
Journal of Applied Analysis and Computation Website:http://jaac.ijournal.cn

Volume 9, Number 6, December 2019, 2156–2168 DOI:10.11948/20180286

EXISTENCE AND UNIQUENESS OF
SOLUTIONS FOR A FRACTIONAL
DIFFERENTIAL EQUATION WITH
MULTI-POINT BOUNDARY VALUE

PROBLEMS∗

Jiqiang Jiang1,† and Hongchuan Wang1

Abstract In this paper, we study the existence and uniqueness solutions of
a fractional differential equation with multi-point boundary value problems.
By using the fixed point theorems, some new results are established and two
examples are given to demonstrate the application of main results.

Keywords Fractional differential equation, existence, uniqueness, multi-point,
fixed point theorem.

MSC(2010) 26A33, 34B10, 34B15.

1. Introduction

This paper is concerned with the existence and uniqueness of solutions to the fol-
lowing boundary value problem (BVP) for fractional differential equation

Dα
0+u(t) + f(t, u(t), Iβ0+u(t)) = 0, 0 ≤ t ≤ 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dp
0+u(1) =

m∑
i=1

aiD
q
0+u(t)|t=ξi ,

(1.1)

where Dα
0+ is the Riemann-Liouville fractional derivative of order n − 1 < α ≤ n,

n ≥ 2, 0 < β < 1, p ∈ [1, n − 2], q ∈ [0, p], 0 < ξ1 < ξ2 < · · · < ξm < 1,
f : [0, 1]× R2 → R is a continuous function and ai > 0(i = 1, 2, · · · ,m).

Fractional differential equations describe many phenomena in various fields of
engineering and scientific disciplines such as physics, biophysics, chemistry, biol-
ogy, economics, control theory, signal and image processing, aerodynamics, vis-
coelasticity, electromagnetics and other fields(see [26, 28]). In the last decade,
a variety of results concerning the existence of solutions of fractional BVPs has
been developed, based on various analytic techniques, such as fixed point theorem-
s [1–3, 5, 6, 10–13, 18–25, 27, 31, 32, 42–44], topological degree method [4, 33, 34, 41],
iterative techniques [9, 16, 17, 37], upper and lower solution method [8, 35, 36] and
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variational methods [15, 38–40]. In [29], Salem investigated the nonlinear m-point
BVP of fractional type

Dα
0+u(t) + q(t)f(t, u(t)) = 0, 0 < t < 1, n− 1 < α ≤ n, n ≥ 2,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

m−2∑
i=1

ζix(ηi),
(1.2)

where 0 < η1 < η2 < · · · < ηm−2 < 1, ζi > 0 with
∑m−2
i=1 ζiη

α−1
i < 1. It is assumed

that q is a real-valued continuous function and f is a nonlinear Pettis integrable
function. By means of the fixed point theorem attributed to D. O’Regan, a criterion
was established for the existence of at least one Pseudo solution for the problem
(1.2).

El-Shahed and Nieto [11] studied the nonlinear m-point BVP of fractional type:
RD

α
0+u(t) + f(t, u(t)) = 0, t ∈ [0, 1], α ∈ (n− 1, n], n ∈ N,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

m−2∑
i=1

aiu(ηi),

where n ≥ 2, ai > 0(i = 1, 2, · · · ,m − 2), 0 < η1 < η2 < · · · < ηm−2 < 1, f ∈
C([0, 1]×R,R). The authors using the Caputo fractional derivative also considered
the analogous problem:

CD
α
0+u(t) + f(t, u(t)) = 0, t ∈ [0, 1], α ∈ (n− 1, n], n ∈ N,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

m−2∑
i=1

aiu(ηi).

Several sufficient conditions for the existence of nontrivial solution are obtained by
using the Leray-Schauder nonlinear alternative under certain growth conditions on
the nonlinearity.

Goodrich [12] considered the following nonlinear fractional BVP{
Dν

0+u(t) + f(t, u(t)) = 0, 0 < t < 1, n− 1 < ν ≤ n, n ≥ 3,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, [Dα
0+u(t)]t=1 = 0, 1 < α ≤ n− 2,

(1.3)

where where Dν
0+ is the Riemann-Liouville fractional derivative of order n−1 < ν ≤

n, n ≥ 3. By means of Krasnoselskii’s fixed point theorem on cone expansion and
compression to show the existence of positive solutions for BVP (1.3). The higher
order fractional BVP (1.3) are also studied in [13], the existence of positive solutions
of the problem are established. In [34], Xu et al. also investigated problems (1.3)
with h(t)f(t, u(t)) instead of f(t, u(t)), the existence and uniqueness of positive
solutions are obtained by means of the fixed point index theory in cones.

Inspired by the work of the above papers, the aim of this paper is to establish
the existence and uniqueness of the solutions for the fractional differential equation
multi-point BVP (1.1). The multi-point boundary value condition and the method
makes our results are new and meaningful. By using the Banach’s fixed point
theorem, the Krasnosel’skii fixed-point theorem, the Nonlinear alternative for single
valued maps and Boyd and Wong fixed point theorem, some existence and unique
results of solutions are obtained.
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The rest of this paper is organized as follows. In Sect. 2, we present some
basic concepts of fractional calculus and transform a given problem into an equiv-
alent integral equation problem. In Sect. 3, the existence and uniqueness results
are established based on the fixed point theorems. Two illustrative examples are
presented to support our main results in Sect. 4 and concluded in Sect. 5.

2. Preliminaries

For reader’s convenience, we will present some preliminaries and lemmas of frac-
tional calculus theory, which can be founded in [26,28].

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 is given
by

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

where n − 1 < α < n, provided that the right-hand side is pointwise defined on
(0,+∞).

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 is
defined as

Dα
0+f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1f(s)ds,

where n = [α] + 1, [α]denotes the integer part of the number α, provided that the
right-hand side is pointwise defined on (0,+∞).

Definition 2.3. A mapping F acting in a Banach space U is said to be a nonlinear
contraction, if there exists a continuous nondecreasing function φ : R+ → R+ such
that φ(0) = 0, φ(ζ) < ζ for all ζ > 0 and that ‖Fu−Fv‖ ≤ φ(‖u− v‖), ∀ u, v ∈ U .

Lemma 2.1 ( [19]). For h ∈ C(0, 1)∩L1(0, 1), the solution of the linear fractional
differential equation

Dα
0+u(t) + h(t) = 0,

supplemented with the boundary conditions

u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dp
0+u(1) =

m∑
i=1

aiD
q
0+u(t)|t=ξi

is equivalent to the integral equation

u(t) =− 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds+
tα−1

∆Γ(α− p)

∫ 1

0

(1− s)α−p−1h(s)ds

− tα−1

∆Γ(α− q)

m∑
i=1

ai

∫ ξi

0

(ξi − s)α−q−1h(s)ds, t ∈ [0, 1],

where

∆ =
Γ(α)

Γ(α− p)
− Γ(α)

Γ(α− q)

m∑
i=1

aiξ
α−q−1
i 6= 0. (2.1)
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Let U = C[0, 1], then U is a Banach space with the norm ‖u‖ = sup0≤t≤1 |u(t)|.
We define an operator A : U → U as follows:

(Au)(t) =− 1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s), Iβ0+u(s))ds

+
tα−1

∆Γ(α− p)

∫ 1

0

(1− s)α−p−1f(s, u(s), Iβ0+u(s))ds

− tα−1

∆Γ(α− q)

m∑
i=1

ai

∫ ξi

0

(ξi − s)α−q−1f(s, u(s), Iβ0+u(s))ds, t ∈ [0, 1].

(2.2)
Observe that problem (1.1) has solutions if the operator A has fixed points.

For the sake of computational convenience, we set

Λ =
1

Γ(α+ 1)
+

1

|∆|

(
1

Γ(α− p+ 1)
+

m∑
i=1

aiξ
α−q
i

Γ(α− q + 1)

)
, (2.3)

L1 = 1 +
1

Γ(β + 1)
. (2.4)

3. Main results

Theorem 3.1. Let f : [0, 1] × R2 → R be a continuous function satisfying the
condition:
(H1) There exists a positive constant L > 0 such that,

|f(t, x1, y1)− f(t, x2, y2)| ≤ L(|x1 − x2|+ |y1 − y2|),

for any t ∈ [0, 1], xi, yi ∈ R(i = 1, 2).
Then BVP (1.1) has a unique solution if LL1Λ < 1, where Λ and L1 are given by
(2.3) and (2.4), respectively.

Proof. Take M = supt∈[0,1] |f(t, 0, 0)| and r > MΛ
1−LL1Λ . Then, A(Br) ⊂ Br,

where Br = {u ∈ U : ‖u‖ ≤ r}. In fact, for u ∈ Br, by (H1), we have

|f(t, u(t), Iβ0+u(t))| = |f(t, u(t), Iβ0+u(t))− f(t, 0, 0)|+ |f(t, 0, 0)|

≤ L[|u(t)|+ |Iβ0+u(t)|] +M

≤ L
[
‖u‖+

1

Γ(β + 1)
‖u‖
]

+M

= LL1‖u‖+M ≤ LL1r +M, t ∈ [0, 1],

therefore, we have

‖Au‖ ≤ sup
t∈[0,1]

{∫ t

0

(t− s)α−1

Γ(α)
|f(s, u(s), Iβ0+u(s))|ds

+
tα−1

|∆|

[∫ 1

0

(1− s)α−p−1

Γ(α− p)
|f(s, u(s), Iβ0+u(s))|ds

+

m∑
i=1

ai

∫ ξi

0

(ξi − s)α−q−1

Γ(α− q)
|f(s, u(s), Iβ0+u(s))|ds

]}
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≤(LL1r +M) sup
t∈[0,1]

{∫ t

0

(t− s)α−1

Γ(α)
ds+

tα−1

|∆|

[∫ 1

0

(1− s)α−p−1

Γ(α− p)
ds

+

m∑
i=1

ai

∫ ξi

0

(ξi − s)α−q−1

Γ(α− q)
ds

]}

≤(LL1r +M) sup
t∈[0,1]

{
tα

Γ(α+ 1)

+
tα−1

|∆|

[
1

Γ(α− p+ 1)
+

m∑
i=1

ai
ξα−qi

Γ(α− q + 1)

]}
≤(LL1r +M)Λ ≤ r.

This shows that A maps Br into itself.

Now, for u, v ∈ Br, we obtain

‖Au−Av‖ ≤ sup
t∈[0,1]

{∫ t

0

(t− s)α−1

Γ(α)
|f(s, u(s), Iβ0+u(s))− f(s, v(s), Iβ0+v(s))|ds

+
tα−1

|∆|

[∫ 1

0

(1− s)α−p−1

Γ(α− p)
|f(s, u(s), Iβ0+u(s))− f(s, v(s), Iβ0+v(s))|ds

+

m∑
i=1

ai

∫ ξi

0

(ξi − s)α−q−1

Γ(α− q)
|f(s, u(s), Iβ0+u(s))− f(s, v(s), Iβ0+v(s))|ds

]}

≤L
(
‖u− v‖+

‖u− v‖
Γ(β + 1)

)
sup
t∈[0,1]

{∫ t

0

(t− s)α−1

Γ(α)
ds

+
tα−1

|∆|

[∫ 1

0

(1− s)α−p−1

Γ(α− p)
ds+

m∑
i=1

ai

∫ ξi

0

(ξi − s)α−q−1

Γ(α− q)
ds

]}
≤LL1Λ‖u− v‖.

Since LL1Λ < 1, the operator A is a contraction. By Banach’s fixed point theorem,
BVP (1.1) has a unique solution in C[0, 1].

Lemma 3.1 ( [7]). (Boyd and Wong) Let U be a Banach Space, and let F : U → U
be a nonlinear contraction. Then F has a unique fixed point in U .

Theorem 3.2. Let f : [0, 1] × R2 → R be a continuous function satisfying the
condition:
|f(t, x1, y1)− f(t, x2, y2)| ≤ g1(t) |x1−x2|

H∗+1 +g2(t) |y1−y2|H∗+1 , t ∈ (0, 1), xi, yi ∈ R, i = 1, 2,

where g1, g2 : (0, 1) → R+ are continuous function with H∗ =
(
‖g1‖+ ‖g2‖

Γ(γ+1)

)
Λ,

where Λ is given by (2.3). Then BVP (1.1) has a unique solution.

Proof. Consider the operator A : U → U . Let the continuous nondecreasing
function φ : R+ → R+ be defined by

φ(ζ) =
H∗ζ

H∗ + 1
, ∀ζ ≥ 0.
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Observe that φ(0) = 0 and φ(ζ) < ζ for all ζ > 0. For any u, v ∈ U , we can get

|f(s, u(s), Iβ0+u(s))− f(s, v(s), Iβ0+v(s))|

≤g1(s)
|u(s)− v(s)|
H∗ + 1

+ g2(s)
|Iβ0+u(s)− Iβ0+v(s)|

H∗ + 1

≤g1(s)
‖u− v‖
H∗ + 1

+ g2(s)
‖u− v‖

(H∗ + 1)Γ(β + 1)

≤
(
‖g1‖
H∗

+
‖g2‖

H∗Γ(β + 1)

)
φ(‖u− v‖).

Then for any u, v ∈ U , we have

‖Au−Av‖ ≤ sup
t∈[0,1]

{∫ t

0

(t− s)α−1

Γ(α)
|f(s, u(s), Iβ0+u(s))− f(s, v(s), Iβ0+v(s))|ds

+
tα−1

|∆|

[∫ 1

0

(1− s)α−p−1

Γ(α− p)
|f(s, u(s), Iβ0+u(s))− f(s, v(s), Iβ0+v(s))|ds

+

m∑
i=1

ai

∫ ξi

0

(ξi − s)α−q−1

Γ(α− q)
|f(s, u(s), Iβ0+u(s))− f(s, v(s), Iβ0+v(s))|ds

]}

≤
(
‖g1‖
H∗

+
‖g2‖

H∗Γ(β + 1)

)
φ(‖u− v‖)Λ.

So we get ‖Au − Av‖ ≤ φ(‖u − v‖) and A is a nonlinear contraction, by Lemma
3.1, A has a unique fixed point in U and BVP (1.1) has a unique solution.

Lemma 3.2 ( [30]). (Krasnoselskii) Let Q be a closed, convex, bounded and nonemp-
ty subset of a Banach space E. Let G1, G2 be operators such that (i) G1u1 +G2u2 ∈
Q whenever u1, u2 ∈ Q; (ii) G1 is compact and continuous; (iii) G2 is a contraction
mapping. Then there exists v ∈ Q such that v = G1v +G2v.

Theorem 3.3. Let f : [0, 1] × R2 → R be a continuous function satisfying (H1).
In addition, the following assumption holds:
(H2) |f(t, x, y)| ≤ ω(t), ∀(t, x, y) ∈ [0, 1]× R2, and ω ∈ C([0, 1],R+).
Then BVP (1.1) has at least one solution in C[0, 1] provided

LL1

|∆|

(
1

Γ(α− p+ 1)
+

m∑
i=1

aiξ
α−q
i

Γ(α− q + 1)

)
< 1. (3.1)

Proof. Let Br = {u ∈ U : ‖u‖ ≤ r}, where r > ‖ω‖Λ, (‖ω‖ = supt∈[0,1] |ω(t)|).
Define the operators A1 and A2 on Br as:

(A1u)(t) =− 1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s), Iβ0+u(s))ds,

(A2u)(t) =
tα−1

∆Γ(α− p)

∫ 1

0

(1− s)α−p−1f(s, u(s), Iβ0+u(s))ds

− tα−1

∆Γ(α− q)

m∑
i=1

ai

∫ ξi

0

(ξi − s)α−q−1f(s, u(s), Iβ0+u(s))ds.
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For any x, y ∈ Br, easily we can prove that ‖A1x + A2y‖ ≤ ‖ω‖Λ ≤ r, where Λ is
given by (2.3). So, A1x+A2y ∈ Br.

Now, we claim that the operator A2 is a contraction. In fact, for any u, v ∈ Br,
we have

‖A2u−A2v‖

≤ sup
t∈[0,1]

{
tα−1

|∆|

[∫ 1

0

(1− s)α−p−1

Γ(α− p)
|f(s, u(s), Iβ0+u(s))− f(s, v(s), Iβ0+v(s))|ds

+

m∑
i=1

ai

∫ ξi

0

(ξi − s)α−q−1

Γ(α− q)
|f(s, u(s), Iβ0+u(s))− f(s, v(s), Iβ0+v(s))|ds

]}

≤LL1‖u− v‖ sup
t∈[0,1]

{
tα−1

|∆|

[∫ 1

0

(1− s)α−p−1

Γ(α− p)
ds+

m∑
i=1

ai

∫ ξi

0

(ξi − s)α−q−1

Γ(α− q)
ds

]}

≤LL1

|∆|

(
1

Γ(α− p+ 1)
+

m∑
i=1

aiξ
α−q
i

Γ(α− q + 1)

)
‖u− v‖.

This together with (3.1) show that A2 is a contraction operator.

Next, we shall show that A1 is continuous and compact. It follows f is continuous

that the operator A1 is continuous. And, since ‖A1x‖ ≤ ‖ω‖
Γ(α+1) , so A1 is uniformly

bounded on Br. Moreover, for any t1, t2 ∈ [0, 1] with t1 < t2, we have

|(A1u)(t2)− (A1u)(t1)| ≤
∣∣∣∣∫ t2

0

(t2 − s)α−1

Γ(α)
f(s, u(s), Iβ0+u(s))ds

−
∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, u(s), Iβ0+u(s))ds

∣∣∣∣
≤ ‖ω‖

Γ(α+ 1)
(|tα2 − tα1 |+ |2(t2 − t1)α|) ,

which tends to zero independent of u as t2 → t1. Hence, A1 is relatively compact
on Br. By the Arzela-Ascoli theorem, the operator A1 is compact on Br. Kras-
noselskii’s fixed point theorem 3.2 implies that there exists a solution for BVP (1.1)
in C[0, 1].

Lemma 3.3 ( [30]). Let E be a Banach space. Assume that A : E → E is a
completely continuous operator and the set B = {x ∈ E : x = ξTx, 0 < ξ < 1} is
bounded. Then A has a fixed point in E.

Theorem 3.4. Assume that there exists a positive constant L2 such that |f(t, x, y)| ≤
L2 for all t ∈ [0, 1], x, y ∈ R. Then there exists at least one solution for BVP (1.1)
in C[0, 1].

Proof. Firstly, we will show that the operator A is completely continuous. Ob-
viously, continuity of f implies the continuity of A. Suppose B ⊂ U is bounded,
then, ∀ u ∈ B, one can easily obtain |(Au)(t)| ≤ L2Λ = L3, where Λ is given by
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(2.3). Furthermore, for any t1, t2 ∈ [0, 1] with t1 < t2, we have

|(Au)(t2)− (Au)(t1)| ≤L2

[
|tα2 − tα1 |+ 2(t2 − t1)α

Γ(α+ 1)

+
|tα−1

2 − tα−1
1 |

|∆|

(
1

Γ(α− p+ 1)
+

m∑
i=1

aiξ
α−q
i

Γ(α− q + 1)

)]
,

which tends to zero independent of u as (t2−t1)→ 0. Therefore, A is equicontinuous
on [0, 1]. According to Arzela-Ascoli theorem, we can get that A is completely
continuous.

Next, define a set N = {u ∈ U : u = ρAu, 0 < ρ < 1}, and we show that N is
bounded. For any u ∈ U , we have

u(t) =− 1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s), Iβ0+u(s))ds

+
tα−1

∆Γ(α− p)

∫ 1

0

(1− s)α−p−1f(s, u(s), Iβ0+u(s))ds

− tα−1

∆Γ(α− q)

m∑
i=1

ai

∫ ξi

0

(ξi − s)α−q−1f(s, u(s), Iβ0+u(s))ds, t ∈ [0, 1].

Similarly, we can obtain |u(t)| = ρ|(Au)(t)| ≤ L2Λ = L3, which implies that ‖u‖ ≤
L3, for any u ∈ N, t ∈ [0, 1]. Hence, N is bounded. Consequently, by Lemma 3.3,
BVP (1.1) has at least one solution in C[0, 1].

Lemma 3.4 ( [14]). (Nonlinear alternative for single valued maps) Let X be a
Banach space, X1 a closed, convex subset of X, H an open subset of X1 and 0 ∈ H.
Suppose that A : H → X1 is a continuous, compact (that is, A(H) is a relatively
compact subset of X1 ) map. Then either A has a fixed point in H or there is an
x ∈ ∂H (the boundary of H in X1 ) and ϑ ∈ (0, 1) with x = ϑA(x).

Theorem 3.5. Let f : [0, 1]× R2 → R be a continuous function and satisfying the
following assumption:

(H3) There exists a function ψ ∈ C([0, 1],R+) and a nondecreasing, subhomoge-
neous (that is, ϕ(mu) ≤ mϕ(u), for all m ≥ 1 and u ∈ R+) function ϕ : R+ → R+

such that

|f(t, u, v)| ≤ ψ(t)ϕ(‖u‖+ ‖v‖), for all (t, u, v) ∈ [0, 1]× R2.

(H4) There exists a constant C > 0 such that

C

[
‖ψ‖L1ϕ(C)

(
1

Γ(α+ 1)
+

1

|∆|

(
1

Γ(α− p+ 1)
+

m∑
i=1

aiξ
α−q
i

Γ(α− q + 1)

))]−1

> 1,

where where ∆ and L1 are given by (2.1) and (2.4), respectively.
Then BVP (1.1) has at least one solution in C[0, 1].

Proof. Consider the operator A : U → U by defined by (2.2). Firstly, we will
show that A maps bounded sets into bound sets in U . For η > 0, let Bη = {u ∈
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U : ‖u‖ ≤ η} be a bounded set in U . Then, for u ∈ Bη, in view of (H3), we get

|(Au)(t)| ≤
∫ t

0

(t− s)α−1

Γ(α)
(ψ(s)ϕ(L1‖u‖))ds

+
tα−1

|∆|

[∫ 1

0

(1− s)α−p−1

Γ(α− p)
(ψ(s)ϕ(L1‖u‖))ds

+

m∑
i=1

ai

∫ ξi

0

(ξi − s)α−q−1

Γ(α− q)
(ψ(s)ϕ(L1‖u‖))ds

]
, t ∈ [0, 1],

it follows that

‖Au‖ ≤ ‖ψ‖ϕ(L1η)

[
1

Γ(α+ 1)
+

1

|∆|

(
1

Γ(α− p+ 1)
+

m∑
i=1

ai
ξα−qi

Γ(α− q + 1)

)]
.

Next, we show that A maps bounded sets into equicontinuous sets of U . Let t1, t2 ∈
[0, 1] with t1 < t2, and u ∈ Bη, then we obtain

|(Au)(t2)− (Au)(t1)| ≤ L1‖ψ‖ϕ(η)

[
|tα2 − tα1 |+ 2(t2 − t1)α

Γ(α+ 1)

+
|tα−1

2 − tα−1
1 |

|∆|

(
1

Γ(α− p+ 1)
+

m∑
i=1

aiξ
α−q
i

Γ(α− q + 1)

)]
.

Obviously the right-hand side of the above inequalities tends to zero independently
of u ∈ Bη as (t2 − t1) → 0. Thus, by the Arzela-Ascoli theorem, the operator
A : U → U is completely continuous.

Let u be a solution. Then, for η1 ∈ (0, 1), together with that A is bounded, we
obtain

|u(t)| =|η1(Au)(t)|

≤‖ψ‖ϕ(‖u‖+
1

Γ(β + 1)
‖u‖)

×

[
1

Γ(α+ 1)
+

1

|∆|

(
1

Γ(α− p+ 1)
+

m∑
i=1

ai
ξα−qi

Γ(α− q + 1)

)]

≤L1‖ψ‖ϕ(‖u‖)

[
1

Γ(α+ 1)
+

1

|∆|

(
1

Γ(α− p+ 1)
+

m∑
i=1

ai
ξα−qi

Γ(α− q + 1)

)]
,

which yields

‖u‖

[
‖ψ‖L1ϕ(‖u‖)

(
1

Γ(α+1)
+

1

|∆|

(
1

Γ(α−p+1)
+

m∑
i=1

aiξ
α−q
i

Γ(α− q + 1)

))]−1

≤ 1.

In view of (H4), there exists C > 0, such that ‖u‖ 6= C. Choose D = {u ∈ U :
‖u‖ ≤ C + 1}. Note that the operator A : D → U is continuous and completely
continuous. From the choice of D, there is no u ∈ ∂D such that u = η1A(u) for
some η1 ∈ (0, 1). Consequently, by Lemma 3.4 we deduce that A has a fixed point
u ∈ D which is a solution of BVP (1.1).
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4. Examples

Example 4.1. Consider the following problem
D

7
2
0+u(t) + f(t, u(t), I

1
2

0+u(t)) = 0, 0 ≤ t ≤ 1,

u(0) = u′(0) = u′′(0) = 0,

D2
0+u(1) =

3∑
i=1

aiD
1
0+u(t)|t=ξi ,

(4.1)

where

α =
7

2
, β =

1

2
, p = 2, q = 1, a1 =

1

2
,

a2 =
1

4
, a3 =

1

3
, ξ1 =

1

3
, ξ2 =

1

2
, ξ3 =

1

5
.

By a simple computation, we have

∆ =
Γ(α)

Γ(α− p)
−
(

Γ(α)

Γ(α− q)

) m∑
i=1

aiξ
α−q−1
i = 3.214,

Λ =
1

Γ(α+ 1)
+

1

|∆|

(
1

Γ(α− p+ 1)
+

m∑
i=1

aiξ
α−q
i

Γ(α− q + 1)

)
= 0.3277,

L1 = 1 +
1

Γ(β + 1)
= 2.1283.

We consider

f(t, u(t), I
1
2

0+u(t)) =
1√

t+ 169

(
1√
t+ 4

u(t) +
1√
t2 + 9

tan−1(u(t))

)
+

5

78
I

1
2

0+u(t) + sin(
πt

2
).

Obviously,

|f(t, u(t), I
1
2

0+u(t))− f(t, v(t), I
1
2

0+v(t))| ≤ 5

78
(‖u− v‖+ ‖I

1
2

0+u− I
1
2

0+v‖),

and L = 5
78 . Further, LL1Λ ≈ 0.0447 < 1.

Therefore, all conditions of Theorem 3.1 are satisfied. Thus, by Theorem 3.1,
we conclude that problem (4.1) has a unique solution.

Example 4.2. Consider the problem (4.1) with

f(t, u(t), I
1
2

0+u(t)) =
1

30 + t

(
2u(t) sin(u(t)) +

√
πI

1
2

0+u(t) + 4
)
.

Obviously, |f(t, u(t), I
1
2

0+u(t))| ≤ 4
30+t (‖u‖ + 1) with ψ(t) = 4

30+t , ‖ψ‖ = 2
15 ,

ϕ(‖u‖) = 1 + ‖u‖, we find that C > 0.1025.
Therefore, all conditions of Theorem 3.5 are satisfied. Thus, by Theorem 3.5,

we conclude that problem (4.1) exists at least one solution.
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5. Conclusion

In this paper, we obtained several sufficient conditions for the existence and u-
nique of solutions for a class of fractional-order multi-point boundary value prob-
lem. Our results will be a useful contribution to the existing literature on the topic
of fractional-order nonlocal differential equations. The results of the existence and
uniqueness are demonstrated on two relevant examples.
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