(Ω).
To test the accuracy of the reconstructed source iterm, we compute the approx-

imate error denoted by

ek = ‖fk(x)− f(x)‖L2(Ω), (7.2)

where fk(x) is the source term reconstructed at the kth iteration, and f(x) is the
exact solution.

The residual Ek at the kth iteration is given by

Ek = ‖ufk(x, T )− hδ‖L2(Ω). (7.3)
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In the iterative method, the key work is to find a well stopping principle. In
this paper, we use the Morozov discrepancy principle, i.e. we choose k satisfying
the following inequality

Ek ≤ τδ < Ek−1, (7.4)

where τ > 1 is a constant.
We use a finite difference method developed in [30] to solve the direct problem

and the sensitive problem in Examples 1-2 and using a finite element method in [18]
to solve them in Example 3. For the adjoint problem, we solve problem (3.3) with
ψ(x) = uf (x, T )− hδ(x), then get the solution of the adjoint problem by a relation
v(x, t) = v̄(x, τ). The detail is given in the following paragraphs.

Take an integration on both sides of the first equation in (3.3) for variable τ
from 0 to t, then we have

Dα−1
0+ v̄(x, t) +

∫ t

0

Lv̄(x, τ)dτ = uf (x, T )− hδ(x), x ∈ Ω, 0 < t ≤ T,

v̄(x, 0) = 0, x ∈ Ω̄,

v̄(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T.

(7.5)

For problem (7.5), the time-fractional derivative is approximated by using the
scheme in [17], and the space derivative is approximated using the scheme in [34]
for Examples 1-2 in one-dimensional case. To solve problem (7.5) in two dimension-
al case, we use the finite difference scheme in [17] to approach the time fractional
derivative and employ a finite element method to discretize the resulted elliptic
problem at each time step. The detail is given in the following.

Take the grid size for time is ∆t = T
N . The grid points in the time interval

[0, T ] are labeled tn = n∆t, n = 0, 1, · · · , N . The time-fractional derivative is
approximated by

Dα−1
0+ v̄(x, tn) =(∆t)1−α

n∑
k=0

gα−1
k v̄(x, tn−k), (7.6)

where gα−1
k = (−1)k(α−1

k ), gα−1
0 = 1.

Denote v̄n(x) = v̄(x, tn), G(x) = u(x, T ) − hδ(x). By the scheme (7.6), we can
obtain the following Dirichlet problems for elliptic equations (∆t)1−αv̄1(x) +

∆t

2
Lv̄1(x) = G(x), x ∈ Ω,

v̄1(x) = 0, x ∈ ∂Ω,
(7.7)

and
(∆t)1−αv̄n(x)+

∆t

2
Lv̄n(x)=G(x)−∆t

n−1∑
k=1

Lv̄k(x)−(∆t)1−α
n−1∑
k=1

gα−1
k v̄n−k(x), x∈Ω,

v̄n(x) = 0, x ∈ ∂Ω,

(7.8)
for n = 2, · · · , N .

Let xj , j = 1, 2, · · · ,m be the mesh nodes located in Ω and ψj be the corre-
sponding finite element basis functions. Denote V̄ n = (v̄(x1, tn), · · · , v̄(xm, tn))T ,
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G = (G(x1), · · · , G(xm))T , then by the standard finite element procedure, we can
deduce the following linear equations for (7.7) and (7.8) as

[(∆t)1−αM +
∆t

2
K +

∆t

2
Q]V̄ 1 = MG, (7.9)

and

[(∆t)1−αM+
∆t

2
K+

∆t

2
Q]V̄ n = MG−∆t

n−1∑
k=1

(K+Q)V̄ k−(∆t)
1−α

n−1∑
k=1

gα−1
k MV̄ n−k,

(7.10)

whereM = ((ψi, ψj))m×m, Q = ((cψi, ψj))m×m, K = (
∑2
k,l=1(akl∂xkψi, ∂xlψj))m×m

are mass matrix and stiff matrix in which (·, ·) is the L2 inner product.
Take d = 1, Ω = (0, 1), L = −∂x(A(x)∂x) + c(x) in the following Examples 1-2.

Example 1. Suppose

f(x) = 10 sin(3πx)e−x
5

+ xα(1− x)4

and the final data u(x, T ) are obtained by solving the direct problem (1.1) with
g(t) = et and initial value a(x) = x2 sin(πx), b(x) = x(1 − x) and the diffusion
coefficient A(x) = ex, the zeroth order coefficient c(x) = sin(x).

Example 2. Suppose

f(x) = −|x− 1

2
|+ 1

2

and the final data u(x, T ) are obtained by solving the direct problem (1.1) with
g(t) = t2 and the initial value a(x) = x6(1 − x) sin(πx), b(x) = x2 sin(πx) and the
diffusion coefficients A(x) = x2 + sin(x), the zeroth order coefficient c(x) = sin(x).

The inversion results for Examples 1-2 by using the discrepancy principle as
stop principe for different noise levels in the cases of α = 1.4, α = 1.8 are shown
in Figures 1-2 respectively by taking µ = 0, τ = 1.01. From Figures 1-2, we can
see that the proposed method is robust and stable when the measurement error is
included.

In the following, we study the effectiveness of regularization parameter and
iterative steps. In Figures 3-4, we illustrate the approximation error ek and residuals
Ek for Examples 1-2 with different regularization parameters for a fixed noise level
ε = 0.1 in Example 1 and ε = 0.01 in Example 2. It is clearly seen that the small
regularization parameter µ yields faster convergence speeds and better numerical
results than big µ. Thus in the following, we take the regularization parameter
as zero, that means we do not use the Tikhonov regularization. From Figures 3-
4, the approximation error ek will increase when the iteration steps become large
which indicate the discrepancy principle plays a key role of regularization in this
case. Therefore, in this paper we use the Morozov discrepancy principle to find a
well-stoping step.

Example 3. Let d = 2, Ω = {(x, y) : 0 ≤ x2+y2 ≤ 1}, L = −O(A(x, y)O)+c(x, y),
we take

A(x, y) =

 x2 + 3 1 + x+ y

1 + x+ y x2 + 3
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and c(x, y) = x2y2.

We take the exact spatial source function

f(x, y)=[0.3(1−3x)2e−9x2−(3y+1)2−(0.2x−27x2−(3y)5)e−9x2−9y2−0.03e−(3x+1)2−9y2 ]χ1,

and g(t) = t2 + sin(t), a(x, y) = xyχ2, b(x, y) = [sin(x) + sin(y)]χ2, where

χ1 =

{
1, 0 ≤ x2 + y2 ≤ 0.7,

0, 0.7 < x2 + y2 ≤ 1,

χ2 =

{
1, 0 ≤ x2 + y2 ≤ 0.9,

0, 0.9 < x2 + y2 ≤ 1.

The final data u(x, y, T ) are obtained by solving the direct problem (1.1). Figures 5-
6 presents the exact source function and the regularized solutions by taking µ = 0,
τ = 1.01 for α = 1.4, α = 1.8, ε = 0.01. Figure 7 presents the absolute error
between the exact source function and the numerical solutions for α = 1.4, α = 1.8,
we can see that the numerical results match the exact ones quite well.
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Figure 1. The numerical results for Example 1 with µ = 0.
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Figure 2. The numerical results for Example 2 with µ = 0.
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Figure 3. The errors ek and Ek for Example 1 with different µ.
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Figure 4. The errors ek and Ek for Example 2 with different µ.
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8. Conclusion

The inverse problem of determining the space-dependent source function in the
time fractional diffusion wave equation is investigated. By the Fourier method, the
regularity of direct problem as well as the existence and uniqueness of the adjoint
problem are discussed. We give the conditions such that the uniqueness of the
inverse source problem is satisfied. We use the Tikhonov regularization method to
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Figure 6. The regularized solutions for Example 3.
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Figure 7. Absolute errors for α = 1.4, α = 1.8 for Example 3.

overcome the ill-posedness, and provide a conjugate gradient algorithm to find an
approximation to the minimizer of the Tikhonov regularization functional. From
the computational results, it can be seen that the conjugate gradient method is
effective and stable for solving the inverse source problem. Moreover we obtain an
integration formula by parts for fractional derivatives which is useful for studying
fractional diffusion wave equations.
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