| [1] | H. I. Abdel-Gawad and A. Biswas, Multi-soliton solution based on interactions of basic traveling waves with an application to the nonlocal Boussinesq equation, Acta Phys. Pol. B, 2016, 47(4), 1101-1112. 							Google Scholar
							
						 | 
					
									| [2] | S. O. Adesanya, M. Eslami, M. Mirzazadeh and A. Biswas, Shock wave development in coupled stress fluid filled thin elastic tubes, Eur. Phys. J. Plus., 2015, 130(6), 114. 							Google Scholar
							
						 | 
					
									| [3] | R. Abazari, S. Jamshidzadeh and A. Biswas, Solitary wave solutions of coupled Boussinesq equation, Complexity, 2016, 21(S2), 151-155. 							Google Scholar
							
						 | 
					
									| [4] | G. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations, Springer-Verlag, New York, 2002. 							Google Scholar
							
						 | 
					
									| [5] | P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, Berlin, 1971. 							Google Scholar
							
						 | 
					
									| [6] | A. R. Chowdhury and P. K. Chanda, To the complete integrability of long wave-short wave interaction equations, J. Math. Phys., 1986, 27(3), 707-709. 							Google Scholar
							
						 | 
					
									| [7] | A. R. Chowdhury and P. K. Chanda, Painlevé test for long wave-short wave interaction equations Ⅱ, Int. J. Theor. Phys., 1988, 27(7), 901-919. 							Google Scholar
							
						 | 
					
									| [8] | T. Collins, A. H. Kara, A. H. Bhrawy, H. Triki and A. Biswas, Dynamics of shallow water waves with logarithmic nonlinearity, Rom. Rep. Phys., 2016, 68(3), 943-961. 							Google Scholar
							
						 | 
					
									| [9] | A. Chowdhury and J. A. Tataronis, Long wave-short wave resonance in nonlinear negative refractive index media, Phys. Rev. Lett., 2008, 100(15), 153905. 							Google Scholar
							
						 | 
					
									| [10] | V. D. Djordjevic and L. G. Redekopp, On two-dimensional packets of capillarygravity waves, J. Fluid Meth., 1977, 79(04), 703-714. 							Google Scholar
							
						 | 
					
									| [11] | G. Ebadi, A. Mohavir, S. Kumar and A. Biswas, Solitons and other solutions of the long-short wave equation, Int. J. Numer. Method H., 2015, 25(1), 129-145. 							Google Scholar
							
						 | 
					
									| [12] | C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Method for solving the Kortewegde Vries equation, Phys. Rev. Lett., 1967, 19(19), 1095-1097. 							Google Scholar
							
						 | 
					
									| [13] | R. Hirota, Exact solution of the Kortewegde Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 1971, 27(18), 1192-1194. 							Google Scholar
							
						 | 
					
									| [14] | B. He, Bifurcations and exact bounded travelling wave solutions for a partial differential equation, Nonlinear Anal-Real, 2010, 11(1), 364-371. 							Google Scholar
							
						 | 
					
									| [15] | X. Huang, B. Guo and L. Ling, Darboux transformation and novel solutions for the long wave-short wave model, J. Nonlinear Math. Phy., 2013, 20(4), 514-528. 							Google Scholar
							
						 | 
					
									| [16] | H. Liu, J. Li and L. Liu, Group classifications, symmetry reductions and exact solutions to the nonlinear elastic rod equations, Adv. Appl. Clifford Al., 2012, 22(1), 107-122. 							Google Scholar
							
						 | 
					
									| [17] | Q. Liu, Modifications of k-constrained KP hierarchy, Phys. Lett. A, 1994, 187(5-6), 373-381. 							Google Scholar
							
						 | 
					
									| [18] | Y. Li, Soliton and integrable systems, in:Advanced Series in Nonlinear Science, Shanghai Scientific and Technological Education Publishing House, Shang Hai, 1999. 							Google Scholar
							
						 | 
					
									| [19] | J. Li, Singular Nonlinear Traveling Wave Equations:Bifurcations and Exact Solutions, Science Press, Beijing, 2013. 							Google Scholar
							
						 | 
					
									| [20] | L. Ling and Q. Liu, A long waves-short waves model:Darboux transformation and soliton solutions, J. Math. Phys., 2011, 52(5), 053513. 							Google Scholar
							
						 | 
					
									| [21] | M. Mirzazadeh, M. Eslami and A. Biswas, 1-Soliton solution to KdV6 equation, Nonlinear Dyn., 2015, 80(1-2), 387-396. 							Google Scholar
							
						 | 
					
									| [22] | Q. Meng and B. He, Notes on "Solitary wave solutions of the generalized twocomponent Hunter-Saxton system", Nonlinear Anal-Theor, 2014, 103(7), 33-38. 							Google Scholar
							
						 | 
					
									| [23] | P. Masemola, A. H. Kara, A. H. Bhrawy and A. Biswas, Conservation laws for coupled wave equations, Rom. J. Phys., 2016, 61(3-4), 367-377. 							Google Scholar
							
						 | 
					
									| [24] | M. Mirzazadeh, E. Zerrad, D. Milovic and A. Biswas, Solitary waves and bifurcation analysis of the K(m,n) equation with generalized evolution term, P. Romanian Acad. A, 2016, 17(3), 215-221. 							Google Scholar
							
						 | 
					
									| [25] | D. R. Nicholson and M. V. Goldman, Damped nonlinear Schrödinger equation, Phys. Fluids, 1976, 19(10), 1621-1625. 							Google Scholar
							
						 | 
					
									| [26] | A. C. Newell, Long waves-short waves,a solvable model, Siam J. Appl. Math., 1978, 35(4), 650-664. 							Google Scholar
							
						 | 
					
									| [27] | A. C. Newell, The general structure of integrable evloution equations, Proc. R. Soc. London Ser. A, 1979, 365(1722), 283-311. 							Google Scholar
							
						 | 
					
									| [28] | P. Sanchez, G. Ebadi, A. Mojavir, M. Mirzazadeh, M. Eslami and A. Biswas, Solitons and other solutions to perturbed rosenau KdV-RLW equation with power law nonlinearity, Acta Phys. Pol. A, 2015, 127(6), 1577-1586. 							Google Scholar
							
						 | 
					
									| [29] | M. Song, Z. Liu and C. Yang, Periodic wave solutions and their limits for the modified KdV-KP equations, Acta Math. Sin., Engl. Ser., 2015, 31(6), 1043-1056. 							Google Scholar
							
						 | 
					
									| [30] | H. Triki, M. Mirzazadeh, A. H. Bhrawy, P. Razborova and A. Biswas, Soliton and other solutions to long-wave short wave interaction equation, Rom. J. Phys., 2015, 60(1-2), 72-86. 							Google Scholar
							
						 | 
					
									| [31] | G. Wang, A.H. Kara, K. Fakhar, J. Vega-Guzman and A. Biswas, Group analysis, exact solutions and conservation laws of a generalized fifth order KdV equation, Chaos Soliton Fract., 2016, 86(5), 8-15. 							Google Scholar
							
						 | 
					
									| [32] | R. Wu and W. Wang, Bifurcation and nonsmooth dynamics of solitary waves in the generalized long-short wave equations, Appl. Math. Model., 2009, 33(5), 2218-2225. 							Google Scholar
							
						 | 
					
									| [33] | J. Zhu and Y. Kuang, Cusp solitons to the long-short waves equation and the ∂-dressing method, Rep. Math. Phy., 2015, 75(2), 199-211. 							Google Scholar
							
						 |