[1]
|
D. Addona, L. Angiuli, L. Lorenzi, G. Tessitore, On coupled systems of Kolmogorov equations with applications to stochastic differential games, ESAIM-Control, Optimisation and Calculus of Variations, 2017, 23, 937-976.
Google Scholar
|
[2]
|
D. Addona, L. Angiuli, L. Lorenzi, On invariant measures associated to weakly coupled systems of Kolmogorov equations (submitted), Available on ArXiv at https://arxiv.org/abs/1705.03784.
Google Scholar
|
[3]
|
L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, USA, 2000.
Google Scholar
|
[4]
|
L. Angiuli, L. Lorenzi, On improvement of summability properties in nonautonomous Kolmogorov equations, Commun. Pure Appl. Anal., 2014, 13(3), 1237-1265.
Google Scholar
|
[5]
|
L. Angiuli, L. Lorenzi, A. Lunardi, Hypercontractivity and asymptotic behavior in nonautonomous Kolmogorov equations, Comm. Partial Differential Equations, 2013, 38(12), 2049-2080.
Google Scholar
|
[6]
|
L. Angiuli, L. Lorenzi, D. Pallara, Lp-estimates for parabolic systems with unbounded coefficients coupled at zero and first order, J. Math. Anal. Appl., 2016, 444, 110-135.
Google Scholar
|
[7]
|
V. I. Bogachev, N. Krylov, M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions, Comm. Partial Differential Equations, 2000, 26, 2037-2080.
Google Scholar
|
[8]
|
G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture notes, Cambridge University Press, 1996, 229.
Google Scholar
|
[9]
|
E. B. Davies, B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal., 1984, 59(2), 335-395.
Google Scholar
|
[10]
|
S. Delmonte, L. Lorenzi, On a class of weakly coupled systems of elliptic operators with unbounded coefficients, Milan J. Math., 2011, 79, 689-727.
Google Scholar
|
[11]
|
B. Farkas, A. Lunardi, Maximal regularity for Kolmogorov operators in L2 spaces with respect to invariant measures, J. Math. Pures Appl., 2006, 86(4), 310-321.
Google Scholar
|
[12]
|
L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 1975, 97(4), 1061-1083.
Google Scholar
|
[13]
|
R. Z. Has'minskii, Stochastic Stability of Differential Equations, Monographs and Textbooks on Mechanics of Solids and Fluids:Mechanics and Analysis, Sijthoff & Noordhoff, Alphen aan den Rijn-Germantown, Md., 1980, 7.
Google Scholar
|
[14]
|
M. Kunze, L. Lorenzi, A. Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients, Trans. Amer. Math. Soc., 2010, 362, 169-198.
Google Scholar
|
[15]
|
G. Kresin, V. G. Maz'ia, Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems, Mathematical Surveys and Monographs American Mathematical Society, Providence, RI, 2012, 183.
Google Scholar
|
[16]
|
L. Lorenzi, Analytical Methods for Kolmogorov Equations. Second Edition, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2017.
Google Scholar
|
[17]
|
L. Lorenzi, A. Lunardi, Elliptic operators with unbounded diffusion coefficients in L2 spaces with respect to invariant measures, J. Evol Equ., 2006, 6, 691-709.
Google Scholar
|
[18]
|
L. Lorenzi, A. Lunardi, R. Schnaubelt, Strong convergence of solutions to nonautonomous Kolmogorov equations, Proc. Amer. Math. Soc., 2016, 144, 3903-3917.
Google Scholar
|
[19]
|
A. Lunardi, On the Ornstein-Uhlenbeck operator in L2 spaces with respect to invariant measures, Trans. Amer. Math. Soc., 1997, 349, 155-169.
Google Scholar
|
[20]
|
F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2012, 135.
Google Scholar
|
[21]
|
G. Metafune, D. Pallara, A. Rhandi, Global properties of invariant measures, J. Funct. Anal., 2005, 223(2), 396-424.
Google Scholar
|
[22]
|
G. Metafune, J. Prüss, A. Rhandi, R. Schnaubelt, The domain of the OrnsteinUhlenbeck operator on an Lp-space with invariant measure, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2002, 2(2), 471-485.
Google Scholar
|
[23]
|
G. Metafune, D. Pallara, M. Wacker, Feller semigroups on RN, Semigroup Forum, 2002, 65, 159-205.
Google Scholar
|
[24]
|
K. Otsuka, On the positivity of the fundamental solutions for parabolic systems, J. Math. Kyoto Univ., 1988, 28, 119-132.
Google Scholar
|
[25]
|
J, Prüss, A. Rhandi, R. Schnaubelt, The domain of elliptic operators on Lp(Rd) with unbounded drift coefficients, Houston J. Math., 2006, 32, 563-576.
Google Scholar
|
[26]
|
M. Röckner, F. Y. Wang, Supercontractivity and ultracontractivity for (nonsymmetric) diffusion semigroups on manifolds, Forum Math., 2003, 15(6), 893-921.
Google Scholar
|
[27]
|
F. Y. Wang, Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Relat. Fields, 1997, 109(3), 417-434.
Google Scholar
|
[28]
|
K. Yosida, Functional Analysis, Springer-Verlag, New York, 1965.
Google Scholar
|